Operational Costs of He3 Separation Using the Superfluidity of He4
Abstract
:1. Introduction
1.1. Sources of He3
1.2. He3 Shortage and Perspectives
2. Liquid Helium Losses in the Superfluid Filtration Process of He3
3. Minimal Work of Separation Gases
- —work on gas A ()
- —work on gas B ()
- R—universal gas constant ()
- T— temperature (K)
- —mole fraction for gas A (%)
- —mole fraction for gas B (%)
- —number of mole for gas A (mole)
- —number of mole for gas B (mole)
- a—irreversibility factor
- —filter efficiency
4. Cryogenic Separation
- the condensation process included temperature range from 300 K to the condensation temperature 4.2 K,
- reduction of the temperature below the lambda phase transition,
- cooling of the superfluid liquid to the separation temperature (1.5–1.8 K).
- — density of normal fluid ()
- — density of helium below the lambda phase transition ()
- T — temperature (K)
- — temperature of the lambda phase transition (K)
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shea, D.A.; Morgan, D. The Helium-3 Shortage Supply Demand and Options for Congress; Congressional Research Service: Washington, DC, USA, 2010. Available online: https://www.researchgate.net/publication/285860794 (accessed on 21 November 2020).
- Cho, A. He-3 Shortage Could Put Freeze on Low Temperature Research. Science 2009, 326, 778. [Google Scholar] [CrossRef] [PubMed]
- Wittenberg, L.J. Non-Lunar 3He Resources; Second Wisconsin Symposium on Helium-3 and Fusion Power 19-21; Fusion Technology Institute University of Wisconsin: Madison, WI, USA, 1993. [Google Scholar]
- Tolstikhin, I.N.; Kamensky, I.L.; Marty, B.; Nivin, V.A.; Vetrin, V.R.; Balaganskaya, E.G.; Ikorsky, S.V.; Gannibal, M.A.; Weiss, D.; Verhulst, A.; et al. Rare gas isotopes and parent trace elements in ultrabasic-alkaline-carbonatite complexes, Kola Peninsula: Identification of lower mantle plume component. Geochim. Cosmochim. Acta 2002, 881–901. [Google Scholar] [CrossRef]
- Davidson, T.; Emerson, D.E. Direct determination of the helium 3 content of atmospheric air by mass spectrometry. J. Geophys. Res. 1990, 3565–3569. [Google Scholar] [CrossRef]
- McInteer, B.B.; Aldrich, L.T.; Nier, A. The Thermal Diffusion Constant of Helium and the Separation of He3 by Thermal Diffusion. Phys. Rev. 1947, 510. [Google Scholar] [CrossRef]
- Mohr, S.; Ward, J. Helium Producion and Possible Projection. Minerals 2014, 4, 130–144. [Google Scholar] [CrossRef] [Green Version]
- Hulson, J.; Hilton, R.; Kaplan, R. Helium and carbon isotope systematics of natural gases from Taranaki Basin, New Zealand. Appl. Geochem. 2001, 16, 419–436. [Google Scholar] [CrossRef]
- Boreham, C.; Edwards, D.; Poreda, R.; Darrah, T.; Zhu, R.; Grosjean, E.; Main, P.; Waltenberg, K.; Henson, P. Helium in the Australian liquefied natural gas economy. APPEA J. 2018, 58, 209–237. [Google Scholar] [CrossRef]
- Cocks, F. 3He in permanently shadowed lunar polar surfaces. Icarus 2009, 206, 778–779. [Google Scholar] [CrossRef]
- Johnson, J.R.; Swindle, T.D.; Lucey, P.G. Estimated solar wind-implanted helium-3 distribution on the Moon. Geophys. Res. Lett. 1999, 26, 385–388. [Google Scholar] [CrossRef]
- Kleinschneider, A.; van Overstraeten, D. Feasibility of lunar Helium-3 mining. 40th COSPAR Scientific Assembly. Moscow, Russia, Abstract. 2014. Available online: https://ui.adsabs.harvard.edu/abs/2014cosp...40E1515K/abstract (accessed on 21 November 2020).
- Johnson, R.; Abrams, R.; Cummings, M.; Muons, T. Production and Collection of He-3 and Other Valuable Isotopes using Mu*STAR. In Proceedings of the 9th International Particle Accelerator Conference, Vancouver, BC, Canada, 29 April–4 May 2018; pp. 527–529. [Google Scholar] [CrossRef]
- Slocum, A.C. Defining the Helium-3 Industry for Private Sector; Arizona Oil and Gas Inc.: Eastborough, KS, USA, 2016. [Google Scholar]
- Government, U.S. Managing Critical Isotopes: DOE’s Isotope Program needs Better Planning for Setting Prices and Managing Production Risks: Report to Congressional Requesters; U. S. Government Accountability Office: Washington, DC, USA, 2013.
