# Optimising Energy Flexibility of Boats in PV-BESS Based Marina Energy Systems

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Ballen Marina on Samsø

## 3. Marina’s Demand Analysis

- Night valley: 21.00–6.00.
- Morning peak: 6.00–10.00.
- Noon valley: 10.00–15.00.
- Afternoon peak: 15.00–21.00.

- Pearson correlation coefficient r: statistical measure of the linear correlation between two data sets, in the range of $r\in \langle -1,1\rangle $. A value of $r=-1$ indicates perfect negative correlation, whereas $r=1$ signifies perfect positive correlation.
- p-value: probability of obtaining test results equal to or more extreme than the observed results. Very small p-values indicate that null hypothesis ${H}_{0}$ can be rejected. Typically, the null hypothesis is tested under the significance level of $\alpha =5\%$, leading to 95% confidence interval.

## 4. Electricity Pricing

#### 4.1. Hourly-Varying Tariff for Marina

#### 4.2. Time of Use Tariff for Sailors

- Green zone: 0.22 EUR/kWh, 21.00–6.00.
- Yellow zone: 0.34 EUR/kWh, 10.00–15.00.
- Red zone: 0.40 EUR/kWh, 6.00–10.00 and 15.00–21.00.

## 5. Modelling of Demand Response

## 6. Proposed Optimal Operation of Marina’s Energy System

- Base Scenario,
- Cost-Efficient Operation of BESS,
- Boat Flexibility and BESS,
- Late Summer and Late Autumns Seasons.

## 7. Results and Discussion

#### 7.1. Base Scenario

#### 7.2. Cost-Efficient Operation of BESS

#### 7.3. Boat Flexibility and BESS

#### 7.4. Late Summer and Late Autumn Seasons

- Late summer: 9–15 September 2019, low load (341 kWh) and high PV generation (1759 kWh).
- Late autumn: 21–27 October 2019, low load (324 kWh) and low PV generation (355 kWh).

