Three-Dimensional Imaging and Quantification of Gas Storativity in Nanoporous Media via X-rays Computed Tomography
Abstract
1. Introduction
2. Computed Tomography (CT)
Diagnostic Methods
3. Sample Preparation
4. Experimental Procedure
5. Results
Krypton Storativity via CT
6. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
| PD | Pulse decay |
| SCF | Standard cubic feet |
| HU | Hounsfield units |
| CT | Computed tomography |
| Z | Real gas compressibility factor |
| Pore pressure | |
| T | Temperature |
| R | Universal gas constant |
| Kr molecular weight | |
| Apparent Kr pore volume | |
| Total number of voxels in imaged rock | |
| Apparent Kr porosity | |
| Rock storativity | |
| Atmospheric pressure | |
| Voxel volume | |
| Voxel-by-voxel Kr mass | |
| Number of voxels per slice | |
| Kr mass in each slice | |
| Number of slices | |
| Total Kr mass in imaged rock | |
| Mass of imaged rock | |
| Bulk rock density | |
| Voxel-by-voxel Kr density | |
| Slope of Kr CT number versus Kr density | |
| Atomic weight | |
| Density | |
| Energy of the incident photon beam | |
| Constant that depends on the electron shell | |
| Effective atomic number | |
| CT number of Kr saturated rock | |
| CT number of dry rock | |
| CT number of pure Kr | |
| CT number of air | |
| Linear attenuation coefficient of water | |
| Linear attenuation coefficient of air | |
| Linear attenuation coefficient of sample x |
References
- McGlade, C.; Speirs, J.; Sorrell, S. Methods of estimating shale gas resources—Comparison, evaluation and implications. Energy 2013, 59, 116–125. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, Z.; Gong, W.; Ju, Y.; Wang, M. Characterization of nanopore morphology of shale and its effects on gas permeability. J. Nat. Gas Sci. Eng. 2017, 47, 83–90. [Google Scholar] [CrossRef]
- Li, C.; Carman, P.S.; Davis, B.J. Modern Fracturing Revitalizes Dormant Technologies: A Case History. Soc. Pet. Eng. 2018. [Google Scholar] [CrossRef]
- Sinal, M.L.; Lancaster, G. Liquid CO Fracturing: Advantages And Limitations. Pet. Soc. Canada. 1987. [Google Scholar] [CrossRef]
- Gupta, D.V.S. Unconventional Fracturing Fluids for Tight Gas Reservoirs. Soc. Pet. Eng. 2009. [Google Scholar] [CrossRef]
- Wu, W.; Sharma, M.M. Acid Fracturing in Shales: Effect of Dilute Acid on Properties and Pore Structure of Shale. Soc. Pet. Eng. 2017. [Google Scholar] [CrossRef]
- Clarkson, C.; Solano, N.; Bustin, R.; Bustin, A.; Chalmers, G.; He, L.; Melnichenko, Y.; Radliński, A.; Blach, T. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion. Fuel 2013, 103, 606–616. [Google Scholar] [CrossRef]
- Bustin, R.M.; Bustin, A.M.M.; Cui, A.; Ross, D.; Pathi, V.M. Impact of Shale Properties on Pore Structure and Storage Characteristics. Soc. Pet. Eng. 2008. [Google Scholar] [CrossRef]
- Clarkson, C.R.; Jensen, J.L.; Blasingame, T. Reservoir Engineering for Unconventional Reservoirs: What Do We Have to Consider? Soc. Pet. Eng. 2011. [Google Scholar] [CrossRef]
- Greene, J.; Viamontes, J.; Hill, B. The Connected Pore Space Paradigm: An Evaluation of the Effect of Crushing on Pore Volume and Structure. Unconv. Resour. Technol. Conf. 2020. [Google Scholar] [CrossRef]
- Aljamaan, H.; Alnoaimi, K.; Kovscek, A.R. In-Depth Experimental Investigation of Shale Physical and Transport Properties. Unconv. Resour. Technol. Conf. 2013. [Google Scholar] [CrossRef]
- Alnoaimi, K.R.; Duchateau, C.; Kovscek, A.R. Characterization and Measurement of Multiscale Gas Transport in Shale-Core Samples. Soc. Pet. Eng. 2016. [Google Scholar] [CrossRef]
- Eliebid, M.; Mahmoud, M.; Al-Yousef, H.Y.; Elkatatny, S.; Al-Garadi, K. Effect of Gas Adsorption on Pulse-Decay Permeability Measurements. Soc. Pet. Eng. 2018. [Google Scholar] [CrossRef]
- Cui, X.; Bustin, A.M.; Bustin, R.M. Measurements of gas permeability and diffusivity of tight reservoir rocks: Different approaches and their applications. Geofluids 2009, 9, 208–223. [Google Scholar] [CrossRef]
- Glatz, G.; Castanier, L.M.; Kovscek, A.R. Visualization and Quantification of Thermally Induced Porosity Alteration of Immature Source Rock Using X-ray Computed Tomography. Energy Fuels 2016, 30, 8141–8149. [Google Scholar] [CrossRef]
- Vega, B.; Dutta, A.; Kovscek, A.R. CT Imaging of Low-Permeability, Dual-Porosity Systems Using High X-ray Contrast Gas. Transp. Porous Media 2014, 101, 81–97. [Google Scholar] [CrossRef]
