Influence of the Use of Liquefied Petroleum Gas (LPG) Systems in Woodchippers Powered by Small Engines on Exhaust Emissions and Operating Costs
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smurzyńska, A.; Czekała, W.; Hektus, P.; Marks, S.; Mazurkiewicz, J.; Brzoski, M.; Chełkowski, D.; Kozłowski, K. Poznań air pollution analysis for 2015–2017. J. Ecol. Eng. 2018, 19, 162–169. [Google Scholar] [CrossRef]
- Gu, H.; Cao, Y.; Elahi, E.; Jha, S.K. Human health damages related to air pollution in China. Environ. Sci. Pollut. Res. 2019, 26, 13115–13125. [Google Scholar] [CrossRef]
- Jury, M.R. Meteorology of air pollution in Los Angeles. Atmos. Pollut. Res. 2020, 11, 1226–1237. [Google Scholar] [CrossRef]
- Marchant-Fuentes, C.; Leiva, V.; Christakos, G.; Cavieres, M.F. Monitoring urban environmental pollution by bivariate control charts: New methodology and case study in Santiago, Chile. Environmetrics 2019, 30, e2551. [Google Scholar]
- Paton-Walsh, C.; Rayner, P.; Simmons, J.; Fiddes, S.L.; Schofield, R.; Bridgman, H.; Beaupark, S.; Broome, R.; Chambers, S.D.; Chang, L.T.-C.; et al. A clean air plan for Sydney: An overview of the special issue on air quality in New South Wales. Atmosphere 2019, 10, 774. [Google Scholar] [CrossRef] [Green Version]
- Hassan, S.K.; Khoder, M.I. Chemical characteristics of atmospheric PM2.5 loads during air pollution episodes in Giza, Egypt. Atmos. Environ. 2017, 150, 346–355. [Google Scholar] [CrossRef]
- Guneroglu, N.; Bekar, M.; Kaya Sahin, E. Plant selection for roadside design: “The view of landscape architects”. Environ. Sci. Pollut. Res. 2019, 26, 34430–34439. [Google Scholar] [CrossRef]
- Alotaibi, M.D.; Alharbi, B.H.; Al-Shamsi, M.A.; Alshahrani, T.S.; Al-Namazi, A.A.; Alharabi, S.F.; Alotaibi, F.S.; Qian, T. Assessing the response of five tree species to air pollution in Riyadh City, Saudi Arabia, for potential green belt application. Environ. Sci. Pollut. Res. 2020, 27, 29156–29170. [Google Scholar] [CrossRef]
- Javanmard, Z.; Kouchaksaraei, M.T.; Hosseini, S.M.; Pandey, A.K. Assessment of anticipated performance index of some deciduous plant species under dust air pollution. Environ. Sci. Pollut. Res. 2020, 27, 38987–38994. [Google Scholar] [CrossRef]
- Warguła, Ł.; Kukla, M.; Krawiec, P.; Wieczorek, B. Reduction in Operating Costs and Environmental Impact Consisting in the Modernization of the Low-Power Cylindrical Wood Chipper Power Unit by Using Alternative Fuel. Energies 2020, 13, 2995. [Google Scholar] [CrossRef]
- EU. Regulation (EU) No 2016/1628 of the European Parliament and of the Council of 14 September 2016. On Requirements for Emission Limit Values of Gaseous and Particulate Pollutants and Type-Approval with Respect to Internal Combustion Engines for Mobile Machines Non-Road, Amending Regulations (EU) No 1024/2012 and (EU) No 167/2013 and Amending and Repealing Directive 97/68/WE.; EU: Brussels, Belgium, 2016. [Google Scholar]
- Warguła, Ł.; Kukla, M.; Krawiec, P.; Wieczorek, B. Impact of Number of Operators and Distance to Branch Piles on Woodchipper Operation. Forests 2020, 11, 598. [Google Scholar] [CrossRef]
- Waluś, K.J.; Warguła, Ł.; Krawiec, P.; Adamiec, J.M. Legal regulations of restrictions of air pollution made by non-road mobile machinery—The case study for Europe: A review. Environ. Sci. Pollut. Res. 2018, 25, 3243–3259. [Google Scholar] [CrossRef] [Green Version]
- Warguła, Ł. Innovative injection-ignition system in a non-road small engine—Construction system. In Proceedings of the 23rd International Scientific Conference, Palanga, Lithuania, 2–4 October 2019; pp. 931–935. [Google Scholar]
- Mahmoudzadeh Andwari, A.; Said, M.F.M.; Aziz, A.A.; Esfahanian, V.; Salavati-Zadeh, A.; Idris, M.A.; Perang, M.R.M.; Jamil, H.M. Design, modeling and simulation of a high-pressure gasoline direct injection (GDI) pump for small engine applications. J. Mech. Eng. 2018, 6, 107–120. [Google Scholar]