## 8. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## Abbreviations

BESS | Battery energy storage system |

CPP | Critical peak pricing |

DLC | Direct load control |

DR | Demand response |

DSM | Demand-side management |

EDR | Emergency demand response |

EMS | Energy management system |

ESS | Energy storage system |

EV | Electric vehicle |

ICES | Integrated community energy system |

PSO | Public Service Obligations |

PV | Photovoltaic |

RTP | Real-time pricing |

SOC | State of charge |

TOU | Time-of-use |

V2G | Vehicle-to-grid |

## References

- Smart Grid Strategy: The Intelligent Energy System of the Future; Technical Report; Danish Ministry of Climate, Energy and Building: Copenhagen, Denmark, 2013.
- Albadi, M.H.; El-Saadany, E.F. Demand Response in Electricity Markets: An Overview. In Proceedings of the 2007 IEEE Power Engineering Society General Meeting, Tampa, FL, USA, 24–28 June 2007; pp. 1–5. [Google Scholar]
- Carli, R.; Dotoli, M.; Jantzen, J.; Kristensen, M.; Ben Othman, S. Energy scheduling of a smart microgrid with shared photovoltaic panels and storage: The case of the Ballen marina in Samsø. Energy
**2020**, 198, 1–16. [Google Scholar] [CrossRef] - Ma, R.; Chen, H.; Huang, Y.; Meng, W. Smart Grid Communication: Its Challenges and Opportunities. IEEE Trans. Smart Grid
**2013**, 4, 36–46. [Google Scholar] [CrossRef] - Deng, R.; Yang, Z.; Chow, M.; Chen, J. A Survey on Demand Response in Smart Grids: Mathematical Models and Approaches. IEEE Trans. Ind. Inform.
**2015**, 11, 570–582. [Google Scholar] [CrossRef] - Dall’Anese, E.; Mancarella, P.; Monti, A. Unlocking Flexibility: Integrated Optimization and Control of Multienergy Systems. IEEE Power Energy Mag.
**2017**, 15, 43–52. [Google Scholar] [CrossRef] - Ipakchi, A.; Albuyeh, F. Grid of the future. IEEE Power Energy Mag.
**2009**, 7, 52–62. [Google Scholar] [CrossRef] - Strbac, G. Demand side management: Benefits and challenges. Energy Policy
**2008**, 36, 4419–4426. [Google Scholar] [CrossRef] - Chiu, W.; Sun, H.; Poor, H.V. Demand-side energy storage system management in smart grid. In Proceedings of the 2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm), Tainan, Taiwan, 5–8 November 2012; pp. 73–78. [Google Scholar]
- Arteconi, A.; Hewitt, N.J.; Polonara, F. State of the art of thermal storage for demand-side management. Appl. Energy
**2012**, 93, 371–389. [Google Scholar] [CrossRef] - Palensky, P.; Dietrich, D. Demand Side Management: Demand Response, Intelligent Energy Systems, and Smart Loads. IEEE Trans. Ind. Inform.
**2011**, 7, 381–388. [Google Scholar] [CrossRef][Green Version] - Jordehi, A.R. Optimisation of demand response in electric power systems, a review. Renew. Sustain. Energy Rev.
**2019**, 103, 308–319. [Google Scholar] [CrossRef] - Vardakas, J.S.; Zorba, N.; Verikoukis, C.V. A Survey on Demand Response Programs in Smart Grids: Pricing Methods and Optimization Algorithms. IEEE Commun. Surv. Tutorials
**2015**, 17, 152–178. [Google Scholar] [CrossRef] - Datchanamoorthy, S.; Kumar, S.; Ozturk, Y.; Lee, G. Optimal time-of-use pricing for residential load control. In Proceedings of the 2011 IEEE International Conference on Smart Grid Communications, Brussels, Belgium, 17–20 October 2011; pp. 375–380. [Google Scholar] [CrossRef]
- DR. Regeringen Klar Med Udspil til Transportaftale: Målet er 500.000 Elbiler i 2030. Available online: https://www.dr.dk/nyheder/politik/regeringen-klar-med-udspil-til-transportaftale-maalet-er-500000-elbiler-i-2030 (accessed on 29 September 2020).
- Shao, S.; Pipattanasomporn, M.; Rahman, S. Grid Integration of Electric Vehicles and Demand Response With Customer Choice. IEEE Trans. Smart Grid
**2012**, 3, 543–550. [Google Scholar] [CrossRef] - Rizvi, S.A.A.; Xin, A.; Masood, A.; Iqbal, S.; Jan, M.U.; Rehman, H. Electric Vehicles and their Impacts on Integration into Power Grid: A Review. In Proceedings of the 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 20–22 October 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Saele, H.; Petersen, I. Electric vehicles in Norway and the potential for demand response. In Proceedings of the 2018 53rd International Universities Power Engineering Conference (UPEC), Glasgow, UK, 4–7 September 2018; pp. 1–6. [Google Scholar] [CrossRef][Green Version]
- Mohammad, A.; Zamora, R.; Lie, T.T. Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling. Energies