- Fogden, A.; Goergen, E.; Olson, T.; Cheng, Q.; Middleton, J.; Kingston, A.; Jernigen, J. Applications of Multi-Scale Imaging Techniques to Unconventional Reservoirs. Soc. Pet. Eng. 2015. [Google Scholar] [CrossRef]
- Joss, L.; Pini, R. Digital Adsorption: 3D Imaging of Gas Adsorption Isotherms by X-rays Computed Tomography. J. Phys. Chem. C 2017, 121, 26903–26915. [Google Scholar] [CrossRef]
- Meng, X.; Sheng, J.J.; Yu, Y. Experimental and Numerical Study of Enhanced Condensate Recovery by Gas Injection in Shale Gas-Condensate Reservoirs. Soc. Pet. Eng. 2017. [Google Scholar] [CrossRef]
- Lu, X.C.; Pepin, G.P.; Moss, R.M.; Watson, A.T. Determination of Gas Storage in Devonian Shales With X-Ray-Computed Tomography. Soc. Pet. Eng. 1992. [Google Scholar] [CrossRef]
- Alnoaimi, K.; Kovscek, A.R. Influence of Microcracks on Flow and Storage Capacities of Gas Shales at Core Scale. Transp. Porous Media 2018, 127, 53–84. [Google Scholar] [CrossRef]
- Huo, D.; Benson, S. Experimental Investigation of Stress-Dependency of Relative Permeability in Rock Fractures. Transp. Porous Media 2016, 113, 567–590. [Google Scholar] [CrossRef]
- Huo, D.; Pini, R.; Benson, S.M. A calibration-free approach for measuring fracture aperture distributions using X-rays computed tomography. Geosphere 2016, 12, 558–571. [Google Scholar] [CrossRef]
- Elkady, Y.; Kovscek, A.R. Multiscale study of CO2 impact on fluid transport and carbonate dissolution in Utica and Eagle Ford shale. J. Pet. Sci. Eng. 2020, 195, 107867. [Google Scholar] [CrossRef]
- Akin, S.; Kovscek, A.R. Computed tomography in petroleum engineering research. Geol. Soc. Lond. Spec. Publ. 2003, 215, 23–38. [Google Scholar] [CrossRef]
- Vinegar, H.J.; Wellington, S.L. Tomographic imaging of three phase flow experiments. Rev. Sci. Instrum. 1987, 58, 96–107. [Google Scholar] [CrossRef]
- McCullough, E.C. Photon attenuation in computed tomography. Med. Phys. 1975, 2, 307. [Google Scholar] [CrossRef]
- Withjack, E.M. Computed Tomography for Rock-Property Determination and Fluid-Flow Visualization. Soc. Pet. Eng. 1998. [Google Scholar] [CrossRef]
- Alnoaimi, K.R. Influence of Cracks and Microcracks on Flow and Storage Capacities of Gas Shales at Core-Level. Ph.D. Thesis, Stanford Univerisity, Stanford, CA, USA, 2016. [Google Scholar]
- Aljamaan, H.; Ross, C.M.; Kovscek, A.R. Multiscale Imaging of Gas Adsorption in Shales. Soc. Pet. Eng. 2017. [Google Scholar] [CrossRef]
- Buzug, T. Computed Tomography: From Photon Statistics to Modern Cone-Beam CT; Springer: Berlin/Heidelberg, Germany, 2008; 522p. [Google Scholar] [CrossRef]
- Elkady, Y.; Kovscek, A.R. Laboratory Visualization of Enhanced Gas Recovery in Shale, Manuscript No. SPE-201707-MS Submitted and Accepted for ATCE 2020; Society of Petroleum Engineers: Richardson, TX, USA, 2020.
- Lyu, Y.; Dasani, D.; Tsotsis, T.; Jessen, K. Characterization of Shale using Helium and Argon at High Pressures. J. Pet. Sci. Eng. 2020. submitted for review. [Google Scholar]








| Sample | TOC | Clay | Carbonates | Quartz | Feldspar | Pyrite | Plagioclase/Chlorite |
|---|---|---|---|---|---|---|---|
| Eagle Ford | 18 | 0 | |||||
| Wolfcamp | 25 | 15 | 50 | ||||
| Pressure (Psia) | PD (%) | Conventional CT (%) | New CT (%) |
|---|---|---|---|
| 216 | |||
| 397 | |||
| 556 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elkady, Y.; Lyu, Y.; Jessen, K.; Kovscek, A.R. Three-Dimensional Imaging and Quantification of Gas Storativity in Nanoporous Media via X-rays Computed Tomography. Energies 2020, 13, 6199. https://doi.org/10.3390/en13236199
Elkady Y, Lyu Y, Jessen K, Kovscek AR. Three-Dimensional Imaging and Quantification of Gas Storativity in Nanoporous Media via X-rays Computed Tomography. Energies. 2020; 13(23):6199. https://doi.org/10.3390/en13236199
Chicago/Turabian StyleElkady, Youssef, Ye Lyu, Kristian Jessen, and Anthony R. Kovscek. 2020. "Three-Dimensional Imaging and Quantification of Gas Storativity in Nanoporous Media via X-rays Computed Tomography" Energies 13, no. 23: 6199. https://doi.org/10.3390/en13236199
APA StyleElkady, Y., Lyu, Y., Jessen, K., & Kovscek, A. R. (2020). Three-Dimensional Imaging and Quantification of Gas Storativity in Nanoporous Media via X-rays Computed Tomography. Energies, 13(23), 6199. https://doi.org/10.3390/en13236199

