Research on the Relationship between Prices of Agricultural Production Factors, Food Consumption Prices, and Agricultural Carbon Emissions: Evidence from China’s Provincial Panel Data
Abstract
1. Introduction
2. Methodology and Data
2.1. Calculating Carbon Emissions
2.2. Economic Specifications
2.3. ARDL–PMG Approach
2.4. Data Sources
3. Results and Discussion
3.1. Cross-Sectional Dependence Tests and Unit Root Tests
3.2. Cointegration Test
3.3. ARDL–PMG Estimates
3.4. Granger Causality
4. Conclusions and Policy Implications
Author Contributions
Funding
Conflicts of Interest
References
- Umar, B.; Alam, M.M.; Al-Amin, A. Exploring the contribution of energy price to carbon emissions in African countries. Environ. Sci. Pollut. Res. 2021, 28, 1973–1982. [Google Scholar] [CrossRef]
- Ren, X.; Cheng, C.; Wang, Z.; Yan, C. Spillover and dynamic effects of energy transition and economic growth on carbon dioxide emissions for the European Union: A dynamic spatial panel model. Sustain. Dev. 2021, 29, 228–242. [Google Scholar] [CrossRef]
- Ridzuan, N.H.; Marwan, N.F.; Khalid, N.; Ali, M.H.; Tseng, M.L. Effects of agriculture, renewable energy, and economic growth on carbon dioxide emissions: Evidence of the environmental Kuznets curve. Resour. Conserv. Recycl. 2020, 160, 12. [Google Scholar] [CrossRef]
- Clark, M.A.; Domingo, N.G.; Colgan, K.; Thakrar, S.K.; Tilman, D.; Lynch, J.; Azevedo, I.L.; Hill, J.D. Global food system emissions could preclude achieving the 1.5 degrees and 2 degrees C climate change targets. Science 2020, 370, 705–708. [Google Scholar] [CrossRef] [PubMed]
- Pang, J.; Li, H.; Lu, C.; Lu, C.; Chen, X. Regional Differences and Dynamic Evolution of Carbon Emission Intensity of Agriculture Production in China. Int. J. Environ. Res. Public Health 2020, 17, 7541. [Google Scholar] [CrossRef]
- Chen, J.D.; Cheng, S.L.; Song, M.L. Changes in energy-related carbon dioxide emissions of the agricultural sector in China from 2005 to 2013. Renew. Sustain. Energy Rev. 2018, 94, 748–761. [Google Scholar] [CrossRef]
- Robertson, G.P.; Paul, E.A.; Harwood, R.R. Greenhouse gases in intensive agriculture: Contributions of individual gases to the radiative forcing of the atmosphere. Science 2000, 289, 1922–1925. [Google Scholar] [CrossRef] [PubMed]
- Schneider, U.A.; McCarl, B.A.; Schmid, E. Agricultural sector analysis on greenhouse gas mitigation in US agriculture and forestry. Agric. Syst. 2007, 94, 128–140. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Mbow, C.; Barioni, L.G.; Benton, T.G.; Herrero, M.; Krishnapillai, M.; Liwenga, E.T.; Pradhan, P.; Rivera-Ferre, M.G.; Sapkota, T.; et al. Climate change responses benefit from a global food system approach. Nat. Food 2020, 1, 94–97. [Google Scholar] [CrossRef]
- Prastiyo, S.E.; Hardyastuti, S. How agriculture, manufacture, and urbanization induced carbon emission? The case of Indonesia. Environ. Sci. Pollut. Res. 2020, 27, 42092–42103. [Google Scholar] [CrossRef]
- Chandio, A.A.; Akram, W.; Ahmad, F.; Ahmad, M. Dynamic relationship among agriculture-energy-forestry and carbon dioxide (CO2) emissions: Empirical evidence from China. Environ. Sci. Pollut. Res. 2020, 27, 34078–34089. [Google Scholar] [CrossRef]