- Ball, J. Maximizing specific energy by breeding deuterium. Nucl. Fusion 2019, 59. [Google Scholar] [CrossRef] [Green Version]
- Lucas, L.L.; Unterweger, M.P. Comprehensive Review and Critical Evaluation of the Half-Life of Tritium. J. Res. Natl. Inst. Stand. Technol. 2000, 105, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Eselson, N. Raztwory kwantowych zidkostei He3-He4. Nauka 1973, 913. [Google Scholar] [CrossRef]
- Irkutsk Oil and Uniper Have Signed Long-Term Helium Sales and Purchase Agreement. Available online: https://www.uniper.energy/news/irkutsk-oil-and-uniper-have-signed-long-term-helium-sales-and-purchase-agreement/ (accessed on 21 November 2020).
- Lang, M. Monetizing Gas of a Giant High Helium and Nitrogen Gas Reservoir— Amur Gas Processing Plant. In Proceedings of the 22nd World Petroleum Congress, Istanbul, Turkey, 9–13 July 2017. [Google Scholar]
- Chorowski, M.; Polinski, J.; Kempiński, W.; Trybuła, Z.; Łoś, S.; Chołast, K.; Kociemba, A. Continuous Flow System for Controlling Phases Separation Near Lambda Transition. AIP Conf. Proc. 2014, 1573. [Google Scholar] [CrossRef] [Green Version]
- Kempiński, W.; Łoś, S.; Trybuła, Z.; Chorowski, M.; Poliński, J.; Niechciał, J.; Jaskólski, T.; Chołast, K.; Kociemba, A. Helium3 isotope separation and lambda front observation. Sep. Purif. Technol. 2019, 276–280. [Google Scholar] [CrossRef]
- Kempinski, W.; Trybuła, Z.; Los, S. Głowica Niskotemperaturowa do Stabilizacji Temperatur Poniźej 4,2K w Układach Wykorzystuja̧cych ciekły hel; Urząd Patentowy Rzeczypospolitej Polskiej: Warsaw, Poland, 2016.
- Downie, N. Industrial Gases; Kluwer Academic: Dordrecht, Germany, 2002. [Google Scholar] [CrossRef]
- Chorowski, M.; Piotrowska, A. Comparative thermodynamic analysis of gas mixture separation an liquefaction methods. In Proceedings of the 22nd International Congress of Refrigeration, Beijing, China, 21–26 August 2007. [Google Scholar]
- Tisza, L. Transport Phenomena in Helium II. Nature 1938, 913. [Google Scholar] [CrossRef]
- Hauser, W.; Schwerdfeger, P. Nanoporous Graphene Membranes for Efficient He3/He4 Separation. J. Phys. Chem. Lett. 2012, 20, 2284–2287. [Google Scholar] [CrossRef]
- Celebi, K.; Buchhem, J.; Wyss, R.; Gasser, P.; Shrobalko, I. Ultimate Permeation Across Atomically Thin Porous Graphene. Science 2014, 344, 288–292. [Google Scholar] [CrossRef] [PubMed]
- Geim, A. 2D Empty Space and Its Unusual Properties; Webinar: Singapore, 2020. [Google Scholar]
- Wojciechowski, W.; Kempinski, W. Auxetics as entropy filters—Possible application. Task Q. 2016, 20, 271–272. [Google Scholar]
Area | Concentration of He3 in ppb |
---|---|
Mare Moscoviense | 8–17 |
Mare Orientale | 8–16 |
Mare Tranquilliatis | 8–15 |
Mare Fecunditatis | 8–14 |
Oceanus Procellarum | 9–13 |
Ciolkowski Crater | 7–11 |
Customers | 2009 | 2010 | 2011 | |
---|---|---|---|---|
Federal agencies and their grantees | 450 | 365 | 600 | |
Commercial and nonfederal agencies | 450 | 365 | 1000 | |
