NCA, NCM811, and the Route to Ni-Richer Lithium-Ion Batteries
Abstract
:1. Introduction
2. Structure of Layered Lithiated Oxides
3. LiNi0.8Co0.15Al0.05O2 (NCA)
3.1. Synthesis
3.2. Degradation Mechanisms
3.3. Stability Improvement
3.3.1. Coating NCA
3.3.2. Doping NCA
3.3.3. Optimization of the Electrolyte
4. LiNi0.8Co0.1Mn0.1O2 (NCM811)
4.1. Synthesis
4.2. Stabilization of NCM
4.2.1. Coating NCM
4.2.2. Choice of the Core-Shell Structure
4.2.3. Doping NCM
4.2.4. Optimization of the Electrolyte
4.2.5. Aqueous Processing
5. The Route to Co-Free Ni-Rich Batteries
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, H.; Li, C.; Eshetu, G.G.; Laruelle, S.; Grugeon, S.; Zaghib, K.; Julien, C.M.; Mauger, A.; Guyomard, D.; Rojo, T.; et al. From solid solution electrodes and the rocking-chair concept to today’s batteries. Angew. Chem. Inter. Ed. 2020, 132, 542–546. [Google Scholar] [CrossRef]
- Wang, L.; Chen, B.; Ma, J.; Cui, G.; Chen, L. Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density. Chem. Soc. Rev. 2018, 47, 6505–6602. [Google Scholar] [CrossRef]
- Julien, C.M.; Mauger, A.; Vijh, A.; Zaghib, K. Lithium Batteries: Science and Technology; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Okubo, M.; Hosono, E.; Kim, J.; Enomoto, M.; Kojima, N.; Kudo, T.; Zhou, H.; Honma, I. Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. J. Am. Chem. Soc. 2007, 129, 7444–7452. [Google Scholar] [CrossRef]
- European Union. Regulation (Eu) No 333/2014 of the European Parliament and of the Council of 11 March 2014 Amending Regulation (Ec) No 443/2009 to Define the Modalities for Reaching the 2020 Target to Reduce Co 2 Emissions from New Passenger Cars. Off. J. Eur. Union 2020, 103, 15–21. [Google Scholar]
- Lee, S.H.; Yoon, C.S.; Amine, K.; Sun, Y.K. Improvement of long-term cycling performance of Li(Ni0.80Co0.15Al0.05)O2 by AlF3 coating. J. Power Sources 2013, 234, 201–207. [Google Scholar] [CrossRef]
- Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262. [Google Scholar] [CrossRef]
- Myung, S.-T.; Maglia, F.; Park, K.-J.; Yoon, C.S.; Lamp, P.; Kim, S.-J.; Sun, Y.-K. Nickel-Rich layered cathode materials for automotive Lithium-ion batteries: Achievements and perspectives. ACS Energy Lett. 2016, 2, 196–223. [Google Scholar] [CrossRef]
- Ohzuku, T.; Yoshinari, M. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 lithium-ion batteries. Chem. Lett. 2001, 30, 642–643. [Google Scholar] [CrossRef]
- Yabuuchi, N.; Ohzuku, T. Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. J. Power Sources 2003, 119, 171–174. [Google Scholar] [CrossRef]
- Lu, Z.; MacNeil, D.D.; Dahn, J.R. Layered Li[NixCo1-2xMnx]O2 cathode materials for lithium-ion batteries. Electrochem. Solid State Lett. 2001, 4, A200–A203. [Google Scholar] [CrossRef]
- MacNeil, D.D.; Lu, Z.; Dahn, J.R. Structure and electrochemistry of Li[NixCo1-2xMnx]O2 (0≤x≤1/2). J. Electrochem. Soc. 2002, 149, A1332–A1336. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, J.; Hu, Z.; Cui, G.; Chen, L. Identifying and addressing critical challenges of high-voltage layered ternary oxide cathode materials. Chem. Mater. 2019, 31, 6033–6065. [Google Scholar] [CrossRef]
- Chen, Z.; Qin, Y.; Amine, K.; Sun, Y.-K. Role of surface coating on cathode materials for lithium-ion batteries. J. Mater. Chem. 2010, 20, 7606–7612. [Google Scholar] [CrossRef]
- Myung, S.T.; Amine, K.; Sun, Y.-K. Surface modification of cathode materials from nano-to microscale for rechargeable lithium-ion batteries. J. Mater. Chem. 2010, 20, 7074–7095. [Google Scholar] [CrossRef]
- Yoon, C.S.; Park, K.J.; Kim, U.H.; Kang, K.H.; Ryu, H.H.; Sun, Y.-K. High-energy Ni-rich Li[NixCoyMn1−x−y]O2 cathodes via compositional partitioning for next-generation electric vehicles. Chem. Mater. 2017, 29, 10436–10445. [Google Scholar] [CrossRef]
- Sun, H.H.; Ryu, H.-H.; Kim, U.-H.; Weeks, J.A.; Heller, A.; Sun, Y.-K.; Mullins, C.B. Beyond doping and coating: Prospective strategies for stable high-capacity layered Ni-rich cathodes. ACS Energy Lett. 2020, 5, 1136–1146. [Google Scholar] [CrossRef]
- Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. The lithium-ion battery: State of the art and future perspectives. Renew. Sustain. Energy Rev. 2018, 89, 292–308. [Google Scholar] [CrossRef]
- Sun, Y.-K. High-capacity layered cathodes for next-generation electric vehicles. ACS Energy Lett. 2019, 4, 1042–1044. [Google Scholar] [CrossRef] [Green Version]
- Kong, X.; Zhang, Y.; Peng, S.; Zeng, J.; Zhao, J. Superiority of single-crystal to polycrystalline LiNixCoyMn1−x−yO2 cathode materials in storage behaviors for lithium-ion batteries. ACS Sustain. Chem. Eng. 2020, 8, 14938–14948. [Google Scholar] [CrossRef]
- Orman, H.J.; Wiseman, P.J. Cobalt (III) lithium oxide, CoLiO2: Structure refinement by powder neutron diffraction. Acta Cryst. C 1984, 40, 12–14. [Google Scholar] [CrossRef]
- Delmas, C.; Fouassier, C.; Hagenmuller, P. Structural classification and properties of the layered oxides. Phys. B 1980, 99, 81–85. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, W.J.; Mauger, A.; Qi, L.; Gendron, F.; Julien, C.M. Minimization of the cation mixing in Li1+x(NCM)1−xCo1/3O2 as cathode material. J. Power Sources 2010, 195, 1292–1301. [Google Scholar] [CrossRef]
- Zhang, X.; Mauger, A.; Lu, Q.; Groult, H.; Perrigaud, L.; Gendron, F.; Julien, C.M. Synthesis and characterization of LiNi1/3Mn1/3Co1/3O2 by wet-chemical method. Electrochim. Acta. 2010, 55, 6440–6449. [Google Scholar] [CrossRef]
- Nie, Y.; Xiao, W.; Miao, C.; Xu, M.; Wang, C. Effect of calcining oxygen pressure gradient on properties of LiNi0.8Co0.15Al0.05O2 cathode materials for lithium ion batteries. Electrochim. Acta 2020, 334, 135654. [Google Scholar] [CrossRef]
- Aurbach, D.; Srur-Lavi, O.; Ghanty, C.; Dixit, M.; Haik, O.; Talianker, M.; Grinblat, Y.; Leifer, N.; Lavi, R.; Major, D.T.; et al. Studies of aluminum-doped LiNi0.5Co0.2Mn0.3O2: Electrochemical behavior, aging, structural transformations, and thermal characteristics. J. Electrochem. Soc. 2015, 162, A1014–A1027. [Google Scholar] [CrossRef]
- Kostecki, R.; McLarnon, F. Local-probe studies of degradation of composite LiNi0.80Co0.15Al0.05O2 cathodes in high-power lithium-ion cells. Electrochem. Solid State Lett. 2004, 7, A380–A383. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, C.Y. Cycle-life characterization of automotive lithium-ion batteries with LiNiO2 cathode. J. Electrochem. Soc. 2009, 156, A527. [Google Scholar] [CrossRef]
- Tesla is Using State-of-the-Art Panasonic Batteries in the Model SP100D. The 100-kWh Battery Pack Contains 8256 Cells (18650-Type, Weight of 45 g), which is a Total of ~136 Liters Leading to a Volumetric Energy Density of 732 Wh L−1. The Gravimetric Energy Density is ~270 Wh kg−1. Available online: https://www.theverge.com/2019/4/11/18305976/tesla-panasonic-gigafactory-batteries-model-3 (accessed on 11 April 2019).
- Biensan, P.; Simon, B.; Pérès, J.P.; de Guilbert, A.; Broussely, M.; Bodet, J.M.; Perton, F. On safety of lithium-ion cells. J. Power Sources 1999, 81, 906–912. [Google Scholar] [CrossRef]
- Majumdar, S.B.; Nieto, S.; Katiyar, R.S. Synthesis and electrochemical properties of LiNi0.80(Co0.20-xAlx)O2 (x=0.0 and 0.05) cathodes for Li ion rechargeable batteries. J. Power Sources 2006, 154, 262–267. [Google Scholar] [CrossRef]
- Guilmard, M.; Pouillerie, C.; Croguennec, L.; Delmas, C. Structural and electrochemical properties of LiNi0.70Co0.15Al0.15O2. Solid State Ion. 2003, 160, 39–50. [Google Scholar] [CrossRef]
- Xie, H.; Hu, G.; Du, K.; Peng, Z.; Cao, Y. An improved continuous co-precipitation method to synthesize LiNi0.80Co0.15Al0.05O2 cathode material. J. Alloys Compd. 2016, 666, 84–87. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, Z.; Li, X.; Fang, H.; Wang, L.; Song, Y.; Jia, X. Synthesis and electrochemical performance of ropelike LiNi0.80Co0.15Al0.05O2 fiber with nano-building blocks. Mater. Res. Express 2020, 7, 015526. [Google Scholar] [CrossRef]
- Liu, W.; Qin, M.; Gao, C.; Yu, D.; Yue, Y. Green and low-cost synthesis of LiNi0.80Co0.15Al0.05O2 cathode material for li-ion batteries. Mater. Lett. 2019, 246, 153–156. [Google Scholar] [CrossRef]
- Wu, X.; Lu, J.; Han, Y.; Wu, H.; Bu, L.; Xie, J.; Qian, C.; Li, H.; Diao, G.; Chen, M.; et al. Template-assisted synthesis of LiNi0.80Co0.15Al0.05O2 hollow nanospheres as cathode material for lithium ion batteries. J. Mater. Sci. 2020, 55, 9493–9503. [Google Scholar] [CrossRef]
- Purwanto, A.; Yudha, C.S.; Muhammas, K.I.; Algifari, B.G.; Widiyandari, H.; Sutopo, W. Synthesis of LiNi0.80Co0.15Al0.05O2 cathode material via flame-assisted spray pyrolysis method. Adv. Powder Technol. 2020, 31, 1674–1681. [Google Scholar] [CrossRef]
- Gao, T.-P.; Wong, K.W.; Ng, K.M. High-quality LiNi0.80Co0.15Al0.05O2 cathode with excellent structural stability: Suppressed structural degradation and pore defects generation. Nano Energy 2020, 73, 104798. [Google Scholar] [CrossRef]
- Bang, H.J.; Joachin, H.; Yang, H.; Amine, K.; Prakash, J. Contribution of the structural changes of LiNi0.80Co0.15Al0.05O2 cathodes on the exothermic reactions in li-ion cells. J. Electrochem. Soc. 2006, 153, A731–A737. [Google Scholar] [CrossRef]
- Chebiam, R.V.; Prado, F.; Manthiram, A. Structural instability of delithiated Li1−xNi1−yCoyO2 cathodes. J. Electrochem. Soc. 2001, 148, A49–A53. [Google Scholar] [CrossRef]
- Hwang, S.; Chang, W.; Kim, S.M.; Su, D.; Kim, D.H.; Lee, J.Y.; Chung, K.Y.; Stach, E.A. Investigation of changes in the surface structure of LixNi0.80Co0.15Al0.05O2 cathode materials induced by the initial charge. Chem. Mater. 2014, 26, 1084–1092. [Google Scholar] [CrossRef]
- Betzin, C.; Wolfschmidt, H.; Luther, M. Long time behavior of LiNi0.80Co0.15Al0.05O2 based lithium-ion cells by small depth of discharge at specific state of charge for primary control reserve in a vitual energy storage plant. Energy Proc. 2016, 99, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Yan, P.; Zheng, J.; Zhang, J.G.; Wang, C. Atomic resolution structural and chemical imaging revealing the sequential migration of Ni, Co, and Mn upon the battery cycling of layered cathode. Nano Lett. 2017, 17, 3946–3951. [Google Scholar] [CrossRef]
- Grenier, A.; Liu, H.; Wiaderek, K.M.; Lebens-Higgins, Z.W.; Borkiewicz, O.J.; Piper, L.F.J.; Chupas, P.J.; Chapman, K.W. Reaction heterogeneity in LiNi0.80Co0.15Al0.05O2 induced by surface layer. Chem. Mater. 2017, 29, 7345–7352. [Google Scholar] [CrossRef]
- Khim, K.; Yiqing, H.; Sooyeon, H.; Andrew, D.G.; Stanly, M.W.; Guanwen, Z.; Eric, A.S. Tuning the activity of oxygen in LiNi0.80Co0.15Al0.05O2 battery electrodes. ACS Appl. Mater. Interfaces 2016, 8, 27762–27771. [Google Scholar]