- Asumadu-Sarkodie, S.; Owusu, P.A. Carbon dioxide emissions, GDP, energy use, and population growth: A multivariate and causality analysis for Ghana, 1971–2013. Environ. Sci. Pollut. Res. 2016, 23, 13508–13520. [Google Scholar] [CrossRef] [PubMed]
- Xiong, C.; Yang, D.; Xia, F.; Huo, J. Changes in agricultural carbon emissions and factors that influence agricultural carbon emissions based on different stages in Xinjiang, China. Sci. Rep. 2016, 6, 36912. [Google Scholar] [CrossRef] [PubMed]
- Pellerin, S.; Bamière, L.; Angers, D.; Béline, F.; Benoit, M.; Butault, J.P.; Chenu, C.; Colnenne-David, C.; De Cara, S.; Delame, N.; et al. Identifying cost-competitive greenhouse gas mitigation potential of French agriculture. Environ. Sci. Policy 2017, 77, 130–139. [Google Scholar] [CrossRef]
- Lamb, A.; Green, R.; Bateman, I.; Broadmeadow, M.; Bruce, T.; Burney, J.; Carey, P.; Chadwick, D.; Crane, E.; Field, R.; et al. The potential for land sparing to offset greenhouse gas emissions from agriculture. Nat. Clim. Chang. 2016, 6, 488–492. [Google Scholar] [CrossRef]
- Zhang, L.; Pang, J.; Chen, X.; Lu, Z. Carbon emissions, energy consumption and economic growth: Evidence from the agricultural sector of China’s main grain-producing areas. Sci. Total Environ. 2019, 665, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Pan, G.; Smith, P.; Luo, T.; Li, L.; Zheng, J.; Zhang, X.; Han, X.; Yan, M. Carbon footprint of China’s crop production-An estimation using agro-statistics data over 1993–2007. Agric. Ecosyst. Environ. 2011, 142, 231–237. [Google Scholar] [CrossRef]
- Gütschow, J.; Jeffery, M.L.; Gieseke, R.; Gebel, R.; Stevens, D.; Krapp, M.; Rocha, M. The PRIMAP-hist national historical emissions time series. Earth Syst. Sci. Data 2016, 8, 571–603. [Google Scholar] [CrossRef]
- Frank, S.; Havlík, P.; Stehfest, E.; van Meijl, H.; Witzke, P.; Pérez-Domínguez, I.; van Dijk, M.; Doelman, J.C.; Fellmann, T.; Koopman, J.F.; et al. Agricultural non-CO2 emission reduction potential in the context of the 1.5 degrees C target. Nat. Clim. Chang. 2019, 9, 66–84. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Salvatore, M.; Ferrara, A.F.; House, J.; Federici, S.; Rossi, S.; Biancalani, R.; Condor Golec, R.D.; Jacobs, H.; Flammini, A.; et al. The Contribution of Agriculture, Forestry and other Land Use activities to Global Warming, 1990–2012. Glob. Chang. Biol. 2015, 21, 2655–2660. [Google Scholar] [CrossRef]
- Smith, K.A. Changing views of nitrous oxide emissions from agricultural soil: Key controlling processes and assessment at different spatial scales. Eur. J. Soil Sci. 2017, 68, 137–155. [Google Scholar] [CrossRef]
- Liu, D.D.; Zhu, X.Y.; Wang, Y.F. China’s agricultural green total factor productivity based on carbon emission: An analysis of evolution trend and influencing factors. J. Clean. Prod. 2021, 278, 12. [Google Scholar] [CrossRef]
- Yu, Y.; Jiang, T.; Li, S.; Li, X.; Gao, D. Energy-related CO2 emissions and structural emissions’ reduction in China’s agriculture: An input-output perspective. J. Clean. Prod. 2020, 276, 14. [Google Scholar] [CrossRef]
- Huang, X.; Xu, X.; Wang, Q.; Zhang, L.; Gao, X.; Chen, L. Assessment of Agricultural Carbon Emissions and Their Spatiotemporal Changes in China, 1997–2016. Int. J. Environ. Res. Public Health 2019, 16, 3105. [Google Scholar] [CrossRef] [PubMed]
