Comparative Study on the Effects of Three Membrane Modification Methods on the Performance of Microbial Fuel Cell
Abstract
:1. Introduction
2. Materials and Methods
2.1. Structure of the Experimental System
2.2. Experimental Materials and Pretreatment
2.3. Preparation and Modification of Membranes
2.4. Analysis Methods
3. Results and Discussions
3.1. Effect of SiO2/PVDF Modified Membrane on Electricity Generation Performance of MFC
3.2. Effect of Sulfonated PVDF and Polymerized MMA Modified Membranes on Electricity Generation Performance of MFC
3.3. Analysis of Water Absorption of Membranes
3.4. Water Quality Analysis
3.5. SEM Analysis
3.6. Cyclic Voltammetric Characteristics
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ellabban, O.; Abu-rub, H.; Blaabjerg, F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 2014, 39, 748–764. [Google Scholar] [CrossRef]
- Ivan, S.; Rene, P. Optimal sizing of renewable sources and energy storage in low-carbon microgrid nodes. Electr. Eng. 2018, 100, 1661–1674. [Google Scholar]
- Susana, S.; Isabel, S.; Carlos, P. Renewable energy subsidies versus carbon capture and sequestration support. Environ. Dev. Sustain. 2018, 20, 1213–1227. [Google Scholar]
- Nasirov, S.; Agostini, C.; Silva, C.; Caceres, G. Renewable energy transition: A market-driven solution for the energy and environmental concerns in Chile. Clean Technol. Environ. 2018, 20, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Park, J.D.; Ren, Z.J. Practical energy harvesting for microbial fuel cells: A review. Environ. Sci. Technol. 2015, 49, 3267–3277. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Khan, M.D.; Nizami, A.S.; Rehan, M.; Shaida, A.; Ahmad, A.; Khan, M.Z. Energy generation through bioelectrochemical degradation of pentachlorophenol in microbial fuel cell. RSC Adv. 2018, 8, 20726–20736. [Google Scholar] [CrossRef] [Green Version]
- Varanasi, L.J.; Sinha, P.; Das, D. Maximizing power generation from dark fermentation effluents in microbial fuel cell by selective enrichment of exoelectrogens and optimization of anodic operational parameters. Biotechnol. Lett. 2017, 39, 721–730. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.P.; Zheng, Y.J.; Miao, X.H. Effects of catholyte and dissolved oxygen on microbial fuel cell performance. J. Chem. Eng. Chin. Univ. 2016, 30, 491–496. [Google Scholar]
- Logan, B.E.; Zikmund, E.; Yang, W.; Rossi, R.; Kim, K.Y.; Saikaly, P.E.; Zhang, F. Impact of ohmic resistance on measured electrode potentials and maximum power production in microbial fuel cells. Environ. Sci. Technol. 2018, 52, 8977–8985. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhao, J.; Liu, S.; Zhao, R.; Hu, B. Effect of Temperature on Nitrogen Removal and Electricity Generation of a Dual-Chamber Microbial Fuel Cell. Water Air Soil Pollut. 2018, 229, 244. [Google Scholar] [CrossRef]
- Fan, L.P.; Miao, X.H. Study on the performance of microbial fuel cell for restaurant wastewater treatment and simultaneous electricity generation. J. Fuel Chem. Technol. 2014, 42, 1506–1512. [Google Scholar]
- Liu, J.D.; Tian, C.; Xiong, J.X.; Wang, L.J. Polypyrrole blending modification for PVDF conductive membrane preparing and fouling mitigation. J. Colloid Interface Sci. 2017, 494, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Kloch, M.; Toczylowska-Maminska, R. Toward optimization ofwood industry wastewater treatment in microbial fuel cells—mixed wastewaters approach. Energies 2020, 13, 263. [Google Scholar] [CrossRef] [Green Version]
- Kong, X.Y.; Li, L.H.; Ma, L.L.; Sun, Y.M.; Li, Y.; Yuan, Z.H. Electricity generation comparison of two-chamber microbial fuel cells with different membrane. Acta Energ. Sol. Sin. 2012, 33, 882–887. [Google Scholar]
- Srinophakun, P.; Thanapimmetha, A.; Plangsri, S.; Vetchayakunchai, S.; Saisriyoot, M. Application of modified chitosan membrane for microbial fuel cell: Roles of proton carrier site and positive charge. J. Clean. Prod. 2017, 142, 1274–1282. [Google Scholar] [CrossRef]
