Experimental Study of Pressure and Velocity Fluctuations Induced by Cavitation in a Small Venturi Channel
Abstract
:1. Introduction
2. Experimental Setup and Methods
2.1. Hydraulic Test Rig
2.2. Multifunctional Venturi-Type Test Section
2.3. Pressure Measurements
2.4. High-Speed Visualisation
2.5. PIV-LIF Measurements
3. Results and Discussion
3.1. Pressure Loss versus Cavitation Number
3.2. Cavity Length versus Cavitation Number
3.3. Velocity and Pressure Fluctuations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Leroux, J.B.; Jacques, A.; Billard, J.Y. An experimental study of unsteady partial cavitation. J. Fluids Eng. 2004, 126, 94–101. [Google Scholar] [CrossRef]
- Coutier-Delgosha, O.; Devillers, J.F.; Pichon, T.; Vabre, A.; Woo, R.; Legoupil, S. Internal structure and dynamics of sheet cavitation. Phys. Fluids 2006, 18, 017103. [Google Scholar] [CrossRef]
- Ganesh, H.; Mäkiharju, S.A.; Ceccio, S.L. Bubbly shock propagation as a mechanism for sheet-to-cloud transition of partial cavities. J. Fluid Mech. 2016, 802, 37–78. [Google Scholar] [CrossRef] [Green Version]
- Dular, M.; Bachert, B.; Stoffel, B.; Širok, B. Relationship between cavitation structures and cavitation damage. Wear 2004, 257, 1176–1184. [Google Scholar] [CrossRef]
- Danlos, A.; Ravelet, F.; Coutier-Delgosha, O.; Bakir, F. Cavitation regime detection through Proper Orthogonal Decomposition: Dynamics analysis of the sheet cavity on a grooved convergent–divergent nozzle. Int. J. Heat Fluid Flow 2014, 47, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Prothin, S.; Billard, J.Y.; Djeridi, H. Image processing using proper orthogonal and dynamic mode decompositions for the study of cavitation developing on a NACA0015 foil. Exp. Fluids 2016, 57, 157. [Google Scholar] [CrossRef]
- Long, X.; Zhang, J.; Wang, J.; Xu, M.; Ji, B. Experimental investigation of the global cavitation dynamic behavior in a venturi tube with special emphasis on the cavity length variation. Int. J. Multiph. Flow 2017, 89, 290–298. [Google Scholar] [CrossRef]
- Zhang, H.; Zuo, Z.; Mørch, K.A.; Liu, S. Thermodynamic effects on Venturi cavitation characteristics. Phys. Fluids 2019, 31, 097107. [Google Scholar]
- Wang, C.; Huang, B.; Wang, G.; Zhang, M.; Ding, N. Unsteady pressure fluctuation characteristics in the process of breakup and shedding of sheet/cloud cavitation. Int. J. Heat Mass Transf. 2017, 114, 769–785. [Google Scholar] [CrossRef]
- Wu, X.; Maheux, E.; Chahine, G.L. An experimental study of sheet to cloud cavitation. Exp. Therm. Fluid Sci. 2017, 83, 129–140. [Google Scholar] [CrossRef]
- Gopalan, S.; Katz, J. Flow structure and modeling issues in the closure region of attached cavitation. Phys. Fluids 2000, 12, 895–911. [Google Scholar] [CrossRef]
- Laberteaux, K.R.; Ceccio, S.L. Partial cavity flows. Part 1. Cavities forming on models without spanwise variation. J. Fluid Mech. 2001, 431, 1–41. [Google Scholar] [CrossRef]
- Iyer, C.O.; Ceccio, S.L. The influence of developed cavitation on the flow of a turbulent shear layer. Phys. Fluids 2002, 14, 3414–3431. [Google Scholar] [CrossRef] [Green Version]
- Foeth, E.J.; Van Doorne, C.W.H.; Van Terwisga, T.; Wieneke, B. Time resolved PIV and flow visualization of 3D sheet cavitation. Exp. Fluids 2006, 40, 503–513. [Google Scholar] [CrossRef]
- Kravtsova, A.Y.; Markovich, D.M.; Pervunin, K.S.; Timoshevskiy, M.V.; Hanjalić, K. High-speed visualization and PIV measurements of cavitating flows around a semi-circular leading-edge flat plate and NACA0015 hydrofoil. Int. J. Multiph. Flow 2014, 60, 119–134. [Google Scholar] [CrossRef]