- Nayak, D.; Saetnan, E.; Cheng, K.; Wang, W.; Koslowski, F.; Cheng, Y.F.; Zhu, W.Y.; Wang, J.K.; Liu, J.X.; Moran, D.; et al. Management opportunities to mitigate greenhouse gas emissions from Chinese agriculture. Agric. Ecosyst. Environ. 2015, 209, 108–124. [Google Scholar] [CrossRef]
- Bai, Y.; Deng, X.; Jiang, S.; Zhao, Z.; Miao, Y. Relationship between climate change and low-carbon agricultural production: A case study in Hebei Province, China. Ecol. Indic. 2019, 105, 438–447. [Google Scholar] [CrossRef]
- Spence, A.; Pidgeon, N. Framing and communicating climate change: The effects of distance and outcome frame manipulations. Glob. Environ. Chang.-Hum. Policy Dimens. 2010, 20, 656–667. [Google Scholar] [CrossRef]
- Cai, T.; Xia, F.; Yang, D.; Huo, J.; Zhang, Y. Decomposition of factors affecting changes in non-CO2 greenhouse gas emission intensity of China’s livestock sector based on the concept of "environment-food-economy". Sci. Total Environ. 2019, 691, 611–620. [Google Scholar] [CrossRef] [PubMed]
- Xiong, C.H.; Chen, S.; Xu, L.T. Driving factors analysis of agricultural carbon emissions based on extended STIRPAT model of Jiangsu Province, China. Growth Chang. 2020, 16, 1401–1416. [Google Scholar] [CrossRef]
- Rehman, A.; Ma, H.; Irfan, M.; Ahmad, M. Does carbon dioxide, methane, nitrous oxide, and GHG emissions influence the agriculture? Evidence from China. Environ. Sci. Pollut. Res. 2020, 27, 28768–28779. [Google Scholar] [CrossRef]
- Glenk, K.; Eory, V.; Colombo, S.; Barnes, A. Adoption of greenhouse gas mitigation in agriculture: An analysis of dairy farmers’ perceptions and adoption behaviour. Ecol. Econ. 2014, 108, 49–58. [Google Scholar] [CrossRef]
- De Cara, S.; Jayet, P.A. Emissions of greenhouse gases from agriculture: The heterogeneity of abatement costs in France. Eur. Rev. Agric. Econ. 2000, 27, 281–303. [Google Scholar] [CrossRef]
- Chen, W.D.; Peng, Y.F.; Yu, G.Y. The influencing factors and spillover effects of interprovincial agricultural carbon emissions in China. PLoS ONE 2020, 15, e0240800. [Google Scholar] [CrossRef] [PubMed]
- Pesaran, M.H.; Smith, R.P. Estimating Long-Run Relationship from Dynamic Heterogeneous Panels. J. Econom. 1995, 68, 79–113. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Shin, Y.C.; Smith, R.P. Pooled mean group estimation of dynamic heterogeneous panels. J. Am. Stat. Assoc. 1999, 94, 621–634. [Google Scholar] [CrossRef]
Mean | Max | Min | SD | Skewness | Kurtosis | Observations | |
---|---|---|---|---|---|---|---|
C | 10.11 | 22.50 | 0.87 | 5.41 | 0.25 | 1.95 | 650.00 |
PP | 176.80 | 306.42 | 100.00 | 52.51 | 0.39 | 1.81 | 650.00 |
FP | 176.63 | 329.90 | 100.00 | 61.17 | 0.63 | 2.02 | 650.00 |
Variables | C | PP | FP |
---|---|---|---|
C | 1.00 | ||
PP | −0.03 | 1.00 | |
FP | 0.07 | 0.94 | 1.00 |
Variables | Pesaran CD | Pesaran Scaled LM | Breusch-Pagan LM | |||
---|---|---|---|---|---|---|
Statistic | p | Statistic | p | Statistic | p | |
LnC | 14.760 | 0.000 | 92.669 | 0.000 | 2687.606 | 0.000 |
LnPP | 88.891 | 0.000 | 297.229 | 0.000 | 7902.894 | 0.000 |