- Liu, H.; Liu, H.; Seymour, I.D.; Chernova, N.; Wiaderek, K.M.; Trease, N.M.; Chen, Y.; Ke, A.; Zhang, M.; Borkiewicz, O.J.; et al. Identifying the chemical and structural irreversibility in LiNi0.80Co0.15Al0.05O2—a model compound for classical layered intercalation. J. Mater. Chem. 2018, 6, 4189–4198. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; May, B.M.; Serrano-Sevillano, J.; Casas-Cabanas, M.; Cabana, J.; Wang, C.; Zhou, G. Facet-dependent rock-salt reconstruction on the surface of layered oxide cathodes. Chem. Mater. 2018, 30, 692–699. [Google Scholar] [CrossRef]
- Robert, R.; Novak, P. Switch of the charge storage mechanism of LixNi0.80Co0.15Al0.05O2 at overdischarge conditions. Chem. Mater. 2018, 30, 1907–1911. [Google Scholar] [CrossRef]
- Kleiner, K.; Melke, J.; Merz, M.; Jakes, P.; Nagel, P.; Schuppler, S.; Liebau, V.; Ehrenberg, H. Unraveling the degradation process of LiNi0.80Co0.15Al0.05O2 electrodes in commercial lithium ion batteries by electronic structure investigations. ACS Appl. Mater. Interfaces 2015, 7, 19589–19600. [Google Scholar] [CrossRef]
- Sallis, S.; Pereira, N.; Mukherjee, P.; Quackenbush, N.F.; Faenza, N.; Schlueter, C.; Lee, T.L.; Yang, W.L.; Cosandey, F.; Amatucci, G.G.; et al. Surface degradation of Li1-xNi0.80Co0.15Al0.05O2 cathodes: Correlating charge transfer impedance with surface phase transformations. Appl. Phys. Lett. 2016, 108, 263902. [Google Scholar] [CrossRef]
- Shikano, M.; Kobayashi, H.; Koike, S.; Sakaebe, H.; Ikenaga, E.; Kobayashi, K.; Tatsumi, K. Investigation of positive electrodes after cycle testing of high-power li-ion battery cells: II an approach to the power fading mechanism using hard X-ray photoemission spectroscopy. J. Power Sources 2007, 174, 795–799. [Google Scholar] [CrossRef]
- Mori, D.; Kobayashi, H.; Shikano, M.; Nitani, H.; Kageyama, H.; Koike, S.; Sakaebe, H.; Tatsumi, K. Bulk and surface structure investigation for the positive electrodes of degraded lithium-ion cell after storage test using X-ray absorption near-edge structure measurement. J. Power Sources 2009, 189, 676–680. [Google Scholar] [CrossRef]
- Sasaki, T.; Nonaka, T.; Oka, H.; Okuda, C.; Itou, I.; Kondo, Y.; Takeuchi, Y.; Ukyo, Y.; Tatsumi, K.; Muto, S. Capacity-fading mechanisms of LiNiO2-based lithium-ion batteries i analysis by electrochemical and spectroscopic examination. J. Electrochem. Soc. 2009, 156, A289–A293. [Google Scholar] [CrossRef]
- Miller, D.J.; Proff, C.; Wen, J.G.; Abraham, D.P.; Bareno, J. Observation of microstructural evolution in li battery cathode oxide particles by in situ electron microscopy. Adv. Energy Mater. 2013, 3, 1098–1103. [Google Scholar] [CrossRef]
- Kleiner, K.; Dixon, D.; Jakes, P.; Melke, J.; Yavuz, M.; Roth, C.; Nikolowski, K.; Liebau, V.; Ehrenberg, H. Fatigue of LiNi0.80Co0.15Al0.05O2 in commercial Li-ion batteries. J. Power Sources 2015, 273, 70–82. [Google Scholar] [CrossRef]
- Lang, M.; Darma, M.S.D.; Kleine, K.; Riekehr, L.; Mereacr, L.; Perez, M.A.; Liebau, V.; Ehrenberg, H. Post mortem analysis of fatigue mechanisms in LiNi0.80Co0.15Al0.05O2 –LiNi0.5Co0.2Mn0.3O2 –LiMn2O4/graphite lithium ion batteries. J. Power Sources 2016, 326, 397–409. [Google Scholar] [CrossRef]
- Wandt, J.; Freiberg, A.T.S.; Ogrodnik, A.; Gasteiger, H.A. Singlet oxygen evolution from layered transition metal oxide cathode materials and its implications for lithium-ion batteries. Mater. Today 2018, 21, 825–833. [Google Scholar] [CrossRef]
- Strehle, B.; Kleiner, K.; Jung, R.; Chesneau, F.; Mendez, M.; Gasteiger, H.A.; Piana, M. The role of oxygen release from Li- and Mn-rich layered oxides during the first cycles investigated by on-line electrochemical mass spectrometry. J. Electrochem. Soc. 2017, 164, A400–A406. [Google Scholar] [CrossRef]
- Renfrew, S.E.; McCloskey, B.D. Residual lithium carbonate predominantly accounts for first cycle CO2 and CO outgassing of li-stoichiometric and li-rich layered transition-metal oxides. J. Am. Chem. Soc. 2017, 137, 17853–17860. [Google Scholar] [CrossRef]
- Lin, F.; Markus, I.M.; Nordlund, D.; Weng, T.C.; Asta, H.L.; Xin, M.D.; Doeff, M.M. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 2014, 5, 3529. [Google Scholar] [CrossRef]
- Lebens-Higgins, Z.W.; Sallis, S.; Faenza, N.V.; Badway, F.; Pereira, N.; Halat, D.M.; Wahila, M.; Schlueter, C.; Lee, T.L.; Yang, W.; et al. Evolution of the electrode-electrolyte interface of LiNi0.80Co0.15Al0.05O2 electrodes due to electrochemical and thermal stress. Chem. Mater. 2018, 30, 958–969. [Google Scholar] [CrossRef] [Green Version]
- Faenza, N.V.; Lebens-Higgins, Z.W.; Mukherjee, P.; Sallis, S.; Pereira, N.; Badway, F.; Halajko, A.; Ceder, G.; Cosandey, F.; Piper, L.F.J.; et al. Electrolyte-induced surface transformation and transition-metal dissolution of fully delithiated LiNi0.80Co0.15Al0.05O2. Langmuir 2017, 33, 9333–9353. [Google Scholar] [CrossRef] [Green Version]
- Abraham, D.P.; Roth, E.P.; Kostecki, R.; McCarthy, K.; MacLaren, S.; Doughty, D.H. Diagnostic examination of thermally abused high-power lithium-ion cells. J. Power Sources 2006, 161, 648–657. [Google Scholar] [CrossRef]
- Mauger, A.; Julien, C.M. Critical review on lithium-ion batteries: Are they safe? Sustainable? Ionics 2017, 23, 1933–1947. [Google Scholar] [CrossRef] [Green Version]
- Nam, G.W.; Park, N.-Y.; Park, K.-J.; Yang, J.; Liu, J.; Yoon, C.S.; Sun, Y.-K. Capacity fading of Ni-rich NCA cathodes: Effect of microcracking extent. ACS Energy Lett. 2019, 4, 2995–3001. [Google Scholar] [CrossRef]
- Ryu, H.H.; Park, K.J.; Yoon, C.S.; Sun, Y.-K. Capacity fading of Ni-rich Li[NixCoyMn1−x−y]O2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: Bulk or surface degradation? Chem. Mater. 2018, 30, 1155–1163. [Google Scholar] [CrossRef]
- Ryu, H.H.; Park, G.T.; Yoon, C.S.; Sun, Y.-K. Microstructural degradation of Ni-rich Li[NixCoyMn1−x−y]O2 cathodes during accelerated calendar aging. Small 2018, 14, 1803179. [Google Scholar] [CrossRef]
- Pender, J.P.; Jha, G.; Youn, D.H.; Ziegler, J.M.; Andoni, I.; Choi, E.J.; Heller, A.; Dunn, B.S.; Weiss, P.S.; Penner, R.M.; et al. Electrode degradation in metal-mon batteries. ACS Nano 2020, 14, 1243. [Google Scholar] [CrossRef] [Green Version]
- Belharouak, I.; Lu, W.; Vissers, D.; Amine, K. Safety characteristics of Li(Ni0.8Co0.15Al0.05)O2 and Li(Ni1/3Co1/3Mn1/3)O2. Electrochem. Commun. 2006, 8, 329–335. [Google Scholar] [CrossRef]
- Leifer, N.; Srur-Lavi, O.; Matlahov, I.; Markovsky, B.; Aurbach, D.; Goobes, G. LiNi0.8Co0.15Al0.05O2 cathode material: New insights via 7Li and 27Al magic-angle spinning NMR spectroscopy. Chem. Mater. 2016, 28, 7594–7604. [Google Scholar] [CrossRef]
- He, P.; Yu, H.; Li, D.; Zhou, H. Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries. J. Mater. Chem. 2012, 22, 3680–3695. [Google Scholar] [CrossRef]
- Guilmard, M.; Croguennec, L.; Delmas, C. Thermal stability of lithium nickel oxide derivatives. Part II: LixNi0.70Co0.15Al0.15O2 and LixNi0.90Mn0.10O2 (x = 0.50 and 0.30). Comparison with LixNi1.02O2 and LixNi0.89Al0.16O2. Chem. Mater. 2003, 15, 4484–4493. [Google Scholar] [CrossRef]
- Whittingham, M.S. Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 2014, 114, 11414–11443. [Google Scholar] [CrossRef]
- Zhang, H.; Karki, K.; Huang, Y.; Whittingham, M.S.; Stach, E.A.; Zhou, G. Atomic insight into the layered/spinel phase transformation in charged LiNi0.80Co0.15Al0.05O2 cathode particles. J. Phys. Chem. C 2017, 121, 1421–1430. [Google Scholar] [CrossRef]
- Guilmard, M.; Croguennec, L.; Denux, D.; Delmas, C. Thermal stability of lithium nickel oxide derivatives. Part I: LixNi1.02O2 and LixNi0.89Al0.16O2 (x = 0.50 and 0.30). Chem. Mater. 2003, 15, 4476–4483. [Google Scholar] [CrossRef]
- Kim, S.; Ma, X.; Ong, S.P.; Ceder, G. A comparison of destabilization mechanisms of the layered NaxMo2 and LixMo2 compounds upon alkali de-intercalation. Phys. Chem. Chem. Phys. 2012, 14, 15571–15578. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zhang, L.; Qian, K.; Shi, R.; Kang, F.; Li, B. Combination effect of bulk structure change and surface rearrangement on the electrochemical kinetics of LiNi0.80Co0.15Al0.05O2 during initial charging processes. ACS Appl. Mater. Interfaces 2018, 10, 41370–41379. [Google Scholar] [CrossRef]
- Wolfram, M.; Yu, Y.-S.; May, B.M.; Lebens-Higgings, Z.W.; Sallis, S.; Faenza, N.V.; Pereira, N.; Shirato, N.; Rose, V.; Shapiro, D.A.; et al. Mapping competitive reduction upon charging in LiNi0.8Co0.15Al0.05O2 primary particles. Chem. Mater. 2020, 32, 6161–6175. [Google Scholar]
- Kim, J.; Ma, H.; Cha, H.; Lee, H.; Sung, J.; Seo, M.; Oh, P.; Park, M.; Cho, J. A highly stabilized nickel-rich cathode material by nanoscale epitaxy control for high-energy lithium-ion batteries. Energy Environ. Sci. 2018, 11, 1449–1459. [Google Scholar] [CrossRef]
- Julien, C.M.; Mauger, A.; Groult, H.; Zaghib, K. Surface modification of positive electrode materials for lithium-ion batteries. Thin Solid Films 2014, 572, 200–207. [Google Scholar] [CrossRef]
- Ju, J.H.; Chung, Y.M.; Bak, Y.R.; Hwang, M.J.; Ryu, K.S. The effects of carbon nano-coating on Li(Ni0.80Co0.15Al0.05)O2 cathode material using organic carbon for Li-ion battery. Surf. Rev. Lett. 2010, 17, 51–58. [Google Scholar] [CrossRef]
- Binder, J.O.; Culver, S.P.; Pinedo, R.; Weber, D.A.; Friedrich, M.S.; Gries, K.I.; Volz, K.; Zeier, W.G.; Janek, J. Investigation of fluorine and nitrogen as anionic dopants in nickel-rich cathode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 44452–44462. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, Y.; Wu, W.; Wu, X.; Tang, W.; Wu, Y. Surface fluorinated LiNi0.8Co0.15Al0.05O2 as a positive electrode material for lithium ion batteries. J. Mater. Chem. A 2015, 3, 15156–15162. [Google Scholar] [CrossRef]
- Zhao, B.; Si, J.; Cao, C.; Zhang, J.; Xia, B.; Xie, J.; Li, B.; Jiang, Y. Enhanced electrochemical performance of LiNi0.80Co0.15Al0.05O2 cathode by reducing lithium residue with low-temperature fluorination treatment. Solid Stat. Ion. 2019, 339, 114998. [Google Scholar] [CrossRef]
- Liu, W.; Tang, X.; Qin, M.; Li, G.; Deng, J.; Huang, X. FeF3-coated LiNi0.80Co0.15Al0.05O2 cathode materials with improved electrochemical properties. Mater. Lett. 2016, 185, 96–99. [Google Scholar] [CrossRef]
- Qiu, Z.; Liu, Z.; Fu, X.; Liu, J.; Zeng, Q. Improving the cycling performance of LiNi0.8Co0.15Al0.05O2 cathode materials via zirconium and fluorine co-substitution. J. Alloys Compd. 2019, 806, 136–145. [Google Scholar] [CrossRef]
- Jin, S.-J.; Seo, J.-S.; Na, B.-K. Effect of MgF2 surface modification for LiNi0.80Co0.15Al0.05O2 cathode material on improving electrochemical characteristics. Korean Chem. Eng. Res. 2020, 58, 52–58. [Google Scholar]
- Cho, Y.; Lee, Y.S.; Park, S.A.; Lee, Y.; Cho, J. LiNi0.80Co0.15Al0.05O2 cathodes materials prepared by TiO2 nanoparticle coatings on Ni0.80Co0.15Al0.05(OH)2 precursors. Electrochim. Acta 2010, 56, 333–339. [Google Scholar] [CrossRef]
- Zhou, P.; Zhang, Z.; Meng, H.; Lu, Y.; Cao, J.; Cheng, F.; Tao, Z.; Chen, J. SiO2-coated LiNi0.915Co0.075Al0.01O2 cathode material for rechargeable li-ion batteries. Nanoscale 2016, 8, 19263–19269. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, P.; Meng, H.; Chen, C.; Cheng, F.; Tao, Z.; Chen, J. Amorphous Zr(OH)4 coated LiNi0.915Co0.075Al0.01O2 cathode material with enhanced electrochemical performance for lithium ion batteries. J. Energy Chem. 2017, 26, 481–487. [Google Scholar] [CrossRef] [Green Version]