- Dular, M.; Bachert, R.; Stoffel, B.; Širok, B. Experimental evaluation of numerical simulation of cavitating flow around hydrofoil. Eur. J. Mech. B Fluid 2005, 24, 522–538. [Google Scholar] [CrossRef]
- Dular, M.; Bachert, R.; Schaad, C.; Stoffel, B. Investigation of a re-entrant jet reflection at an inclined cavity closure line. Eur. J. Mech. B Fluid 2007, 26, 688–705. [Google Scholar] [CrossRef]
- Khlifa, I.; Vabre, A.; Hočevar, M.; Fezzaa, K.; Fuzier, S.; Roussette, O.; Coutier-Delgosha, O. Fast X-ray imaging of cavitating flows. Exp. Fluids 2017, 58, 157. [Google Scholar] [CrossRef]
- Zhang, G.; Khlifa, I.; Coutier-Delgosha, O. Experimental investigation of turbulent cavitating flows in a small venturi nozzle. In Proceedings of the ASME-JSME-KSME 2019 Joint Fluids Engineering Conference, San Francisco, CA, USA, 28 July–1 August 2019. [Google Scholar]
- Zhang, G.; Khlifa, I.; Fezzaa, K.; Ge, M.; Coutier-Delgosha, O. Experimental investigation of internal two-phase flow structures and dynamics of quasi-stable sheet cavitation by fast synchrotron X-ray imaging. Phys. Fluids 2020, 32, 113310. [Google Scholar] [CrossRef]
- Jahangir, S.; Hogendoorn, W.; Poelma, C. Dynamics of partial cavitation in an axisymmetric converging-diverging nozzle. Int. J. Multiph. Flow 2018, 106, 34–45. [Google Scholar] [CrossRef] [Green Version]
- Karathanassis, I.K.; Koukouvinis, P.; Kontolatis, E.; Lee, Z.; Gavaises, M. High-speed visualization of vortical cavitation using synchrotron radiation. J. Fluid Mech. 2018, 838, 148–164. [Google Scholar] [CrossRef] [Green Version]
- Dittakavi, N.; Chunekar, A.; Frankel, S. Large Eddy Simulation of Turbulent-Cavitation Interactions in a Venturi Nozzle. J. Fluids Eng. 2010, 132, 121301. [Google Scholar] [CrossRef]
- Belahadji, B.; Franc, J.P.; Michel, J.M. Cavitation in the rotational structures of a turbulent wake. J. Fluid Mech. 1995, 287, 383–403. [Google Scholar] [CrossRef]
- Xing, T.; Li, Z.; Frankel, S.H. Numerical simulation of vortex cavitation in a three-dimensional submerged transitional jet. J. Fluids Eng. 2005, 127, 714–725. [Google Scholar] [CrossRef]
- Shamsborhan, H.; Coutier-Delgosha, O.; Caignaert, G.; Nour, F.A. Experimental determination of the speed of sound in cavitating flows. Exp. Fluids 2010, 49, 1359–1373. [Google Scholar] [CrossRef]
- Brennen, C.E. Cavitation and Bubble Dynamics; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Barre, S.; Quine, C.; Dussauge, J.P. Compressibility effects on the structure of supersonic mixing layers: Experimental results. J. Fluid Mech. 1994, 259, 47–78. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Zhang, G.; Ge, M.; Coutier-Delgosha, O. Experimental Study of Pressure and Velocity Fluctuations Induced by Cavitation in a Small Venturi Channel. Energies 2020, 13, 6478. https://doi.org/10.3390/en13246478
Zhang L, Zhang G, Ge M, Coutier-Delgosha O. Experimental Study of Pressure and Velocity Fluctuations Induced by Cavitation in a Small Venturi Channel. Energies. 2020; 13(24):6478. https://doi.org/10.3390/en13246478
Chicago/Turabian StyleZhang, Linrong, Guangjian Zhang, Mingming Ge, and Olivier Coutier-Delgosha. 2020. "Experimental Study of Pressure and Velocity Fluctuations Induced by Cavitation in a Small Venturi Channel" Energies 13, no. 24: 6478. https://doi.org/10.3390/en13246478
APA StyleZhang, L., Zhang, G., Ge, M., & Coutier-Delgosha, O. (2020). Experimental Study of Pressure and Velocity Fluctuations Induced by Cavitation in a Small Venturi Channel. Energies, 13(24), 6478. https://doi.org/10.3390/en13246478