Medical users | 600 | 485 | 720 |
Initial Volume (L) | Final Volume (L) | Mass Transferred (kg) | Loss of Transferred Fluid (%) |
---|---|---|---|
105.9 | 59.5 | 2.8 | 56.19 |
101.2 | 56 | 3.54 | 55.34 |
103.4 | 68.6 | 3.12 | 66.34 |
102.4 | 56.5 | 3.26 | 55.18 |
94.3 | 55.4 | 3.16 | 58.75 |
100.5 | 65.72 | 3.26 | 65.37 |
102.9 | 62.9 | 3.25 | 61.13 |
94.2 | 41.5 | 2.8 | 44.06 |
94 | 43 | 3.3 | 45.74 |
87.5 | 38.8 | 3.6 | 44.34 |
Initial Mass (kg) | Mass Lost to (kg) | Losses (%) |
---|---|---|
3.54 | 1.38 | 38.98 |
3.12 | 1.36 | 34.59 |
3.26 | 1.02 | 31.29 |
3.16 | 1.29 | 40.82 |
3.26 | 1.02 | 31.29 |
2.8 | 1.28 | 45.71 |
3.6 | 1.4 | 38.89 |
Gas | (kWh/kg) | (kWh/kg) |
---|---|---|
Helium | 1.9 | 16–32 |
Hydrogen | 3.4 | 22–42 |
Neon | 0.372 | 3.5–5.5 |
Nitrogen | 0.213 | 1.2–1.8 |
Air | 0.205 | 1.2–1.8 |
Argon | 0.134 | 0.8–1 |
Oxygen | 0.177 | 1–1.5 |
Methane | 0.307 | 0.6–1 |
Component | Concentration | Work Done on Kmol of Mixture | Work Done on 1 kg of Mixture |
---|---|---|---|
(-) | (-) | (kJ/kmol) | (kJ/kg) |
Nitrogen | 78% | 1314.21 | 60 |
Oxygen | 21% | 1281.91 | 191 |
Argon | 0.93% | 132.06 | 7070 |
Hydrogen | 300 ppm (0.03%) | 7.06 | 11,314 |
Helium-3 | 10 ppm (0.001%) | 0.312 | 10,394 |
Concentration | Work Done on Kmol of Mixture | Work Done on 1 kg of Mixture |
---|---|---|
(ppm) | (kJ/kmol) | (kJ/kg) |
10.00 | 0.312 | 10,394 |
5.00 | 0.165 | 10,970 |
2.00 | 0.070 | 11,731 |
1.90 | 0.067 | 11,774 |
1.80 | 0.064 | 11,819 |
1.70 | 0.061 | 11,866 |
1.60 | 0.057 | 11,917 |
1.50 | 0.054 | 11,970 |
1.40 | 0.051 | 12,027 |
1.30 | 0.047 | 12,089 |
1.20 | 0.044 | 12,155 |
1.10 | 0.040 | 12,228 |
1.00 | 0.037 | 12,307 |
0.90 | 0.033 | 12,394 |
0.80 | 0.030 | 12,492 |
0.70 | 0.026 | 12,603 |
0.60 | 0.023 | 12,731 |
0.50 | 0.019 | 12,883 |
0.40 | 0.016 | 13,068 |
0.30 | 0.012 | 13,307 |
0.20 | 0.008 | 13,644 |
0.10 | 0.004 | 14,220 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niechciał, J.; Banat, P.; Kempiński, W.; Trybuła, Z.; Chorowski, M.; Poliński, J.; Chołast, K.; Kociemba, A. Operational Costs of He3 Separation Using the Superfluidity of He4. Energies 2020, 13, 6134. https://doi.org/10.3390/en13226134
Niechciał J, Banat P, Kempiński W, Trybuła Z, Chorowski M, Poliński J, Chołast K, Kociemba A. Operational Costs of He3 Separation Using the Superfluidity of He4. Energies. 2020; 13(22):6134. https://doi.org/10.3390/en13226134
Chicago/Turabian StyleNiechciał, Jakub, Piotr Banat, Wojciech Kempiński, Zbigniew Trybuła, Maciej Chorowski, Jarosław Poliński, Katarzyna Chołast, and Andrzej Kociemba. 2020. "Operational Costs of He3 Separation Using the Superfluidity of He4" Energies 13, no. 22: 6134. https://doi.org/10.3390/en13226134
APA StyleNiechciał, J., Banat, P., Kempiński, W., Trybuła, Z., Chorowski, M., Poliński, J., Chołast, K., & Kociemba, A. (2020). Operational Costs of He3 Separation Using the Superfluidity of He4. Energies, 13(22), 6134. https://doi.org/10.3390/en13226134