- Roh, K.; Yang, S.; Hong, B.; Roh, Y. Structural and electrical properties of yttrium oxide with tungsten gate. J. Korean Phys. Soc. 2002, 40, 103–106. [Google Scholar]
- Kim, J.-Y.; Sangjin, K.; Kim, D.H. Electronic structural studies on the improved thermal stability of LiNi0.8Co0.15Al0.05O2 by ZrO2 coating for lithium ion batteries. J. Appl. Electrochem. 2017, 47, 565–572. [Google Scholar] [CrossRef]
- Liu, B.-S.; Sui, X.-L.; Zhang, S.-H.; Yu, F.-D.; Xue, Y.; Zhang, Y.; Zhou, Y.-X.; Wang, Z.-B. Investigation on electrochemical performance of LiNi0.8Co0.15Al0.05O2 coated by heterogeneous layer of TiO2. J. Alloys Compd. 2018, 739, 961–971. [Google Scholar] [CrossRef]
- Du, K.; Xie, H.B.; Hu, G.R.; Peng, Z.D.; Cao, Y.B.; Yu, F. Enhancing the thermal and upper voltage performance of ni-rich cathode material by a homogeneous and facile coating method: Spray-drying coating with nano-Al2O3. ACS Appl. Mater. Interfaces 2016, 8, 17713–17720. [Google Scholar] [CrossRef]
- Loghavi, M.M.; Mohammadi-Manes, H.; Eqra, R. Y2O3-decorated LiNi0.8Co0.15Al0.05O2 cathode material with improved electrochemical performance for lithium-ion batteries. J. Electroanal. Chem. 2019, 848, 113326. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, Y.; Hu, X. Enhanced electrochemical performance of LiNi0.8Co0.15Al0.05O2 by nanoscale surface modification with Co3O4. Electrochim. Acta 2017, 231, 294–299. [Google Scholar] [CrossRef]
- Mohanty, D.; Dahlberg, K.; King, D.M.; David, L.A.; Sefat, A.S.; Wood, D.L.; Daniel, C.; Dhar, S.; Mahajan, V.; Lee, M.; et al. Modification of Ni-rich FCG NCM and NCA cathodes by atomic layer deposition: Preventing surface phase transitions for high-voltage lithium-ion batteries. Sci. Rep. 2016, 6, 26532. [Google Scholar] [CrossRef] [Green Version]
- Lai, Y.-Q.; Xu, M.; Zhang, Z.-A.; Gao, C.-H.; Wang, P.; Yu, Z.-Y. Optimized structure stability and electrochemical performance of LiNi0.8Co0.15Al0.05O2 by sputtering nanoscale ZnO film. J. Power Sources 2016, 309, 20–26. [Google Scholar] [CrossRef]
- He, X.; Du, C.; Shen, B.; Chen, C.; Xu, X.; Wang, Y.; Zuo, P.; Ma, Y.; Cheng, X.; Yin, G. Electronically conductive Sb-doped SnO2 nanoparticles coated LiNi0.8Co0.15Al0.05O2 cathode material with enhanced electrochemical properties for Li-ion batteries. Electrochim. Acta 2017, 236, 273–279. [Google Scholar] [CrossRef]
- Lee, D.J.; Scrosati, B.; Sun, Y.K. Ni3(PO4)2-coated Li(Ni0.80Co0.15Al0.05)O2 lithium battery electrode with improved cycling performance at 55 °C. J. Power Sources 2011, 196, 7742–7746. [Google Scholar] [CrossRef]
- Jo, C.-H.; Cho, D.-H.; Noh, H.-J.; Yashiro, H.; Sun, Y.-K.; Myung, S.T. An effective method to reduce residual lithium compounds on Ni-rich Li[Ni0.6Co0.2Mn0.2]O2 active material using a phosphoric acid derived Li3PO4 nanolayer. Nano Res. 2014, 8, 1464–1479. [Google Scholar] [CrossRef]
- Sun, K.; Dillon, S.J. A mechanism for the improved rate capability of cathodes by lithium phosphate surficial films. Electrochem. Commun. 2011, 13, 200–202. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, J.; Lee, K.Y.; Mun, J.; Lee, J.K.; Choi, W. Facile formation of a Li3PO4 coating layer during the synthesis of a lithium-rich layered oxide for high-capacity lithium-ion batteries. J. Power Sources 2016, 315, 284–293. [Google Scholar] [CrossRef]
- Tang, Z.-F.; Wu, R.; Huang, P.-F.; Wang, Q.-S.; Chen, C.-H. Improving the electrochemical performance of Ni-rich cathode material LiNi0.815Co0.15Al0.035]O2 by removing the lithium residues and forming Li3PO4 coating layer. J. Alloys Compd. 2017, 693, 1157–1163. [Google Scholar] [CrossRef] [Green Version]
- Duan, J.; Wu, C.; Cao, Y.; Du, K.; Peng, Z.; Hu, G. Enhanced electrochemical performance and thermal stability of LiNi0.80Co0.15Al0.05O2 via nano-sized LiMnPO4 coating. Electrochim. Acta 2016, 221, 14–22. [Google Scholar] [CrossRef]
- Zhao, S.; Shao, L.; Li, X.; Yang, L.; Wei, B.; Yang, Y.; Zhao, H.; Yin, D.; Ma, W.; Wang, Z. Acid-corrosion-formed amorphous phosphate surfaces improve electrochemical stability of LiNi0.80Co0.15Al0.05O2 cathodes. Corrosion Sci. 2020, 168, 108553. [Google Scholar] [CrossRef]
- Huang, B.; Li, X.; Wang, Z.; Guo, H. A facile process for coating amorphous FePO4 onto LiNi0.80Co0.15Al0.05O2 and the effects on its electrochemical properties. Mater. Lett. 2014, 131, 210–213. [Google Scholar] [CrossRef]
- Xia, S.; Li, F.; Chen, F.; Guo, H. Preparation of FePO4 by liquid-phase method and modification on the surface of LiNi0.80Co0.15Al0.05O2 cathode material. J. Alloys Compd. 2018, 731, 428–436. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, L.; Jia, D.; Jiang, X.; Wu, Y.; Hao, Q.; Xia, X.; Ouyang, Y.; Peng, L.; Tang, W.; et al. LiNi0.80Co0.15Al0.05O2 cathodes exhibiting improved capacity retention and thermal stability due to a lithium iron phosphate coating. Electrochim. Acta 2019, 312, 179–187. [Google Scholar] [CrossRef]
- Huang, W.-J.; Zheng, J.-Y.; Liu, J.J.; Yang, R.-M.; Cheng, F.-X.; Suo, H.-B.; Guo, H.; Xia, S.-B. Boosting rate performance of LiNi0.80Co0.15Al0.05O2 cathode by simply mixing lithium iron phosphate. J. Alloys Compd. 2020, 827, 154296. [Google Scholar] [CrossRef]
- Wei, Y.; Zhou, C.; Zhao, D.; Wang, G. Enhanced electrochemical performance and safety of LiNi0.80Co0.15Al0.05O2 by LiFePO4 modification. Chem. Phys. Lett. 2020, 751, 137480. [Google Scholar] [CrossRef]
- Wu, G.; Zhou, Y. TiP2O7-coated LiNi0.80Co0.15Al0.05O2 cathode materials with improved thermal stability and superior cycle life. J. Energy Chem. 2019, 28, 151–159. [Google Scholar] [CrossRef]
- Lim, S.N.; Ahn, W.; Yeon, S.H.; Park, S.B. Enhanced elevated-temperature performance of LiNi0.80Co0.15Al0.05O2 electrodes coated with Li2O-2B2O3 glass. Electrochim. Acta 2014, 136, 1–9. [Google Scholar] [CrossRef]
- Yang, Z.; Li, Z.; Huang, Y.; Zhang, M.; Liu, C.; Zhang, D.; Cao, G. Artificial interface stabilized LiNi0.80Co0.15Al0.05O2@Polysiloxane cathode for stable cycling lithium-ion batteries. J. Power Sources 2020, 471, 228480. [Google Scholar] [CrossRef]
- Srur-Lavi, O.; Miikkulainen, V.; Markovsky, B.; Grinblat, J.; Talianker, M.; Fleger, Y.; Cohen-Taguri, G.; Mor, A.; Tal-Yosef, Y.; Aurbach, D. Studies of the electrochemical behavior of LiNi0.80Co0.15Al0.05O2 electrodes coated with LiAlO2. J. Electrochem. Soc. 2017, 164, A3266–A3275. [Google Scholar] [CrossRef] [Green Version]
- Robert, R.; Bünzli, C.; Berg, E.J.; Novak, P. Activation mechanism of LiNi0.80Co0.15Al0.05O2: Surface and bulk operando electrochemical, differential electrochemical mass spectrometry, and X-ray diffraction analyses. Chem. Mater. 2015, 27, 526–536. [Google Scholar] [CrossRef]
- Rougier, A.; Saadoune, I.; Gravereau, P.; Willmann, P.; Delmas, C. Effect of cobalt substitution on cationic distribution in LiNi1-yCoyO2 electrode materials. Solid State Ion. 1996, 90, 83–90. [Google Scholar] [CrossRef]
- Song, C.; Wang, W.; Peng, H.; Wang, Y.; Zhao, C.; Zhang, H.; Tang, Q.; Lv, J.; Du, X.; Dou, Y. Improving the electrochemical performance of LiNi0.80Co0.15Al0.05O2 in lithium-ion batteries by LiAlO2 surface modification. Appl. Sci. 2018, 8, 378. [Google Scholar] [CrossRef] [Green Version]
- Kwak, H.W.; Park, Y.J. Li2MoO4 coated Ni-rich cathode for all-solid-state batteries. Thin Solid Films 2018, 660, 625–630. [Google Scholar] [CrossRef]
- He, X.; Xu, X.; Wang, L.; Du, C.; Cheng, X.; Zuo, P.; Ma, Y.; Yin, G. Enhanced electrochemical performance of LiNi0.80Co0.15Al0.05O2 cathode Material via Li2TiO3 nanoparticles coating. J. Electrochem. Soc. 2019, 166, A143–A150. [Google Scholar] [CrossRef]
- Xiong, F.; Chen, Z.; Huang, C.; Wang, T.; Zhang, W.; Yang, Z.; Chen, F. Near-equilibrium control of Li2TiO3 nanoscale layer coated on LiNi0.80Co0.15Al0.05O2 cathode materials for enhanced electrochemical performance. Inorg. Chem. 2019, 58, 15498–15506. [Google Scholar] [CrossRef]
- Liu, P.; Xiao, L.; Chen, Y.; Chen, H. Highly enhanced electrochemical performances of LiNi0.815Co0.15Al0.035O2 by coating via conductively LiTiO2 for lithium-ion batteries. Ceramics Int. 2019, 45, 18398–18405. [Google Scholar] [CrossRef]
- He, X.; Han, G.; Lou, S.; Du, L.; Xu, X.; Du, C.; Cheng, X.; Zuo, P.; Ma, Y.; Huo, H. Improved electrochemical performance of LiNi0.80Co0.15Al0.05O2 cathode material by coating of graphene nanodots. J. Electrochem. Soc. 2019, 166, A1038–A1044. [Google Scholar] [CrossRef]
- Luo, W.; Liu, L.; Yu, J.; Fang, C. Templated assembly of LiNi0.80Co0.15Al0.05O2/graphene nano composite with high rate capability and long-term cyclability for lithium ion battery. J. Alloys Compd. 2019, 810, 151786. [Google Scholar] [CrossRef]
- He, X.; Feng, Z.; Zhou, L.; Xu, X. A synchronously dual-conductive coating towards enhancing the electrochemical performance of LiNi0.80Co0.15Al0.05O2 cathode material. J. Alloys Compd. 2021, 852, 156966. [Google Scholar] [CrossRef]
- Xia, S.B.; Zhang, Y.J.; Dong, P.; Zhang, Y.N. Synthesis cathode material LiNi0.80Co0.15Al0.05O2 with two step solid-state method under air stream. Eur. Phys. J. Appl. Phys. 2014, 65, 10401. [Google Scholar] [CrossRef]
- Wu, N.T.; Wu, H.; Liu, S.J.; Liao, J.Y.; Zhang, Y. Facile synthesis of one-dimensional LiNi0.80Co0.15Al0.05O2 microrods as advanced cathode materials for lithium ion batteries. J. Mater. Chem. A 2015, 3, 13648–13652. [Google Scholar] [CrossRef]
- Xie, H.B.; Du, K.; Hu, G.R.; Duan, J.G.; Peng, Z.D.; Zhang, Z.J.; Cao, Y.B. Synthesis of LiNi0.80Co0.15Al0.15O2 with 5-sulfosalicylic acid as a chelating agent and its electrochemical properties. J. Mater. Chem. A 2015, 3, 20236–20243. [Google Scholar] [CrossRef]
- Makimura, Y.; Sasaki, T.; Nonaka, T.; Nishimura, Y.F.; Uyama, T.; Okuda, C.; Itou, Y.; Takeuchi, Y. Factors affecting cycling life of LiNi0.80Co0.15Al0.05O2 for lithium-ion batteries. J. Mater. Chem. A 2016, 4, 8350–8358. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Z.; Zhang, Y.; Dong, P.; Xia, S.; Yao, Y. A facile method for synthesis LiNi0.80Co0.15Al0.15O2 cathode material. Solid State Ion. 2017, 307, 73–78. [Google Scholar] [CrossRef]
- Nie, Y.; Xiao, W.; Miao, C.; Fang, R.; Kou, Z.; Wang, D.; Xu, M.; Wang, C. Boosting the electrochemical performance of LiNi0.80Co0.15Al0.05O2 cathode materials in-situ modified with Li1.3Al0.3Ti1.7(PO4)3 fast ion conductor for lithium-ion batteries. Electrochim. Acta 2020, 353, 136477. [Google Scholar] [CrossRef]
- Ju, J.H.; Ryu, K.S. Synthesis and electrochemical performance of Li(Ni0.80Co0.15Al0.05)0.8(Ni0.5Mn0.5)0.2O2 with core-shell structure as cathode material for Li-ion batteries. J. Alloys Compd. 2011, 509, 7985–7992. [Google Scholar] [CrossRef]