- Hernández-Flores, G.; Poggi-Varaldo, H.M.; Solorza-Feria, O. Comparison of alternative membranes to replace high cost Nafion ones in microbial fuel cells. Int. J. Hydrog. Energy 2016, 41, 23354–23362. [Google Scholar] [CrossRef]
- Hasani-Sadrabadi, M.M.; Dashtimoghadam, E.; Eslami, S.N.S.; Bahlakeh, G.; Shokrgozar, M.A.; Jacob, K.I. Air-breathing microbial fuel cell with enhanced performance using nanocomposite proton exchange membranes. Polymer 2014, 55, 6102–6109. [Google Scholar] [CrossRef]
- Uchida, H.; Mizuno, Y.; Watanabe, M. Suppression of methanol crossover and distribution of ohmic resistance in Pt-dispersed PEMs under DMFC operation experimental analyses. J. Electrochem. Soc. 2002, 149, 682–687. [Google Scholar] [CrossRef]
- Fan, L.P.; Zhang, L.L. Effect of heteropolyacid and heteropolyacid salt on the performance of nanometer proton membrane microbial fuel cell. Int. J. Electrochem. Sci. 2017, 12, 699. [Google Scholar] [CrossRef]
- Yang, C.; Srinivasan, S.; Bocarsly, A.B.; Tulyani, S.; Benziger, J.B. A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes. J. Membr. Sci. 2004, 237, 145–161. [Google Scholar] [CrossRef]
- Mauritz, K.A.; Payne, J.T. [Perfluorosulfonate ionomer]/silicate hybrid membranes via base-catalyzed in situ sol-gel processes for tetraethylorthosilicate. J. Membr. Sci. 2000, 168, 39–51. [Google Scholar] [CrossRef]
- Shen, X.; Liu, P.; Xia, S.; Liu, J.; Wang, R.; Zhao, H.; Liu, Q.; Xu, J.; Wang, F. Anti-fouling and anti-bacterial modification of poly(vinylidene fluoride) membrane by blending with the capsaicin-based copolymer. Polymers 2019, 11, 323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, G.D.; Cao, Y.M. Application and modification of poly(vinylidene fluoride) (PVDF) membranes—A review. J. Membr. Sci. 2014, 463, 145–165. [Google Scholar] [CrossRef]
- Fan, L.P.; Xu, D.D.; Li, C.; Xue, S. Molasses wastewater treatment by microbial fuel cell with MnO2-Modified cathode. Pol. J. Environ. Stud. 2016, 25, 2349–3256. [Google Scholar] [CrossRef]
- Ma, Z.; Lu, X.; Wu, C.; Gao, Q.; Zhao, L.; Zhang, H.; Liu, Z. Functional surface modification of PVDF membrane for chemical pulse cleaning. J. Membr. Sci. 2017, 524, 389–399. [Google Scholar] [CrossRef]
- Apollo, S.; Onyongo, M.S.; Ochieng, A. UV/H2O2/TiO2/Zeolite hybrid system for treatment of molasses wastewater. Iran. J. Chem. Chem. Eng. 2014, 33, 107–117. [Google Scholar]
- Sirianuntapiboon, S.; Phothilangka, P.; Ohmomo, S. Decolorization of molasses wastewater by a strain No. BP103 of acetogenic bacteria. Bioresour. Technol. 2004, 92, 31–39. [Google Scholar] [CrossRef]
Blank | SiO2/PVDF | Sulfonated PVDF | Polymerized MMA | |
---|---|---|---|---|
Influent (mg/L) | 12,890 | 12,890 | 12,890 | 12,890 |
Effluent (mg/L) | 8804 | 7528 | 7540 | 5826 |
COD removal rate (%) | 31.7 | 41.6 | 42.2 | 54.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, L.; Shi, J.; Gao, T. Comparative Study on the Effects of Three Membrane Modification Methods on the Performance of Microbial Fuel Cell. Energies 2020, 13, 1383. https://doi.org/10.3390/en13061383
Fan L, Shi J, Gao T. Comparative Study on the Effects of Three Membrane Modification Methods on the Performance of Microbial Fuel Cell. Energies. 2020; 13(6):1383. https://doi.org/10.3390/en13061383
Chicago/Turabian StyleFan, Liping, Junyi Shi, and Tian Gao. 2020. "Comparative Study on the Effects of Three Membrane Modification Methods on the Performance of Microbial Fuel Cell" Energies 13, no. 6: 1383. https://doi.org/10.3390/en13061383
APA StyleFan, L., Shi, J., & Gao, T. (2020). Comparative Study on the Effects of Three Membrane Modification Methods on the Performance of Microbial Fuel Cell. Energies, 13(6), 1383. https://doi.org/10.3390/en13061383