LnFP | 89.834 | 0.000 | 303.795 | 0.000 | 8070.293 | 0.000 |
Level | |||
---|---|---|---|
IPS | ADF-Fisher | PP-Fisher | |
LnC | −1.154 | 61.805 | 75.653 ** |
LnPP | −6.528 *** | 128.096 *** | 43.626 |
LnFP | −11.934 *** | 225.422 *** | 14.639 |
1st Difference | |||
IPS | ADF-Fisher | PP-Fisher | |
LnC | −17.144 *** | 315.742 *** | 623.283 *** |
LnPP | −8.740 *** | 170.559 *** | 250.067 *** |
LnFP | −2.921 *** | 83.876 *** | 206.890 *** |
Lag | LogL | LR | FPE | AIC | SC | HQ |
---|---|---|---|---|---|---|
0 | −150.382 | - | 0.000 | 0.492 | 0.513 | 0.4999 |
1 | 3142.826 * | 6544.196 * | 8.80 × 10−9 * | −10.035 * | −9.949 * | −10.002 * |
Statistic Name | Statistic | p-Value | |
---|---|---|---|
Kao co-integration test; Null hypothesis: no co-integration | ADF | 1.701 | 0.044 |
Pedroni co-integration test; Null hypothesis: no co-integration | Panel v-Statistic | −4.927 | 1.000 |
Panel rho-Statistic | −7.263 | 0.000 | |
Panel PP-Statistic | −19.868 | 0.000 | |
Panel ADF-Statistic | −2.376 | 0.000 | |
Group rho-Statistic | −4.518 | 0.000 | |
Group PP-Statistic | −26.574 | 0.000 | |
Group ADF-Statistic | −2.182 | 0.015 |
Long-Term | |||
---|---|---|---|
Dependent Variable | LntC | LnPP | LnFP |
LnC | - | 0.095 | −0.193 *** |
LnPP | −0.235 *** | - | 0.599 *** |
LnFP | 0.276 *** | 1.157 *** | - |
Short-Term | |||
Dependent Variable | LnC | LnPP | LnFP |
ΔLnC | - | −0.035 | 0.105 *** |
ΔLnPP | 0.298 *** | - | 0.242 *** |
ΔLnFP | −0.261 *** | −0.123 ** | - |
ECM(-1) | −0.195 *** | −0.327 *** | −0.259 *** |
Null Hypothesis: | W-Stat. | Zbar-Stat. | Prob. |
---|---|---|---|
ΔLnPP does not homogeneously cause ΔLnC | 2.124 | 3.017 | 0.003 |
ΔLnC does not homogeneously cause ΔLnPP | 1.123 | 0.034 | 0.973 |
ΔLnFP does not homogeneously cause ΔLnC | 1.910 | 2.378 | 0.017 |
ΔLnC does not homogeneously cause ΔLnFP | 1.498 | 1.153 | 0.249 |
ΔLnFP does not homogeneously cause ΔLnPP | 6.924 | 17.308 | 0.000 |
ΔLnPP does not homogeneously cause ΔLnFP | 2.148 | 3.087 | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, J.; Li, X.; Li, X.; Chen, X.; Wang, H. Research on the Relationship between Prices of Agricultural Production Factors, Food Consumption Prices, and Agricultural Carbon Emissions: Evidence from China’s Provincial Panel Data. Energies 2021, 14, 3136. https://doi.org/10.3390/en14113136
Pang J, Li X, Li X, Chen X, Wang H. Research on the Relationship between Prices of Agricultural Production Factors, Food Consumption Prices, and Agricultural Carbon Emissions: Evidence from China’s Provincial Panel Data. Energies. 2021; 14(11):3136. https://doi.org/10.3390/en14113136
Chicago/Turabian StylePang, Jiaxing, Xiang Li, Xue Li, Xingpeng Chen, and Huiyu Wang. 2021. "Research on the Relationship between Prices of Agricultural Production Factors, Food Consumption Prices, and Agricultural Carbon Emissions: Evidence from China’s Provincial Panel Data" Energies 14, no. 11: 3136. https://doi.org/10.3390/en14113136
APA StylePang, J., Li, X., Li, X., Chen, X., & Wang, H. (2021). Research on the Relationship between Prices of Agricultural Production Factors, Food Consumption Prices, and Agricultural Carbon Emissions: Evidence from China’s Provincial Panel Data. Energies, 14(11), 3136. https://doi.org/10.3390/en14113136