- Cho, S.-W.; Kim, G.-O.; Ju, J.-H.; Oh, J.-W.; Ryu, K.-S. X-ray absorption spectroscopy studies of the Ni ion of Li(Ni0.80Co0.15Al0.05)0.8(Ni0.5Mn0.5)0.2O2 with a core–shell structure and LiNi0.80Co0.15Al0.05O2 as cathode materials. Mater. Res. Bull. 2012, 47, 2830–2833. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Z.; Wang, J.; Guo, H.; Li, X.; Gui, W.; Chen, N.; Yan, G. Anchoring K+ in Li+ sites of LiNi0.80Co0.15Al0.05O2 cathode material to suppress its structural degradation during high-voltage cycling. Energy Technol. 2018, 6, 2358–2366. [Google Scholar] [CrossRef]
- Chen, H.; Hu, Q.Y.; Huang, Z.M.; He, Z.J.; Wang, Z.X.; Guo, H.J.; Li, X.H. Synthesis and electrochemical study of Zr-doped LiLi0.2Mn0.54Ni0.13Co0.13O2 as cathode material for Li-ion battery. Ceram. Int. 2016, 42, 263–269. [Google Scholar] [CrossRef]
- Singh, G.; Thomas, R.; Kumar, A.; Katiyar, R.S. Electrochemical behavior of Cr-doped composite Li2MnO3-LiMn0.5Ni0.5O2 cathode materials. J. Electrochem. Soc. 2012, 159, A410–A420. [Google Scholar] [CrossRef]
- Xi, Z.; Wang, Z.; Peng, W.; Guo, H.; Wang, J. Effect of copper and iron substitution on the structures and electrochemical properties of LiNi0.8Co0.2O2 cathode materials. Energy Sci. Eng. 2020, 8, 1868–1879. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.-H.; Lee, S.-M.; Cho, W.-I.; Cho, B.-W. Electrochemical characterization of zirconium-doped LiNi0.8Co0.2O2 cathode materials and investigations on deterioration mechanism. Electrochim. Acta 2006, 51, 3637–3644. [Google Scholar] [CrossRef]
- Liu, D.; Liu, S.; Zhang, C.; You, L.; Huang, T.; Yu, A. Revealing the effect of Ti doping on significantly enhancing cyclic performance at a high cutoff voltage for Ni-rich LiNi0.80Co0.15Al0.05O2 cathode. ACS Sustain. Chem. Eng. 2019, 7, 10661–10669. [Google Scholar] [CrossRef]
- Qiu, Q.-Q.; Shadike, Z.; Wang, Q.-C.; Yue, X.-Y.; Li, X.-L.; Yuan, S.-S.; Fang, F.; Wu, X.-J.; Hunt, A.; Waluyo, I.; et al. Improving the electrochemical performance and structural stability of the LiNi0.80Co0.15Al0.05O2 cathode material at high-voltage charging through Ti substitution. ACS Appl. Mater. Interfaces 2019, 11, 23213–23221. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, X.; Yu, R.; Cao, S.; Pei, Y.; Luo, Z.; Zhao, Q.; Chang, B.; Wang, Y.; Wang, X. Tellurium surface doping to enhance the structural stability and electrochemical performance of layered Ni-rich cathodes. ACS Appl. Mater. Interfaces 2019, 11, 40022–40033. [Google Scholar] [CrossRef]
- Liang, M.; Sun, Y.; Song, D.; Shi, X.; Han, Y.; Zhang, H.; Zhang, L. Superior electrochemical performance of quasi-concentration-gradient LiNi0.80Co0.15Al0.05O2 cathode material synthesized with multi-shell precursor and new aluminum source. Electrochem. Acta 2019, 300, 426–436. [Google Scholar] [CrossRef]
- Tian, R.; Su, J.; Ma, Z.; Song, D.; Shi, X.; Zhang, H.; Li, C.; Zhang, L. Influences of surface Al concentration on the structure and electrochemical performance of core-shell LiNi0.80Co0.15Al0.05O2 cathode material. Electrochim. Acta 2020, 337, 135769. [Google Scholar] [CrossRef]
- Natarajan, S.; Moodakare, S.B.; Haridoss, P.; Goplan, R. Concentration gradient-driven aluminum diffusion in a single-step coprecipitation of a compositionally graded precursor for LiNi0.8Co0.135Al0.065O2 with mitigated irreversibility of H2↔H3 phase transition. ACS Appl. Mater. Interfaces 2020, 12, 34959–34970. [Google Scholar] [CrossRef]
- Du, F.; Chen, R.; Zhuang, Y.; Zhu, L.; Cao, H.; Dai, H.; Adkins, J.; Zhou, Q.; Zheng, J. Effect of substitution of cobalt with iron on electrochemical behavior and solid electrolyte interface of LiNi0.80Co0.15Al0.05O2. Appl. Surface Sci. 2019, 484, 374–382. [Google Scholar] [CrossRef]
- Xie, H.; Du, K.; Hu, G.; Peng, Z.; Cao, Y. The role of sodium in LiNi0.8Co0.15Al0.05O2 cathode material and its electrochemical behaviors. Phys. Chem. C 2016, 120, 3235–3241. [Google Scholar] [CrossRef]
- Gui, S.; Zhang, Q.; Zhuo, H.; Liu, J. Enhancing the electrochemical performance of LiNi0.80Co0.15Al0.05O2 by a facile doping method: Spray-drying doping with liquid polyacrylonitrile. J. Power Sources 2019, 409, 102–112. [Google Scholar] [CrossRef]
- Du, F.; Zhou, Q.; Cao, H.; Dai, H.; Hu, D.; Sun, P.; Adkins, J.; Zheng, J. Confined growth of primary grains towards stabilizing integrated structure of Ni-rich materials. J. Power Sources 2020, 478, 228737. [Google Scholar] [CrossRef]
- Chen, T.; Wang, F.; Li, X.; Yan, X.; Wang, H.; Deng, B.; Xie, Z.; Qu, M. Dual functional MgHPO4 surface modifier used to repair deteriorated Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material. Appl. Surface Sci. 2019, 465, 863–870. [Google Scholar] [CrossRef]
- Sun, S.; Liu, T.; Niu, Q.; Sun, X.; Song, D.; Liu, H.; Zhou, X.; Ohsaka, T.; Wu, J. Improvement of superior cycle performance of LiNi0.80Co0.15Al0.05O2 cathode for lithium-ion batteries by multiple compound modifications. J. Electroanal. Chem. 2019, 838, 178–185. [Google Scholar] [CrossRef]
- Kondo, H.; Baba, N.; Makimura, Y.; Itou, Y.; Kobayashi, T. Model validation and simulation study on the thermal abuse behavior of LiNi0.80Co0.15Al0.05O2-based batteries. J. Power Sources 2020, 448, 227464. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Chen, Y.; Lei, T.; Deng, S.; Zhu, J.; Zhang, J.; Guo, J. Achieving superior electrochemical performances on LiNi0.80Co0.15Al0.05O2 cathode materials by cadmium oxide modification. Mater. Chem. Phys. 2020, 240, 122029. [Google Scholar]
- Wang, S.; Li, Y.; Liu, S.; Deng, S.; Chen, Y.; Zhu, J.; Zhang, J.; Guo, J.; Chang, S. Superior electrochemical and kinetics performance of LiNi0.80Co0.15Al0.05O2 cathode by neodymium synergistic modifying for lithium ion batteries. J. Electrochem. Soc. 2020, 167, 090509. [Google Scholar] [CrossRef]
- Han, U.-G.; Lee, Y.-J.; Cho, G.-B.; Lim, S.-G.; Kim, K.-W.; Ahn, J.-H.; Cho, K.-K. Enhanced electrochemical performances of Ni-rich LiNi0.80Co0.15Al0.05O2 cathode materials by Ti doping or/and Al(OH)3 Coating. Sci. Adv. Mater. 2020, 9, 1283–1288. [Google Scholar] [CrossRef]
- Liu, C.; Cao, G.; Wu, J.; Wang, H.; Shao, G. Surficial structure retention mechanism for LiNi0.80Co0.15Al0.05O2 in a full gradient cathode. ACS Appl. Mater. Interfaces 2019, 11, 31991–31996. [Google Scholar] [CrossRef]
- Li, X.; Qian, K.; He, Y.-B.; Liu, C.; An, D.; Li, Y.; Zhou, D.; Lin, Z.; Li, B.; Yang, Q.-H.; et al. A dual-functional gel-polymer electrolyte for lithium ion batteries with superior rate and safety performances. Mater. Chem. A 2017, 5, 18888–18895. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, C.; Zhao, D.; Yang, L.; Wang, P.; Li, W.; Wang, B.; Li, S. Synergistic effect of sulfolane and lithium difluoro(oxalate)borate on improvement of compatibility for LiNi0.8Co0.1Mn0.1O2 electrode. Electrochim. Acta 2020, 337, 135727. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.; Ma, H.; Jeong, H.Y.; Cha, H.; Lee, H.; Yoo, Y.; Park, M.; Cho, J. Controllable solid electrolyte interphase in nickel-rich cathodes by an electrochemical rearrangement for stable lithium-ion batteries. Adv. Mater. 2018, 30, 1704309. [Google Scholar] [CrossRef]
- Yan, P.; Zheng, J.; Liu, J.; Wang, B.; Cheng, X.; Zhang, Y.; Sun, X.; Wang, C.; Zhang, J.G. Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nat. Energy 2018, 3, 600–605. [Google Scholar] [CrossRef]
- Wang, J.; Du, C.; Yan, C.; Xu, X.; He, X.; Yin, G.; Zuo, P.; Cheng, X.; Ma, Y.; Gao, Y.; et al. Role of fluorine surface modification in improving electrochemical cyclability of concentration gradient Li[Ni0.73Co0.12Mn0.15]O2 cathode material for Li-ion batteries. RSC Adv. 2016, 6, 26307–26316. [Google Scholar] [CrossRef]
- Min, K.; Park, K.; Park, S.Y.; Seo, S.-W.; Choi, B.; Cho, E. Improved electrochemical properties of LiNi0.91Co0.06Mn0.03O2 cathode material via Li-reactive coating with metal phosphates. Sci. Rep. 2017, 7, 7151. [Google Scholar] [CrossRef] [Green Version]
- Streich, D.; Erk, C.; Gueguen, A.; Müller, P.; Chesneau, F.F.; Berg, E.J. Operando monitoring of early Ni-mediated surface reconstruction in layered lithiated Ni-Co-Mn oxides. J. Phys. Chem. C 2017, 121, 13481–13486. [Google Scholar] [CrossRef]
- Bi, Y.; Yang, W.; Du, R.; Zhou, J.; Liu, M.; Liu, Y.; Wang, D. Correlation of oxygen non-stoichiometry to the instabilities and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 utilized in lithium ion battery. J. Power Sources 2015, 283, 211–218. [Google Scholar] [CrossRef]
- Li, X.; Xiong, X.; Wang, Z.; Chen, Q. Effect of sintering temperature on cycling performance and rate performance of LiNi0.8Co0.1Mn0.1O2. Trans. Nonferrous Met. Soc. China 2014, 24, 4023–4029. [Google Scholar] [CrossRef]
- Zheng, X.; Li, X.; Zhang, B.; Wang, Z.; Guo, H.; Huang, Z.; Yan, G.; Wang, D.; Xu, Y. Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode materials obtained by atomization co-precipitation method. Ceram. Int. 2016, 42, 644–649. [Google Scholar] [CrossRef]
- Yang, J.; Xia, Y. Enhancement on the cycling stability of the layered Ni-rich oxide cathode by In-Situ fabricating nano-thickness cation-mixing layers. J. Electrochem. Soc. 2016, 163, A2665. [Google Scholar] [CrossRef]
- Liang, L.; Hu, G.; Jiang, F.; Cao, Y. Electrochemical behaviours of SiO2-coated LiNi0.8Co0.1Mn0.1O2 cathode materials by a novel modification method. J. Alloys Compd. 2016, 657, 570–581. [Google Scholar] [CrossRef]
- Huang, J.; Fang, X.; Wu, Y.; Zhou, L.; Wang, Y.; Jin, Y.; Dang, W.; Wu, L.; Rong, Z.; Chen, X.; et al. Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 by surface modification with lithium-active MoO3. J. Electroanal. Chem. 2018, 823, 359–367. [Google Scholar] [CrossRef]
- Gan, Z.; Hu, G.; Peng, Z.; Cao, Y.; Tong, H.; Du, K. Surface modification of LiNi0.8Co0.1Mn0.1O2 by WO3 as a cathode material for LIB. Appl. Surf. Sci. 2019, 481, 1228–1238. [Google Scholar] [CrossRef]
- Li, Y.-C.; Zhao, W.-M.; Xiang, W.; Wu, Z.-G.; Yang, Z.-G.; Xu, C.-L.; Xu, Y.-D.; Wang, E.-H.; Wu, C.-J.; Guo, X.-D.; et al. Promoting the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode via LaAlO3 coating. J. Alloys Compd. 2018, 766, 546–555. [Google Scholar] [CrossRef]
- Zhu, W.; Huang, X.; Liu, T.; Xie, Z.; Wang, Y.; Tian, K.; Bu, L.; Wang, H.; Gao, L.; Zhao, J.; et al. Ultrathin Al2O3 coating on LiNi0.8Co0.1Mn0.1O2 cathode material for enhanced cycleability at extended voltage ranges. Coatings 2019, 9, 92. [Google Scholar] [CrossRef] [Green Version]
- Dong, M.; Wang, Z.; Li, H.; Guo, H.; Li, X.; Shih, K.; Wang, J. Metallurgy inspired formation of homogeneous Al2O3 coating layer to improve the electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode material. ACS Sustain. Chem. Eng. 2017, 5, 10199–10205. [Google Scholar] [CrossRef]
- Feng, Y.; Xu, H.; Wang, B.; Wang, S.; Ai, L.; Li, S. Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode materials by Al2O3 coating. Electrochem. Energy Conv. Stor. 2020, 18, 031005. [Google Scholar] [CrossRef]
- Han, B.; Key, B.; Lapidus, S.H.; Garcia, J.C.; Iddir, H.; Vaughey, J.Y.T.; Dogan, F. From coating to dopant: How the transition metal composition affects alumina coatings on Ni-rich cathodes. ACS Appl. Mater. Interfaces 2017, 9, 41291–41302. [Google Scholar] [CrossRef]