**2020**, 13, 4541. [Google Scholar] [CrossRef] - Yang, H.; Shen, W.; Yu, Q.; Liu, J.; Jiang, Y.; Ackom, E.; Dong, Z.Y. Coordinated demand response of rail transit load and energy storage system considering driving comfort. Csee J. Power Energy Syst.
**2020**, 6, 749–759. [Google Scholar] [CrossRef] - Calvillo, C.F.; Sánchez-Miralles, A.; Villar, J. Synergies of Electric Urban Transport Systems and Distributed Energy Resources in Smart Cities. IEEE Trans. Intell. Transp. Syst.
**2018**, 19, 2445–2453. [Google Scholar] [CrossRef] - Hein, K.; Yan, X.; Wilson, G. Multi-Objective Optimal Scheduling of a Hybrid Ferry with Shore-to-Ship Power Supply Considering Energy Storage Degradation. Electronics
**2020**, 9, 849. [Google Scholar] [CrossRef] - Kanellos, F.D.; Tsekouras, G.J.; Hatziargyriou, N.D. Optimal Demand-Side Management and Power Generation Scheduling in an All-Electric Ship. IEEE Trans. Sustain. Energy
**2014**, 5, 1166–1175. [Google Scholar] [CrossRef] - Shang, C.; Srinivasan, D.; Reindl, T. Economic and Environmental Generation and Voyage Scheduling of All-Electric Ships. IEEE Trans. Power Syst.
**2016**, 31, 4087–4096. [Google Scholar] [CrossRef] - Shang, C.; Srinivasan, D.; Reindl, T. NSGA-II for joint generation and voyage scheduling of an all-electric ship. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 5113–5119. [Google Scholar] [CrossRef]
- Huang, Y.; Lan, H.; Hong, Y.Y.; Wen, S.; Fang, S. Joint voyage scheduling and economic dispatch for all-electric ships with virtual energy storage systems. Energy
**2020**, 190, 116268. [Google Scholar] [CrossRef] - Ponnaganti, P.; Bak-Jensen, B.; Pillai, J. Maximizing the self-consumption of Solar-PV using Battery Energy Storage System in Samsø-Marina. In Proceedings of the 2019 IEEE PES Innovative Smart Grid Technologies Europe, ISGT-Europe 2019. IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Bucharest, Romania, 29 September–2 October 2019. [Google Scholar] [CrossRef]
- Jozwiak, D.; Pillai, J.R.; Ponnaganti, P.; Bak-Jensen, B.; Jantzen, J. Integrated Community Energy Systems: Case Study of Ballen Marina on Samsø. In Proceedings of the 2021 International Conference on Smart Energy Systems and Technologies (SEST), Vaasa, Finland, 6–8 September 2021. [Google Scholar]
- Rusu, E.; Onea, F. Estimation of the wave energy conversion efficiency in the Atlantic Ocean close to the European islands. Renew. Energy
**2016**, 85, 687–703. [Google Scholar] [CrossRef] - Rusu, E. Wave energy assessments in the Black Sea. J. Mar. Sci. Technol.
**2009**, 14, 359–372. [Google Scholar] [CrossRef] - Bonanno, A.; Franzitta, V.; Muzio, F.P.; Trapanese, M. A multiphysics approach to the design of a seawave energy conversion system. In Proceedings of the 2008 IEEE International Conference on Sustainable Energy Technologies, Singapore, 24–27 November 2008; pp. 665–668. [Google Scholar] [CrossRef]
- Franzitta, V.; Viola, A.; Trapanese, M. Description of Hysteresis in Lithium Battery by Classical Preisach Model. Adv. Mater. Res.
**2012**, 622–623, 1099–1103. [Google Scholar] [CrossRef] - Tran, Q.T.T.; Riva Sanseverino, E.; Zizzo, G.; Di Silvestre, M.L.; Nguyen, T.L.; Tran, Q.-T. Driven Primary Regulation for Minimum Power Losses Operation in Islanded Microgrids. Energies
**2018**, 11, 2890. [Google Scholar] [CrossRef][Green Version] - Gangale, F.; Vasiljevska, J.; Covrig, C.F.; Mengolini, A.; Fulli, G. Smart Grid Projects Outlook 2017: Facts, Figures and Trends in Europe; Technical Report; Joint Research Centre: Luxembourg, Luxembourg, 2017. [Google Scholar]
- Marczinkowski, H.M.; Østergaard, P.A. Evaluation of electricity storage versus thermal storage as part of two different energy planning approaches for the islands Samsø and Orkney. Energy
**2019**, 175, 505–514. [Google Scholar] [CrossRef][Green Version] - Jantzen, J.; Bak-Jensen, B. Deliverable D3.1: Specifications and Data Report for the Samsø Demonstrator; Technical Report; Smart Island Energy Systems: Brussels, Belgium, 2017. [Google Scholar]
- Marczinkowski, H.M. Deliverable D8.2: Short and Medium-Term Scenarios for the Three Pilot Islands; Technical Report; Smart Island Energy Systems: Brussels, Belgium, 2018. [Google Scholar]
- Jantzen, J.; Kristensen, M. The Ballen2016 Data Set. Available online: http://arkiv.energiinstituttet.dk/643/ (accessed on 29 October 2020).
- Agresti, A. Statistical Methods for the Social Sciences, 5th ed.; Pearson: New York, NY, USA, 2018. [Google Scholar]
- Energinet.dk. Flexafregning af Kunders Elforbrug. Available online: https://energinet.dk/El/Private-elkunder/Flexafregning (accessed on 3 February 2021).
- Elpris. SPOT PLUS Prisen. Available online: https://elpris.dk/ (accessed on 25 February 2021).
- Albertsen, L.H.; Andersen, M.; Boscán, L.R.; Santos, A.Q. Implementing dynamic electricity taxation in Denmark. Energy Policy
**2020**, 143, 111543. [Google Scholar] [CrossRef] - Samsø Kommune. Takster 2021. Available online: https://www.samsoe.dk/kommunen/oekonomi/takster-2021 (accessed on 16 April 2021).
- Wikner, E.; Thiringer, T. Extending Battery Lifetime by Avoiding High SOC. Appl. Sci.
**2018**, 8, 1825. [Google Scholar] [CrossRef][Green Version]