- Oh, P.; Oh, S.M.; Li, W.; Myeong, S.; Cho, J.; Manthiram, A. High-performance heterostructured cathodes for Lithium-ion batteries with a Ni-rich layered oxide core and a Li-rich layered oxide shell. Adv. Sci. 2016, 3, 1600184. [Google Scholar] [CrossRef] [Green Version]
- Song, B. A facile cathode design combining Ni-rich layered oxides with Li-rich layered oxides for lithium-ion batteries. J. Power Sources 2016, 325, 620–629. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Peng, Q.; Wang, W.Y.; Nan, C.Y.; Li, L.H.; Li, Y.D. Nanoscale coating of LiMO2 (M = Ni, Co, Mn) nanobelts with Li+-conductive Li2TiO3: Toward better rate capabilities for Li-ion batteries. J. Am. Chem. Soc. 2013, 135, 1649–1652. [Google Scholar] [CrossRef]
- Zhao, E.; Chen, M.; Hu, Z.; Chen, D.; Yang, L.; Xiao, X. Improved cycle stability of high-capacity Ni-rich LiNi0.8Mn0.1Co0.1O2 at high cut-off voltage by Li2SiO3 coating. J. Power Sources 2017, 343, 345–353. [Google Scholar] [CrossRef]
- Zhang, B.; Dong, P.; Tong, H.; Yao, Y.; Zheng, J.; Yu, W.; Zhang, J.; Chu, D. Enhanced electrochemical performance of LiNi0.8Mn0.1Co0.1O2 with lithium-reactive Li3VO4 coating. J. Alloys Compd. 2017, 706, 198–204. [Google Scholar] [CrossRef]
- Zhang, W.; Liang, L.; Zhao, F.; Liu, Y.; Hou, L.; Yuan, C. Ni-rich LiNi0.8Co0.1Mn0.1O2 coated with Li-ion conductive Li3PO4 as competitive cathodes for high-energy-density lithium ion batteries. Electrochim. Acta 2020, 340, 135871. [Google Scholar] [CrossRef]
- Xie, J.; Sendek, A.D.; Cubuk, E.D.; Zhang, X.; Lu, Z.; Gong, Y.; Wu, T.; Shi, F.; Liu, W.; Reed, E.J.; et al. Atomic layer deposition of stable LiAlF4 lithium ion conductive interfacial layer for stable cathode cycling. ACS Nano 2017, 11, 7019–7027. [Google Scholar] [CrossRef]
- Manthiram, A.; Song, B.; Li, W. A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries. Energy Storage Mater. 2017, 6, 125–139. [Google Scholar] [CrossRef]
- Xu, J.; Lin, F.; Doeff, M.M.; Tong, W. A review of Ni-based layered oxides for rechargeable Li-ion batteries. J. Mater. Chem. A 2017, 5, 874–901. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Oh, P.; Liu, X.; Lee, M.-J.; Cho, W.; Chae, S.; Kim, Y.; Cho, J. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem. Int. Ed. 2015, 54, 4440–4457. [Google Scholar] [CrossRef]
- Jan, S.S.; Nurgul, S.; Shi, X.Q.; Xia, H.; Pang, H. Improvement of electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material by graphene nanosheets modification. Electrochim. Acta 2014, 149, 86–93. [Google Scholar] [CrossRef]
- Peng, Z.; Li, T.; Zhang, Z.; Du, K.; Hu, G.; Cao, Y. Surface architecture decoration on enhancing properties of LiNi0.8Co0.1Mn0.1O2 with building bi-phase Li3PO4 and AlPO4 by Al(H2PO4)3 treatment. Electrochim. Acta 2020, 338, 135870. [Google Scholar] [CrossRef]
- Feng, Z.; Rajagopalan, R.; Sun, D.; Tang, Y.; Wang, H. In-situ formation of hybrid Li3PO4-AlPO4-Al(PO3)3 coating layer on LiNi0.80Mn0.1Co0.1O2 cathode with enhanced electrochemical properties for lithium-ion battery. Chem. Eng. J. 2020, 382, 122959. [Google Scholar] [CrossRef]
- Zha, G.; Luo, Y.; Hu, N.; Ouyang, C.; Hou, H. Surface modification of the LiNi0.8Co0.1Mn0.1O2 cathode material by coating with FePO4 with a yolk–shell structure for improved electrochemical performance. ACS Appl. Mater. Interfaces 2020, 12, 36046–36053. [Google Scholar] [CrossRef]
- Tong, H.; Dong, P.; Zhang, J.; Zheng, J.; Yu, W.; Wei, K.; Zhang, B.; Liu, Z.; Chu, D. Cathode material LiNi0.8Co0.1Mn0.1O2/LaPO4 with high electrochemical performance for lithium-ion batteries. J. Alloys Compd. 2018, 764, 44–50. [Google Scholar] [CrossRef]
- Li, Q.; Zuang, W.; Li, Z.; Wu, S.; Li, N.; Gao, M.; Li, W.; Wang, J.; Lu, S. Realizing superior cycle stability of a Ni-rich layered LiNi0.83Co0.12Mn0.05O2 cathode with a B2O3 surface modification. ChemElectroChem 2020, 7, 998–1006. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, H.; Xu, J.; Zhang, J. Optimizing Li2O-2B2O3 coating layer on LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode material for high-performance lithium-ion batteries. Int. J. Green Energy 2020, 17, 447–455. [Google Scholar] [CrossRef]
- Kang, H.S.; Santhoshkumar, P.; Park, J.W.; Sim, G.S.; Nanthagopal, M.; Lee, C.W. Glass ceramic coating on LiNi0.8Co0.1Mn0.1O2 cathode for Li-ion batteries. Korean J. Chem. Eng. 2020, 37, 1331–1339. [Google Scholar] [CrossRef]
- Xiong, X.; Ding, D.; Wang, Z.; Huang, B.; Guo, H.; Li, X. Surface modification of LiNi0.8Co0.1Mn0.1O2 with conducting polypyrrole. J. Solid State Electrochem. 2014, 18, 2619–2624. [Google Scholar] [CrossRef]
- Chen, S.; He, T.; Su, Y.; Lu, Y.; Bao, L.; Chen, L.; Zhang, Q.; Wang, J.; Chen, R.; Wu, F. Ni-rich LiNi0.80Co0.15Al0.05O2 oxide coated by dual-conductive layers as high performance cathode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 29732–29743. [Google Scholar] [CrossRef]
- Cao, Y.; Qi, X.; Hu, K.; Wang, Y.; Gan, Z.; Li, Y.; Hu, G.; Peng, Z.; Du, K. Conductive polymers encapsulation to enhance electrochemical performance of Ni-rich cathode materials for Li-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 18270–18280. [Google Scholar] [CrossRef]
- Xu, G.-L.; Liu, Q.; Lau, K.K.; Liu, Y.; Liu, X.; Gao, H.; Zhou, X.; Zhuang, M.; Ren, Y.; Li, J. Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes. Nat. Energy 2019, 4, 484–494. [Google Scholar] [CrossRef]
- Kim, T.; Ono, L.K.; Qi, Y. Elucidating the mechanism involved in the performance improvement of lithium-ion transition metal oxide battery by conducting polymer. Adv. Mater. Interfaces 2019, 6, 1801785. [Google Scholar] [CrossRef]
- Wu, F.; Liu, J.; Li, L.; Zhang, X.; Luo, R.; Ye, Y.; Chen, R. Surface modification of Li-rich cathode materials for lithium-ion batteries with a PEDOT: PSS conducting polymer. ACS Appl. Mater. Interfaces 2016, 8, 23095–23104. [Google Scholar] [CrossRef]
- Jerng, S.E.; Chang, B.; Shin, H.; Kim, H.; Lee, T.; Char, K.; Choi, J.W. Pyrazine-linked 2D covalent organic frameworks as coating material for high-nickel layered oxide cathodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 10597–10606. [Google Scholar] [CrossRef]
- Jiang, H.; Li, J.; Lei, Y.; Chen, Y.; Lai, C.; Shi, L.; Peng, C. Stabling LiNi0.8Co0.1Mn0.1O2 by PVP-assisted LiF-LaF3 layer for lithium ion batteries with improved electrochemical properties at high cut-off voltage. J. Taiwan Inst. Chem. Eng. 2020, 114, 331–334. [Google Scholar] [CrossRef]
- Wang, Z.; Zhong, H.; Song, G. Enhancing high-voltage performance of LiNi0.8Co0.1Mn0.1O2 by coating with NASICON fast ionic conductor Li1.5Al0.5Zr1.5(PO4)3. J. Alloys Compd. 2020, 849, 156467. [Google Scholar] [CrossRef]
- Wang, C.; Peng, W.; Li, Z.; Liang, Y.; Zhong, S.; Zhang, Q. Synthesis and characterization of nano SnO2 modification on LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium batteries. Front. Energy Res. 2019, 7, 125. [Google Scholar] [CrossRef]
- Ding, G.; Li, Y.; Gao, Y.; Wang, Q.; Zhu, Z.; Jing, X.; Yan, F.; Yue, Z.; Li, X.; Sun, F. Uniform coating of Se on selenophilic surfaces of nickel-rich layered oxide cathode materials for high performance Li-ion batteries. ACS Sustain. Chem. Eng. 2020, 8, 9632–9640. [Google Scholar] [CrossRef]
- Chen, X.; Tang, Y.; Fan, C.; Han, S. A highly stabilized single crystalline nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode through a novel surface spinel-phase modification. Electrochim. Acta 2020, 341, 136075. [Google Scholar] [CrossRef]
- Ryu, W.-G.; Shin, H.-S.; Park, M.-S.; Kim, H.; Jung, K.-N.; Lee, J.-W. Mitigating induced-storage degradation of Ni-rich Li cathode material by surface tuning with phosphate. Ceram. Int. 2019, 45, 13942–13950. [Google Scholar] [CrossRef]
- Hua, C.; Du, K.; Tan, C.; Peng, Z.; Cao, Y.; Hu, G. Study of full concentration-gradient Li(Ni0.8Co0.1Mn0.1)O2 cathode material for lithium ion batteries. J. Alloys Compd. 2014, 614, 264–270. [Google Scholar] [CrossRef]
- Sun, Y.-K.; Myung, S.-T.; Kim, M.-H.; Prakash, J.; Amine, K. Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core–shell structure as the positive electrode material for lithium batteries. J. Am. Chem. Soc. 2005, 127, 13411–13418. [Google Scholar] [CrossRef]
- Sun, Y.-K.; Myung, S.-T.; Shin, H.-S.; Bae, Y.C.; Yoon, C.S. Novel core–shell-structured Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 via coprecipitation as positive electrode material for lithium secondary batteries. J. Phys. Chem. B 2006, 110, 6810–6815. [Google Scholar] [CrossRef]
- Sun, Y.-K.; Myung, S.-T.; Kim, M.-H.; Kim, J.-H. Microscale core-shell structured Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 as positive electrode material for lithium batteries. Electrochem. Solid-State Lett. 2006, 9, A171–A174. [Google Scholar] [CrossRef]
- Sun, Y.-K.; Myung, S.-T.; Park, B.-C.; Amine, K. Synthesis of spherical nano- to microscale core-shell particles Li[(Ni0.8Co0.1Mn0.1)1−x(Ni0.5Mn0.5)x]O2 and their applications to lithium batteries. Chem. Mater. 2006, 18, 5159–5163. [Google Scholar] [CrossRef]
- Park, B.-C.; Bang, H.J.; Amine, K.; Jung, E.; Sun, Y.-K. Electrochemical stability of core–shell structure electrode for high voltage cycling as positive electrode for lithium ion batteries. J. Power Sources 2007, 174, 658–662. [Google Scholar] [CrossRef]
- Sun, Y.-K.; Myung, S.-T.; Park, B.C.; Prakash, J.; Belharouak, I.; Amine, K. High-energy cathode material for long-life and safe lithium batteries. Nat. Mater. 2009, 8, 320–324. [Google Scholar] [CrossRef]
- Shi, H.; Wang, X.; Hou, P.; Zhou, E.; Guo, J.; Zhang, J.; Wang, D.; Guo, F.; Song, D.; Shi, X.; et al. Core–shell structured Li[(Ni0.8Co0.1Mn0.1)0.7(Ni0.45Co0.1Mn0.45)0.3]O2 cathode material for high-energy lithium ion batteries. J. Alloys Compd. 2014, 587, 710–716. [Google Scholar] [CrossRef]
- Hua, W.; Schwarz, B.; Azmi, R.; Müller, M.; Dam, M.S.D.; Knapp, M.; Senyshyn, A.; Heere, M.; Missyul, A.; Simonelli, L.; et al. Lithium-ion (de)intercalation mechanism in core-shell layered Li(Ni,Co,Mn)O2 cathode materials. Nano Energy 2020, 78, 105231. [Google Scholar] [CrossRef]
- Jun, D.W.; Yoon, C.S.; Kim, U.H.; Sun, Y.-K. High-energy density core-shell structured Li[Ni0.95Co0.025Mn0.025]O2 cathode for lithium-ion batteries. Chem. Mater. 2017, 29, 5048–5052. [Google Scholar] [CrossRef]
- Li, Q.; Dang, R.; Chen, M.; Lee, Y.; Hu, Z.; Xiao, X. Synthesis method for long cycle life lithium-ion cathode material: Nickel-rich core–shell LiNi0.8Co0.1Mn0.1O2. ACS Appl. Mater. Interfaces 2018, 10, 17850–17860. [Google Scholar] [CrossRef]
- Lu, X.; Li, X.; Wang, Z.; Guo, H.; Yan, G.; Yin, X. A modified co-precipitation process to coat LiNi1/3Co1/3Mn1/3O2 onto LiNi0.8Co0.1Mn0.1O2 for improving the electrochemical performance. Appl. Surf. Sci. 2014, 297, 182–187. [Google Scholar] [CrossRef]
- Wu, B.; Lu, W. Mechanical modeling of particles with active core–shell structures for lithium-ion battery electrodes. J. Phys. Chem. C 2017, 121, 19022–19030. [Google Scholar] [CrossRef]
- Park, K.-J.; Lim, B.-B.; Choi, M.-H.; Jung, H.-G.; Sun, Y.-K.; Haro, M.; Vicente, N.; Bisquert, J.; Garcia-Belmonte, G. A high-capacity Li[Ni0.8Co0.06Mn0.14]O2 positive electrode with a dual concentration gradient for next-generation lithium-ion batteries. J. Mater. Chem. A 2015, 3, 22183. [Google Scholar] [CrossRef]
- Lim, B.-B.; Myung, S.-T.; Yoon, C.S.; Sun, Y.-K. Comparative study of Ni-rich layered cathodes for rechargeable lithium batteries: Li[Ni0.85Co0.11Al0.04]O2 and Li[Ni0.84Co0.06Mn0.09Al0.01]O2 with two-step full concentration gradients. ACS Energy Lett. 2016, 1, 283–289. [Google Scholar] [CrossRef]
- Yang, Z.; Xiang, W.; Wu, Z.; He, F.; Zhang, J.; Xiao, Y.; Zhong, B.; Guo, X. Effect of niobium doping on the structure and electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries. Ceram. Int. 2017, 43, 3866–3872. [Google Scholar] [CrossRef]
- Jia, X.; Yan, M.; Zhou, Z.; Chen, X.; Yao, C.; Li, D.; Chen, D.; Chen, Y. Nd-doped LiNi0.5Co0.2Mn0.3O2 as a cathode material for better rate capability in high voltage cycling of Li-ion batteries. Electrochim. Acta 2017, 254, 50–58. [Google Scholar] [CrossRef]
- Weigel, T.; Schipper, F.; Erickson, E.M.; Susai, F.A.; Markovsky, B.; Aurbach, D. Structural and electrochemical aspects of LiNi0.8Co0.1Mn0.1O2 cathode materials doped by various cations. ACS Energy Lett. 2019, 4, 508–516. [Google Scholar] [CrossRef]
- Chen, M.; Zhao, E.; Chen, D.; Wu, M.; Han, S.; Huang, Q.; Yang, L.; Xiao, X.; Hu, Z. Decreasing Li/Ni disorder and improving the electrochemical performances of Ni-rich LiNi0.8Co0.1Mn0.1O2 by Ca doping. Inorg. Chem. 2017, 56, 8355–8362. [Google Scholar] [CrossRef]
- Susai, F.A.; Kovacheva, D.; Chakraborty, A.; Kravchuk, T.; Ravikumar, R.; Talianker, M.; Grinblat, J.; Burstein, L.; Kauffmann, Y.; Major, D.T.; et al. Improving performance of LiNi0.80Mn0.1Co0.1O2 cathode materials for lithium-ion batteries by doping with molybdenum-ions: Theoretical and experimental studies. ACS Appl. Energy Mater. 2019, 2, 4521–4534. [Google Scholar] [CrossRef]
- Liang, H.; Wang, Z.; Guo, H.; Wang, J.; Leng, J. Improvement in the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material by Li2ZrO3 coating. Appl. Surf. Sci. 2017, 423, 1045–1053. [Google Scholar] [CrossRef]
- Song, B.; Li, W.; Oh, S.-M.; Manthiram, A. Long-life nickel-rich layered oxide cathodes with a uniform Li2ZrO3 surface coating for lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 9718–9725. [Google Scholar] [CrossRef]
- Li, X.; Zhang, K.; Wang, M.; Liu, Y.; Qu, M.; Zhao, W.; Zheng, J. Dual functions of zirconium modification on improving the electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2. Sustain. Energy Fuels 2018, 2, 413–421. [Google Scholar] [CrossRef]
- He, T.; Lu, Y.; Su, Y.; Bao, L.; Tan, J.; Chen, L.; Zhang, Q.; Li, W.; Chen, S.; Wu, F. Sufficient utilization of zirconium ions to improve the structure and surface properties of nickel-rich cathode materials for lithium-ion batteries. ChemSusChem 2018, 11, 1639–1648. [Google Scholar] [CrossRef]
- Gao, S.; Zhan, X.; Cheng, Y.-T. Structural, electrochemical and Li-ion transport properties of Zr-modified LiNi0.8Co0.1Mn0.1O2 positive electrode materials for Li-ion batteries. J. Power Sources 2019, 410–411, 45–52. [Google Scholar] [CrossRef]
- Han, B.; Xu, S.; Zhao, S.; Lin, G.; Peng, Y.; Chen, L.; Ivey, D.G.; Wang, P.; Wei, W. Enhancing the structural stability of Ni-rich layered oxide cathodes with a preformed Zr-concentrated defective nanolayer. ACS Appl. Mater. Interfaces 2018, 10, 39599–39607. [Google Scholar] [CrossRef]
- Li, L.-J.; Wang, Z.-X.; Liu, Q.-C.; Ye, C.; Chen, Z.-Y.; Gong, L. Effects of chromium on the structural, surface chemistry and electrochemical of layered LiNi0.8-xCo0.1Mn0.1CrxO2. Electrochim. Acta 2012, 77, 89–96. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, Y.; Wu, L.; Feng, L.; Jin, S.; Zhang, R.; Jin, M. Effect of Ti ion doping on electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material. Electrochim. Acta 2019, 328, 135086. [Google Scholar] [CrossRef]
- Jiang, Y.; Bi, Y.; Liu, M.; Peng, Z.; Huai, L.; Dong, P.; Duan, J.; Chen, Z.; Li, X.; Wang, D.; et al. Improved stability of Ni-rich cathode by the substitutive cations with stronger bonds. Electrochim. Acta 2018, 268, 41–48. [Google Scholar] [CrossRef]
- Sun, H.; Cao, Z.; Wang, T.; Lin, R.; Li, Y.; Liu, X.; Zhang, L.; Lin, F.; Huang, Y.; Luo, W. Enabling high rate performance of Ni-rich layered oxide cathode by uniform titanium doping. Mater. Today Energy 2019, 13, 145–151. [Google Scholar] [CrossRef]
- Zeng, W.; Chen, Q.; Li, Y.; Chen, C.; Liu, X.; Yuan, M.; Wang, R.; Chen, S.; Xiao, S. Enhanced electrochemical performances of LiNi0.8Co0.1Mn0.1O2 by synergistic modification of sodium ion doping and silica coating. Solid State Ion. 2020, 346, 115214. [Google Scholar] [CrossRef]
- Sattar, T.; Lee, S.-H.; Sim, S.-J.; Jin, B.-S.; Kim, H.-S. Effect of Mg-doping on the electrochemical performance of LiNi0.84Co0.11Mn0.05O2 cathode for lithium ion batteries. Int. J. Hydrogen Energy 2020, 45, 19567–19576. [Google Scholar] [CrossRef]
- Duan, J.; Hu, G.; Cao, Y.; Tan, C.; Wu, C.; Du, K.; Peng, Z. Enhanced electrochemical performance and storage property of LiNi0.815Co0.15Al0.035O2 via Al gradient doping. J. Power Sources 2016, 326, 322–330. [Google Scholar] [CrossRef]
- Conry, T.E.; Mehta, A.; Cabana, J.; Doeff, M.M. Structural underpinnings of the enhanced cycling stability upon Al-substitution in LiNi0.45Mn0.45Co0.1-yAlyO2 positive electrode materials for Li-ion batteries. Chem. Mater. 2012, 24, 3307–3317. [Google Scholar] [CrossRef] [Green Version]
- Do, S.J.; Santhoshkumar, P.; Kang, S.H.; Prasanna, K.; Jo, Y.N.; Lee, C.W. Al-Doped Li[Ni0.78Co0.1Mn0.1Al0.02]O2 for high performance of lithium ion batteries. Ceram. Int. 2019, 45, 6972–6977. [Google Scholar] [CrossRef]
- Li, Y.-C.; Xiang, W.; Wu, Z.-G.; Xu, C.-L.; Xu, Y.-D.; Xiao, Y.; Yang, Z.-G.; Wu, C.-J.; Lv, G.-P.; Guo, X.-D. Construction of homogeneously Al3+ doped Ni rich Ni-Co-Mn cathode with high stable cycling performance and storage stability via scalable continuous precipitation. Electrochim. Acta 2018, 291, 84–94. [Google Scholar] [CrossRef]
- Kim, U.-H.; Myung, S.-T.; Yoon, C.S.; Sun, Y.-K. Extending the battery life using an Al-Doped Li[Ni0.76Co0.09Mn0.15]O2 cathode with concentration gradients for lithium ion batteries. ACS Energy Lett. 2017, 2, 1848–1854. [Google Scholar] [CrossRef]
- Hou, P.; Li, F.; Sun, Y.; Pan, M.; Wang, X.; Shao, M.; Xu, X. Improving Li+ kinetics and structural stability of nickel-rich layered cathodes by heterogeneous inactive-Al3+ doping. ACS Sustain. Chem. Eng. 2018, 6, 5653–5661. [Google Scholar] [CrossRef]
- Dixit, M.; Markovsky, B.; Aurbach, D.; Major, D.T. Unraveling the effects of Al doping on the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 using first principles. J. Electrochem. Soc. 2017, 164, A6359–A6365. [Google Scholar] [CrossRef]
- Yang, X.; Tang, Y.; Shang, G.; Wu, J.; Lai, Y.; Li, J.; Qu, Y.; Zhang, Z. Enhanced cyclability and high-rate capability of LiNi0.88Co0.095Mn0.025O2 cathodes by homogeneous Al3+ doping. ACS Appl. Mater. Interfaces 2019, 11, 32015–32024. [Google Scholar] [CrossRef]
- Kim, U.H.; Kuo, L.Y.; Kaghazchi, P.; Yoon, C.S.; Sun, Y.-K. Quaternary layered Ni-rich NCMA cathode for lithium-ion batteries. ACS Energy Lett. 2019, 4, 576–582. [Google Scholar] [CrossRef] [Green Version]
- Xia, H.; Liu, C.; Shen, L.; Yu, J.; Li, B.; Kang, F.; He, Y.-B. Structure and thermal stability of LiNi0.8Co0.15Al0.05O2 after long cycling at high temperature. J. Power Sources 2020, 450, 227695. [Google Scholar] [CrossRef]
- Liang, C.; Kong, F.; Longo, R.C.; Zhang, C.; Nie, Y.; Zheng, Y.; Cho, K. Site-dependent multicomponent doping strategy for Ni-rich LiNi1-2yCoyMnyO2 (y = 1/12) cathode materials for Li-ion batteries. J. Mater. Chem. A 2017, 5, 25303–25313. [Google Scholar] [CrossRef]
- Min, K.; Seo, S.-W.; Song, Y.Y.; Lee, H.S.; Cho, E. A first-principles study of the preventive effects of Al and Mg doping on the degradation in LiNi0.8Co0.1Mn0.1O2 cathode materials. Phys. Chem. Chem. Phys. 2017, 19, 1762–1769. [Google Scholar] [CrossRef]
- Yuan, A.; tang, H.; Liu, L.; Ying, J.; Tan, L.; Tan, L.; Sun, R. High performance of phosphorus and fluorine co-doped LiNi0.8Co0.1Mn0.1O2 as a cathode material for lithium ion batteries. J. Alloys Compd. 2020, 844, 156210. [Google Scholar] [CrossRef]
- Liu, Y.J.; Fan, X.J.; Zhang, Z.Q.; Wu, H.H.; Liu, D.M.; Dou, A.C.; Su, M.R.; Zhang, Q.B.; Chu, D.W. Enhanced electrochemical performance of Li-rich layered cathode materials by combined Cr doping and LiAlO2 coating. ACS Sustain. Chem. Eng. 2019, 7, 2225. [Google Scholar] [CrossRef]
- Xin, F.; Zhou, H.; Chen, X.; Zuba, M.; Chernova, N.; Zhou, G.; Whittingham, M.S. Li–Nb–O Coating/Substitution enhances the electrochemical performance of the LiNi0.8Co0.1Mn0.1O2 (NCM 811) Cathode. ACS Appl. Mater. Interfaces 2019, 11, 34889–34894. [Google Scholar] [CrossRef]
- Li, J.; Zhang, M.; Zhang, D.; Yan, Y.; Li, Z. An effective doping strategy to improve the cyclic stability and rate capability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode. Chem. Eng. J. 2020, 402, 126195. [Google Scholar] [CrossRef]
- Dong, M.-X.; Li, X.-Q.; Wang, Z.-X.; Li, X.-H.; Guo, H.-J.; Huang, Z.-J. Enhanced cycling stability of La modified LiNi0.8-xCo0.1Mn0.1LaxO2 for Li-ion battery. Trans. Nonferrous Met. Soc. China 2017, 27, 1134–1142. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, H.; Tan, M.; Liu, J.; Hu, Y.; Liu, S.; Shu, X.; Li, H.; Ran, Q.; Cai, J.; et al. Yttrium modified Ni-rich LiNi0.8Co0.1Mn0.1O2 with enhanced electrochemical performance as high energy density cathode material at 4.5 V high voltage. J. Alloys Compd. 2019, 774, 82–92. [Google Scholar] [CrossRef]
- Wu, F.; Li, Q.; Chen, L.; Zhang, Q.; Wang, Z.; Lu, Y.; Bao, L.; Chen, S.; Su, Y. Improving the structure stability of LiNi0.8Co0.1Mn0.1O2 by surface perovskite-like La2Ni0.5Li0.5O4 self-assembling and subsurface La3+ doping. ACS Appl. Mater. Interfaces 2019, 11, 36751–36762. [Google Scholar] [CrossRef]
- Wu, Q.; Mao, S.; Wang, Z.; Tong, Y.; Lu, Y. Improving LiNixCoyMn1−x−yO2 cathode electrolyte interface under high voltage in lithium ion batteries. Nano Select 2020, 1, 111–134. [Google Scholar] [CrossRef]
- Sari, H.M.K.; Li, X. Controllable cathode–electrolyte interface of LiNi0.8Co0.1Mn0.1O2 for lithium ion batteries: A review. Adv. Energy Mater. 2019, 9, 1901597. [Google Scholar] [CrossRef]
- Haregewoin, A.M.; Wotangoa, A.S.; Hwang, B.J. Electrolyte additives for lithium ion battery electrodes: Progress and perspectives. Energy Environ. Sci. 2016, 9, 1955–1988. [Google Scholar] [CrossRef]
- Luo, Z.; Zhang, H.; Yu, L.; Huang, D.; Shen, J. Improving long-term cyclic performance of LiNi0.8Co0.1Mn0.1O2 cathode by introducing a film forming additive. J. Electroanal. Chem. 2019, 833, 520–526. [Google Scholar] [CrossRef]