Parameter | Value |
---|---|

Nominal PV plant power | 60 kWp |

Battery maximum power | 49 kW |

Battery capacity | 237 kWh |

Number of sockets for boats | 340 |

Maximum allowed import from grid | 86 kW ^{1} |

Maximum allowed export to grid | 49 kW |

^{1}The maximum load may be higher, being concurrently supplied by import from grid and battery action.

Parameter | Case | |
---|---|---|

Without DR | With DR | |

Shifted energy (kWh) | 0 | 347 |

Load factor (%) | 66.5 | 78.1 |

$\left(\right)$ | ||

Marina’s energy cost (EUR) | 1260 | 1258 |

$\left(\right)$ | ||

Sailors’ energy cost (EUR) | 2726 | 2668 |

$\left(\right)$ |

Parameter | Flexibility Factor (%) | ||||
---|---|---|---|---|---|

0 | 25 | 50 | 75 | 100 | |

Shifted energy (kWh) | 0 | 173 | 347 | 520 | 694 |

Load factor (%) | 66.5 | 71.8 | 78.1 | 82.3 | 83.9 |

$\left(\right)$ | $\left(\right)$ | $\left(\right)$ | $\left(\right)$ | ||

Marina’s energy cost (EUR) | 1260 | 1259 | 1258 | 1257 | 1256 |

$\left(\right)$ | $\left(\right)$ | $\left(\right)$ | $\left(\right)$ | ||

Sailors’ energy cost (EUR) | 2726 | 2697 | 2668 | 2639 | 2610 |

$\left(\right)$ | $\left(\right)$ | $\left(\right)$ | $\left(\right)$ |

Parameter | Case | |||
---|---|---|---|---|

Baseline | DR | BESS | DR and BESS | |

Shifted energy (kWh) | 0 | 347 | 0 | 368 |

Energy import (kWh) | 6657 | 6657 | 6678 | 6671 |

$\left(\right)$ | $\left(\right)$ | |||

Load factor (%) | 66.5 | 78.1 | 66.5 | 78.3 |

$\left(\right)$ | $\left(\right)$ | |||

Marina’s energy cost (EUR) | 1260 | 1258 | 1259 | 1256 |

$\left(\right)$ | $\left(\right)$ | $\left(\right)$ | ||

Sailors’ energy cost (EUR) | 2726 | 2668 | 2726 | 2663 |

$\left(\right)$ | $\left(\right)$ |

Parameter | Late Summer | Late Autumn | ||
---|---|---|---|---|

Baseline | DR and BESS | Baseline | DR and BESS | |

Shifted energy (kWh) | 0 | 18 | 0 | 15 |

Energy import (kWh) | 203 | 0 | 225 | 0 |

$\left(\right)$ | $\left(\right)$ | |||

Energy export (kWh) | 1621 | 1439 | 256 | 0 |

$\left(\right)$ | $\left(\right)$ | |||

Load factor (%) | 19.8 | 28.7 | 31.8 | 36.9 |

$\left(\right)$ | $\left(\right)$ | |||

Marina’s energy cost (EUR) | $-8$ | $-41$ | 34 | 0 |

$\left(\right)$ | $\left(\right)$ | |||

Sailors’ energy cost (EUR) | 111 | 108 | 107 | 105 |

$\left(\right)$ | $\left(\right)$ |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Jozwiak, D.; Pillai, J.R.; Ponnaganti, P.; Bak-Jensen, B.; Jantzen, J.
Optimising Energy Flexibility of Boats in PV-BESS Based Marina Energy Systems. *Energies* **2021**, *14*, 3397.
https://doi.org/10.3390/en14123397

**AMA Style**

Jozwiak D, Pillai JR, Ponnaganti P, Bak-Jensen B, Jantzen J.
Optimising Energy Flexibility of Boats in PV-BESS Based Marina Energy Systems. *Energies*. 2021; 14(12):3397.
https://doi.org/10.3390/en14123397

**Chicago/Turabian Style**

Jozwiak, Dawid, Jayakrishnan Radhakrishna Pillai, Pavani Ponnaganti, Birgitte Bak-Jensen, and Jan Jantzen.
2021. "Optimising Energy Flexibility of Boats in PV-BESS Based Marina Energy Systems" *Energies* 14, no. 12: 3397.
https://doi.org/10.3390/en14123397