- Shen, J.; Chen, H.; Yu, L.; Huang, D.; Luo, Z. 4, 5-difluoro-1, 3-dioxolan-2-one as a film forming additive on LiNi0.8Co0.1Mn0.1O2 /SiO@C full cells. J. Electroanal. Chem. 2019, 834, 1–7. [Google Scholar] [CrossRef]
- Ji, W.; Huang, H.; Huang, X.; Zhang, X.; Zheng, D. A redox-active organic cation for safer high energy density Li-ion batteries. J. Mater. Chem. A 2020, 8, 17156–17162. [Google Scholar] [CrossRef]
- Peng, Z.; Cao, X.; Gao, P.; Jia, H.; Ren, X.; Roy, S.; Li, Z.; Zhu, Y.; Xie, W.; Liu, D.; et al. High-power lithium metal batteries enabled by high-concentration acetonitrile-based electrolytes with vinylene carbonate additive. Adv. Func. Mater. 2020, 30, 2001285. [Google Scholar] [CrossRef]
- Wan, S.; Chen, S. A dithiol-based new electrolyte additive for improving electrochemical performance of NCM811 lithium ion batteries. Ionics 2020, 26, 6023–6033. [Google Scholar] [CrossRef]
- Kong, X.; Liu, J.; Zhang, Y.; Zeng, J.; Zhao, J. An effective electrolyte design to improve the high-voltage performance of high-capacity NCM811 / SiOx-Gr batteries. Electrochim. Acta 2020, 349, 136356. [Google Scholar] [CrossRef]
- Zheng, Y.; Xu, N.; Chen, S.; Liao, Y.; Zhong, G.; Zhang, Z.; Yang, Y. Construction of a stable LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode interface by a multifunctional organosilicon electrolyte additive. ACS Appl. Energy Mater. 2020, 3, 2837–2845. [Google Scholar] [CrossRef]
- Li, G.; Liao, Y.; Li, Z.; Xu, N.; Lu, Y.; Lan, G.; Sun, G.; Li, W. Constructing a low-impedance interface on a high-voltage LiNi0.8Co0.1Mn0.1O2 cathode with 2,4,6-Triphenyl boroxine as a film-forming electrolyte additive for Li-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 37013–37026. [Google Scholar] [CrossRef]
- Lan, G.; Xing, L.; Bedrov, D.; Chen, J.; Guo, R.; Che, Y.; Li, Z.; Zhou, H.; Li, W. Enhanced cyclic stability of Ni-rich lithium ion battery with electrolyte film-forming additive. J. Alloys Compd. 2020, 821, 153236. [Google Scholar] [CrossRef]
- Liu, H.; Naylor, A.J.; Menon, A.S.; Brant, W.R.; Edström, K.; Younesi, R. Understanding the roles of tris(trimethylsilyl) phosphite (TMSPi) in LiNi0.8Co0.1Mn0.1O2 (NMC811)/Silicon–Graphite (Si–Gr) lithium-ion batteries. Adv. Mater. 2020, 7, 2000277. [Google Scholar] [CrossRef]
- Zhao, W.; Zheng, J.; Zou, L.; Jia, H.; Liu, B.; Wang, H.; Engelhard, M.H.; Wang, C.; Xu, W.; Yang, Y.; et al. High voltage operation of Ni-rich NCM cathodes enabled by stable electrode/electrolyte interphases. Adv. Energy Mater. 2018, 8, 1800297. [Google Scholar] [CrossRef]
- Pham, H.Q.; Lee, H.-Y.; Hwang, E.-H.; Kwon, Y.-G.; Song, S.-W. Non-flammable organic liquid electrolyte for high-safety and high-energy density Li-ion batteries. J. Power Sources 2018, 404, 13–19. [Google Scholar] [CrossRef]
- Pham, H.Q.; Hwang, E.-H.; Kwon, Y.-G.; Song, S.-W. Approaching the maximum capacity of nickel-rich LiNi0.8Co0.1Mn0.1O2 cathodes by charging to high-voltage in a non-flammable electrolyte of propylene carbonate and fluorinated linear carbonates. Chem. Commun. 2019, 55, 1256–1258. [Google Scholar] [CrossRef]
- Pham, H.Q.; Tran, Y.H.T.; Han, J.; Song, S.-W. Roles of nonflammable organic liquid electrolyte in stabilizing the interface of the LiNi0.8Co0.1Mn0.1O2 cathode at 4.5 V and improving the battery performance. Phys. Chem. C 2020, 124, 175–185. [Google Scholar] [CrossRef]
- Sun, H.-H.; Manthiram, A. Impact of microcrack generation and surface degradation on a nickel-rich layered Li[Ni0.9Co0.05Mn0.05O2] cathode for lithium-ion batteries. Chem. Mater. 2017, 29, 8486–8493. [Google Scholar] [CrossRef]
- Kondrakov, A.O.; Geßwein, H.; Galdina, K.; de Biasi, L.; Meded, V.; Filatova, E.O.; Schumacher, G.; Wenzel, W.; Hartmann, P.; Brezesinski, T.; et al. Charge-transfer-induced lattice collapse in Ni-rich NCM cathode materials during delithiation. J. Phys. Chem. C 2017, 121, 24381–24388. [Google Scholar] [CrossRef]
- Qiu, W.; Xia, J.; Chen, L.; Dahn, J.R. A study of methyl phenyl carbonate and diphenyl carbonate as electrolyte additives for high voltage LiNi0.8Co0.1Mn0.1O2//graphite pouch cells. J. Power Sources 2016, 318, 228–234. [Google Scholar] [CrossRef]
- Li, J.; Li, W.; You, Y.; Manthiram, A. Extending the service life of high-Ni layered oxides by tuning the electrode–electrolyte interphase. Adv. Energy Mater. 2018, 8, 1801957. [Google Scholar] [CrossRef]
- Beltrop, K.; Klein, S.; Nölle, R.; Wilken, A.; Lee, J.J.; Köster, T.K.-J.; Reiter, J.; Tao, L.; Liang, C.; Winter, M. Triphenylphosphine oxide as highly effective electrolyte additive for graphite/NMC811 lithium ion cells. Chem. Mater. 2018, 30, 2726–2741. [Google Scholar] [CrossRef]
- Jo, M.; Park, S.-H.; Lee, H. NaH2PO4 as an electrolyte additive for enhanced thermal stability of LiNi0.8Co0.1Mn0.1O2/graphite batteries. J. Electrochim. Soc. 2020, 167, 130502. [Google Scholar] [CrossRef]
- Li, X.; Sun, Q.; Wang, Z.; Song, D.; Zhang, H.; Shi, X.; Li, C.; Zhang, L.; Zhu, L. Outstanding electrochemical performances of the all-solid-state lithium battery using Ni-rich layered oxide cathode and sulfide electrolyte. J. Power Sources 2020, 456, 227997. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, Y.; Gu, S.; Qian, C.; Chen, T.; Chen, S.; Zhao, J.; Zhang, S. An effective interface-regulating mechanism enabled by non-sacrificial additives for high-voltage nickel-rich cathode. J. Power Sources 2020, 453, 227852. [Google Scholar] [CrossRef]
- Mao, M.; Huang, B.; Li, Q.; Wang, C.; He, Y.-B.; Kang, F. n-situ construction of hierarchical cathode electrolyte interphase for high performance LiNi0.8Co0.1Mn0.1O2/Li metal battery. Nano Energy 2020, 78, 105282. [Google Scholar] [CrossRef]
- Wood, D.L.; Li, J.; Daniel, C. Prospects for reducing the processing cost of lithium ion batteries. J. Power Sources 2015, 275, 234–242. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Daniel, C.; Wood, D. Materials processing for lithium-ion batteries. J. Power Sources 2011, 196, 2452–2460. [Google Scholar] [CrossRef]
- Bresser, D.; Buchholz, D.; Moretti, A.; Varzi, A.; Passerini, S. Alternative binders for sustainable electrochemical energy storage-the transition to aqueous electrode processing and bio-derived polymers. Energy Environ. Sci. 2018, 11, 3096–3127. [Google Scholar] [CrossRef] [Green Version]
- Kazzazi, A.; Bresser, D.; Birrozzi, A.; Von Zamory, J.; Hekmatfar, M.; Passerini, S. Comparative analysis of aqueous binders for high-energy Li-rich NMC as a lithium-ion cathode and the impact of adding phosphoric acid. ACS Appl. Mater. Interfaces 2018, 10, 17214–17222. [Google Scholar] [CrossRef]
- Cetinel, F.A.; Bauer, W. Processing of water-based LiNi1/3Mn1/3Co1/3O2 pastes for manufacturing lithium ion battery cathodes. Bull. Mater. Sci. 2014, 37, 1685–1690. [Google Scholar] [CrossRef] [Green Version]
- Loeffler, N.; Kim, G.T.; Passerini, S.; Gutierrez, C.; Cendoya, I.; De Meatza, I.; Alessandrini, F.; Appetecchi, G.B. Performance and ageing robustness of graphite/NMC pouch prototypes manufactured through eco-friendly materials and processes. ChemSusChem 2017, 10, 3581–3587. [Google Scholar] [CrossRef]
- Du, Z.; Li, J.; Wood, M.; Mao, C.; Daniel, C.; Wood, D.L. Three-dimensional conductive network formed by carbon nanotubes in aqueous processed NMC electrode. Electrochim Acta 2018, 270, 54–61. [Google Scholar] [CrossRef]
- Church, B.C.; Kaminski, D.T.; Jiang, J. Corrosion of aluminum electrodes in aqueous slurries for lithium-ion batteries. J. Mater. Sci. 2014, 49, 3234–3241. [Google Scholar] [CrossRef]
- Li, S.Y.; Church, B.C. Effect of aqueous-based cathode slurry pH and immersion time on corrosion of aluminum current collector in lithium-ion batteries. Mater. Corros. 2016, 67, 978987. [Google Scholar] [CrossRef]
- Doberdo, I.; Löffler, N.; Laszczynski, N.; Cericola, D.; Penazzi, N.; Bodoardo, S.; Kim, G.T.; Passerini, S. Enabling aqueous binders for lithium battery cathodes - carbon coating of aluminum current collector. J. Power Sources 2014, 248, 1000–1006. [Google Scholar] [CrossRef]
- Loeffler, N.; Kim, G.T.; Mueller, F.; Diemant, T.; Kim, J.K.; Behm, R.J.; Passerini, S. In situ coating of Li[Ni0.33Mn0.33Co0.33]O2 particles to enable aqueous electrode processing. ChemSusChem 2016, 9, 1112–1117. [Google Scholar] [CrossRef]
- Jung, R.; Morasch, R.; Karayaylali, P.; Phillips, K.; Maglia, F.; Stinner, C.; Shao-Horn, Y.; Gasteiger, H.A. Effect of ambient storage on the degradation of Ni-rich positive electrode materials (NMC811) for Li-ion batteries. J. Electrochem. Soc. 2018, 165, A132–A141. [Google Scholar] [CrossRef]
- You, Y.; Celio, H.; Li, J.; Dolocan, A.; Manthiram, A. Modified high-nickel cathodes with stable surface chemistry against ambient air for lithium-ion batteries. Angew. Chem. Int. Ed. 2018, 57, 6480–6485. [Google Scholar] [CrossRef]
- Zheng, X.; Li, X.; Wang, Z.; Guo, H.; Huang, Z.; Yan, G.; Wang, D. Investigation and improvement on the electrochemical performance and storage characteristics of LiNiO2-based materials for lithium ion battery. Electrochim. Acta 2016, 191, 832–840. [Google Scholar] [CrossRef]
- Xiong, X.; Wang, Z.; Yue, P.; Guo, H.; Wu, F.; Wang, J.; Li, X. Washing effects on electrochemical performance and storage characteristics of LiNi0.8Co0.1Mn0.1O2 as cathode material for lithium-ion batteries. J. Power Sources 2013, 222, 318–325. [Google Scholar] [CrossRef]
- Wood, M.; Li, J.; Ruther, R.E.; Du, Z.; Self, E.C.; Meyer III, H.M.; Daniel, C.; Belharouak, I.; Wood III, D.L. Chemical stability and long-term cell performance of low-cobalt, Ni-Rich cathodes prepared by aqueous processing for high-energy Li-Ion batteries. Energy Stor. Mater. 2020, 24, 188–197. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, H.; Li, K.; Li, H.; Ouyang, D.; Arab, P.P.; Phattharasupakun, N.; Rathore, D.; Johnson, M.; Wang, Y. Cobalt-free core-shell structure with high specific capacity and long cycle life as an alternative to Li[Ni0.8Mn0.1Co0.1]O2. J. Electrochem. Soc. 2020, 167, 120533. [Google Scholar] [CrossRef]
- Ma, R.; Zhao, Z.; Fu, J.; Lv, H.; Li, C.; Wu, B.; Mu, D.; Wu, F. Tuning cobalt-free nickel-rich layered LiNi0.9Mn0.1O2 cathode material for lithium-ion batteries. ChemElectroChem 2020, 7, 2637–2642. [Google Scholar] [CrossRef]
- Kim, U.H.; Ryu, H.H.; Kim, J.H.; Mücke, R.; Kaghazchi, P.; Yoon, C.S.; Sun, Y.-K. Microstructure-controlled Ni-rich cathode material by microscale compositional partition for next-generation electric vehicles. Adv. Energy Mater. 2019, 9, 1803902. [Google Scholar] [CrossRef]
- Hou, P.; Zhang, H.; Zi, Z.; Zhang, L.; Xu, X. Core–shell and concentration-gradient cathodes prepared via co-precipitation reaction for advanced lithium-ion batteries. J. Mater. Chem. A 2017, 5, 4254–4279. [Google Scholar] [CrossRef]
- South Korea’s Battery Industry Speeding up the Process of Transitioning to the “Cobalt Zero” Era. Available online: https://english.etnews.com/20200828200001 (accessed on 20 August 2020).
- Park, K.J.; Jung, H.G.; Kuo, L.Y.; Kaghazchi, P.; Yoon, C.S.; Sun, Y.-K. Improved cycling stability of Li[Ni0.9Co0.05Mn0.05]O2 through microstructure modification by boron doping for Li-ion batteries. Adv. Energy Mater. 2018, 8, 1801202. [Google Scholar] [CrossRef]
- Kim, U.H.; Kim, J.H.; Hwang, J.Y.; Ryu, H.H.; Yoon, C.S.; Sun, Y.-K. Compositionally and structurally redesigned high-energy Ni-rich layered cathode for next-generation lithium batteries. Mater. Today 2019, 23, 26–36. [Google Scholar] [CrossRef]
- Ryu, H.H.; Park, K.J.; Yoon, D.R.; Aishova, A.; Yoon, C.S.; Sun, Y.-K. Li[Ni0.9Co0.09W0.01]O2: A new type of layered oxide cathode with high cycling stability. Adv. Energy Mater. 2019, 9, 1902698. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Zheng, L.; Li, X.; Du, G.; Feng, Y.; Jia, L.; Dai, Z. Effect of high Ni on battery thermal safety. Int. J. Energy Res. 2020, 44, 12158–12168. [Google Scholar] [CrossRef]
- Kalluri, S.; Cha, H.; Kim, J.; Lee, H.; Jang, H.; Cho, J. Building high-rate nickel-rich cathodes by self-organization of structurally stable macrovoid. Adv. Sci. 2020, 7, 1902844. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Lee, H.; Cha, H.; Yoon, M.; Park, M.; Cho, J. Prospect and reality of Ni-rich cathode for commericalization. Adv. Energy Mater. 2018, 8, 1702028. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, Y.Z.; Zhang, F.; Li, Q.; Anjum, D.H.; Liang, H.; Pang, H. A novel strategy for the synthesis of highly stable ternary SiOx composites for Li-ion-battery anodes. J. Mater. Chem A 2019, 7, 15969–15974. [Google Scholar] [CrossRef]
Synthesis Method | Characteristics | Electrochemical Performance | Ref. |
---|---|---|---|
Solid-state reaction sintered at 720 °C for 28 h | Microspheres | 180 mAh g−1 at 0.2 C; CR of 87% after 76 cycles at 1 C | [126] |
Two-step coprecipitation sintering in O2 | Microrods, SSA of 0.5 m2 g−1 | 218 mAh g−1 at 0.1 C; CR of 93% after 100 cycles at 1 C in range 2.7–4.3 V | [127] |
Coprecipitation with 5-sulfosalicylic acid as chelating agent | Secondary spherical particle 8 µm dia. | 203 mAh g−1 at 0.1 C; CR of 93.3% after 200 cycles at 1 C in range 3.0–4.3 V | [128] |
Coprecipitation heated at 750 °C under O2 stream | 0.5–1.5 µm particle size agglomerates of 20 µm 0.23% cation mixing | 177 mAh g−1 at 0.1 C; CR of 82% after 500 cycles at 2 C rate in range 3.0–4.1 V | [129] |
Coprecipitation sintered at 750 °C | 400–600 nm particle size polyhedral shape | 200 mAh g−1 at 0.2 C; 92% CR after 60 cycles at 1 C | [130] |
Ball milling with LATP Sintered at 750 °C in O2 | 10 µm spherical particle 200 nm thick coating | 180 mAh g−1 at 0.1 C; CR of 88% after 100 cycles at 2 C rate in range 2.8–4.3 V | [131] |
Coprecipitation, sintered at various O2 pressures optimized for 0.1 MPa | Sphere-like 15 µm dia. | 166 mAh g−1 at 0.1 C; CR of 87% after 100 cycles at 1 C rate in range 2.8–4.3 V | [25] |
Polysiloxane coating Hydrolysis condensation | Spherical agglomerates 20 µm dia. | 184 mAh g−1 at 0.1 C; CR of 96% after 150 cycles at 1 C rate in range 2.8–4.3 V | [114] |
Li2O-2B2O3 coating by a solution method | Commercial LCA | 169 mA g−1 at 360 mA g−1; CR of 94.2% after 100 cycles in the range 3.0–4.3 V | [113] |
LiAlO2 coating by ALD | Commercial LCA | 198 mAh g−1 at C/5 in the range 2.7–4.5 V; CR 91% between 40th and 100th cycle | [115] |
LiAlO2 coating by milling | Spherical agglomerates 20 µm dia. | 172.3 mAh g−1 at 1 C; CR of 94.67% after 100 cycles at 1 C in the range 3.0–4.3 V | [118] |
Li2TiO3 coating by near-equilibrium deposition | Spherical agglomerates 6–8 μm dia. | 187.5mAh g−1 at 0.5 C; CR of 93.5% after 200 cycles at 0.5 C in the range 2.8–4.3 V | [121] |
LiTiO2 coating by hydrolysis | Spherical agglomerates 3–15 μm dia. | 164.1 mAh g−1 at 1 C; CR of 90.8% after 100 cycles at 1 C in the range 2.8–4.3 V | [122] |
Dual coating Sb-doped SnO2 and Li2TiO3 | Spherical agglomerates 10 µm dia. | 153 mAh g−1 at 5 C; CR of 88.56% after 200 cycles at 1 C at 60 °C in the range 3.4.3 V | [125] |
Dopant | Electrochemical Properties | |
---|---|---|
K | 217 mAh g−1 at 0.1 C; CR of 87.4% after 150 cycles at 1 C (2.8–4.6 V). | [134] |
Zr | 133.6 mAh g−1 after 100 cycles at 250 mA g−1 (2.5–4.6 V) | [135] |
Fe | 138.9 mAh g−1 at 1 C with CR of 88.4% at 1 C after 350 cycles (2.8–4.3 V) | [145] |
Cu and Fe | Initial discharge 143 mAh g−1 at 10 C; 168 mAh g−1 after 100 cycles at 1 C (2.8–4.3 V) | [137] |
Ti | 179.6 mAh g−1 after 200 cycles at 1 C; CR at 97.4% (3.0–4.5 V) | [139] |
Mn | 174.0 mAh g−1 at 2 C, with CR of 81% after 900 cycles at 2 C (2.8–4.3 V) | [148] |
Te (1 wt.%) | 159.2 mAh g−1 at 10 C, 205 mAh g−1 at 1 C; CR of 81.4% after 100 cycles at 1 C (2.7–4.5 V) | [141] |
Na | 170.1 mAh g−1 at 1 C, CR of 90.7% after 200 cycles at 1 C (2.8–4.3 V) | [146] |
Concentration gradient of Al | 116mAh g−1 at 10 C, 214 mAh g−1 at 0.1 C (2.8–4.4 V) full cell: 195 mAh g−1 at 1 C with CR at 99% after 500 cycles (3–4.2 V) | [144] |
Concentration gradient of Al | 198.1 mAh g−1 at 0.1 C; CR of 70.9% after 500 cycles at 1 C (3–4.3 V) | [142] |
Coating | Preparation | Electrochemical Performance | Ref. |
---|---|---|---|
Li2SiO3 | Solvothermal method using Si(OC2H5)4 and LiOH | 133 mAh g−1 after 52 cycles at current density of 100 mA g−1 in the voltage range 3.0–4.6 V | [178] |
Li2TiO3 | Nanobelts obtained from reaction between MC2O4·xH2O and Ti(OC4H9)4 | 150 mAh g−1 at 0.5 C in the voltage range 3.0–4.3 V; CR of 92% after 100 cycles at 2 C rate | [177] |
Li3VO4 (3 wt.%) | Wet chemistry using V2O5 and LIOH·H2O | 164 mAh g−1 at 0.1 C in the voltage range 2.0–4.3 V; CR of 83% after 100 cycles at 1 C rate | [179] |
MoO3/Li2MoO4 (3 wt.%) | Dry coating method using (NH4)6Mo7O24·4H2O | 200 mAh g−1 at 0.1 C rate in the voltage range 2.8–4.3 V; CR of 94.8% after 100 cycles at 1 C | [168] |
Li3PO4 | In situ coating in NH4H2PO4 solution | 176 mAh g−1 at 0.1 C rate in the voltage range 2.9–4.2 V; CR of 89.6% after 250 cycles at 1 C | [180] |
Li3PO4-PPy co-coating | Two-step: wet-coating for Li3PO4/chem. polymer. PPy | 159 mAh g−1 at 10 C rate in the voltage range 2.8–4.5 V; CR of 95.1% after 50 cycles at 0.1 C | [194] |
Li3PO4-AlPO4 co-coating | Al(H2PO4)3 added to ethyl alcohol | 182.8 mAh g−1 at 1 C in the range 2.8–4.3 V; CR of 91.79% after 100 cycles at 1 C | [186] |
Li3PO4-AlPO4-Al(PO3)3 coating | Al(PO3)3 in ethanol reacting with NCM811 | 201.8 mAh g−1 at 0.1 C in the range 3.0–4.3 V; CR of 85.4% after 50 cycles at 0.1 C | [187] |
FePO4 | Sol–gel method | 151.4 mAh g−1 at 5 C in the voltage range 2.74–4.5 V; CR of 86% after 400 cycles at 0.2 C | [188] |
LiAlF4 | ALD | 184 mAh g−1 at 50 mA g−1 in the voltage range 2.74–4.5 V; CR of 76% after 300 cycles | [181] |
LiF-LaF3 | Polyvinyl pyrrolidone-assisted wet coating process | 173.6 mAh g−1 at 5 C in the voltage range 2.8–4.6 V; CR at 81.8% after 100 cycles at 5 C | [200] |
SiO2 | Aqueous solution method using Na2SiO3·9H2O | 185 mAh g−1 at 1 C rate in the voltage range 2.8–4.3 V; CR of 90% after 300 cycles | [167] |
LaAlO3 (3 wt.%) | Solid method, using La(NO3)3·6H2O and Al(CH(CH3)2O)3 | 155 mAh g−1 at 1 C rate in the voltage range 2.7–4.3 V; CR of 84.5% after 200 cycles at 1 C | [170] |
LaPO4 | Wet chemistry aqueous solution with La(NO3)3·6H2O + NH4H2PO4 | 200 mAh g−1 at 0.1 C rate in the voltage range 3.0–4.3 V; CR of 91.2% after 100 cycles at 1 C | [189] |
AlPO4 (0.5 wt.%) | Ethyl alcoholic solution with Al(H2PO4)3 at 50 °C | 150 mAh g−1 at 10 C rate | [186] |
Co3O4 (0.6 wt.%) | Sonication in ethanol solution with Co(OH)2 | 186 mAh g−1 at 1 C rate after 100 cycles | [204] |
WO3 (0.25 wt.%) | Wet process in alcohol using WO3 dissolved in H2O2 | 189 mAh g−1 at 0.2 C rate in the voltage range 2.8–4.3 V; CR of 70% after 100 cycles at 1 C | [169] |
Li1.5Al0.5Zr1.5(PO4)3 (1 wt.%) | Sol–gel method | 179.3 mAh g−1 at 1 C in the voltage range 2.8 4.5 V; CR at 84.8% after 200 cycles at 1 C | [201] |
PANI-PEG | One step wet-coating method | 156.7 mAh g−1 at 10 C in the voltage range 2.8–4.3 V; CR of 88.4% after 100 cycles at 2 C | [195] |
PEDOT-coated LiNi0.85Co0.1Mn0.05O2 | CVD process | 178 mAh g−1 at 1 C rate in the voltage range 2.7–4.3 V; CR of 91% after 100 cycles at 1 C | [196] |
Pyr-2D | Reaction of amine and ketone in presence of NCM | 175 mAh g−1 at 1 C rate; CR of 88.8% after 100 cycles at 1 C; voltage range 2.8–4.5 V | [199] |
Dopant | Electrochemical Properties | |
---|---|---|
Zr | 172 mAh g−1 at 1 C; Cr of 83.2 % after 200 cycles at 1 C (2.8–4.5 V) | [229] |
Ti | 165.02 mAh g−1 at 1 C; CR of 77.01% after 150 cycles at 1 C (2.8–4.3 V) | [233] |
Ti | 160.6 mAh g−1 after 200 cycles at 1 C; CR of 95.03% (2.8–4.3 V) | [234] |
Al | 154 mAh g−1 after 200 cycles at 1 C; CR of 85.32% (2.8–4.3 V) | [234] |
Mg | 147 mAh g−1 after 200 cycles at 1 C; CR of 82.07% (2.8–4.3 V) | [234] |
Al | 171.71 mA h g−1 at 1 C; CR of 96.15% after 100 cycles at 1 C (3.0–4.3 V) | [240] |
Al-doped gradient | 203 mAh g−1 at 0.5 C; CR of 95% after 100 cycles at 0.5 C CR of 95% after 1000 cycles at 1 C in full cell (graphite anode) (3.0–4.2 V) | [242] |
Al-doped gradient | 213.6 mAh g−1 at 0.1 C; Cr of 89.5% after 200 cycles at 0.1 C (3.0–4.5 V) 145 mAh g−1 at 10 C | [243] |
P and F codoping | 162.3 mAh g−1 after 100 cycles at 0.5 C, CR of 94.4% (3.0–4.3 V) | [250] |
Y | 189.4 mAh g−1 at 0.5 C; CR of 98.4% after 100 cycles at 0.5 C (2.8–4.5 V) | [255] |
La | 192 mAh g−1 at 1 C; CR of 90.1% after 200 cycles (2.75–4.5 V) | [256] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Julien, C.M.; Mauger, A. NCA, NCM811, and the Route to Ni-Richer Lithium-Ion Batteries. Energies 2020, 13, 6363. https://doi.org/10.3390/en13236363
Julien CM, Mauger A. NCA, NCM811, and the Route to Ni-Richer Lithium-Ion Batteries. Energies. 2020; 13(23):6363. https://doi.org/10.3390/en13236363
Chicago/Turabian StyleJulien, Christian M., and Alain Mauger. 2020. "NCA, NCM811, and the Route to Ni-Richer Lithium-Ion Batteries" Energies 13, no. 23: 6363. https://doi.org/10.3390/en13236363
APA StyleJulien, C. M., & Mauger, A. (2020). NCA, NCM811, and the Route to Ni-Richer Lithium-Ion Batteries. Energies, 13(23), 6363. https://doi.org/10.3390/en13236363