- Niinikoski, J.; Ewalds, J.; Heikkinen, E.; Kotilainen, J.; Kääriäinen, M.; Tammi, K.; Kiviluoma, P.; Korhonen, A.; Kuosmanen, P. Methods for reducing emissions of small internal combustion engines. In Proceedings of the 11th International DAAAM Baltic Conference, Industrial Engineering, Tallinn, Estonia, 20–22 April 2016. [Google Scholar]
- Warguła, Ł.; Waluś, J.K.; Krawiec, P. Determination of working conditions of mobile chipping wood machines in the aspect of innovative drive control systems. Sylwan 2019, 163, 765–772. [Google Scholar]
- Warguła, Ł.; Wojtkowiak, D.; Waluś, K.J.; Krawiec, P.; Wieczorek, B. The analysis of the efficiency of the control system of wood chipper’s driver with spark-ignition engine based on Skoda combustion engine 1.459kW. In Proceedings of the 21st International Scientific Conference, Juodkrante, Lithuania, 20–22 September 2017; pp. 452–458. [Google Scholar]
- Warguła, Ł.; Kukla, M.; Lijewski, P.; Dobrzyński, M.; Markiewicz, F. Influence of Innovative Woodchipper Speed Control Systems on Exhaust Gas Emissions and Fuel Consumption in Urban Areas. Energies 2020, 13, 3330. [Google Scholar] [CrossRef]
- Kim, H.C.; Park, K.; Nam, M.H.; Park, W.S. Analysis of component damage probability of a small engine based on penetration experiments and M & S. J. Mech. Sci. Technol. 2020, 34, 765–775. [Google Scholar]
- Li, L.; Wang, Z.; Deng, B.; Han, Y.; Wang, H. Combustion and Emissions Characteristics of a Small Spark-Ignited LPG Engine. SAE Technical Paper 01-1738, 2002. Available online: https://www.sae.org/publications/technical-papers/content/2002-01-1738/ (accessed on 4 November 2020).
- Li, L.; Liu, Z.; Wang, H.; Deng, B.; Wang, Z.; Xiao, Z.; Su, Y.; Jiang, B. Development of a Gas-phase LPG Injection System for a Small SI Engine. SAE Technical Paper 01-3260, 2003. Available online: https://www.sae.org/publications/technical-papers/content/2003-01-3260/ (accessed on 4 November 2020).
- Sulaiman, M.Y.; Ayob, M.R.; Meran, I. Performance of single cylinder spark ignition engine fueled by LPG. Procedia Eng. 2013, 53, 579–585. [Google Scholar] [CrossRef] [Green Version]
- bin Mohd Zain, M.S.; bin Mohamed Soid, S.N.; bin Mior Abd Majid, M.F.; bin Zahelem, M.N. Performance characteristics of a small engine fueled by liquefied petroleum gas. In Advanced Engineering for Processes and Technologies. Advanced Structured Materials; Ismail, A., Abu Bakar, M., Öchsner, A., Eds.; Springer: Berlin, Germany; Cham, Germany, 2019; Volume 102, pp. 207–214. [Google Scholar]
- Sabariah, M.S.; Nabilah, A.S.; Rosli, A.B.; Junaidi, Z.Z.; Mustafar, M.T. Analysis and simulation of combustion and emission on small engine. In IOP Conference Series: Materials Science and Engineering; UMP Pekan: Pahang, Malaysia, 2019; Volume 469. [Google Scholar]
- Schirmer, W.N.; Olanyk, L.Z.; Guedes, C.L.B.; Quessada, T.P.; Ribeiro, C.B.; Capanema, M.A. Effects of air/fuel ratio on gas emissions in a small spark-ignited non-road engine operating with different gasoline/ethanol blends. Environ. Sci. Pollut. Res. 2017, 24, 20354–20359. [Google Scholar] [CrossRef]
- Ribeiro, C.B.; Martins, K.G.; Gueri, M.V.D.; Pavanello, G.P.; Schirmer, W.N. Effect of anhydrous ethanol/gasoline blends on performance and exhaust emissions of spark-ignited non-road engines. Environ. Sci. Pollut. Res. 2018, 25, 24192–24200. [Google Scholar] [CrossRef] [Green Version]
- Warguła, Ł.; Waluś, K.J.; Krawiec, P.; Polasik, J. Electronic control injection-ignition systems in propulsion of non-road mobile machinery. J. Mech. Trans. Eng. 2018, 70, 61–78. [Google Scholar]
- Merkisz, J.; Radzimirski, S. Is propane-butane gas an ecological fuel? (original text in Polish: Czy gaz propan-butan jest paliwem ekologicznym?). Combust. Engines 2006, 45, 45–57. [Google Scholar]
- Tasic, T.; Pogorevc, P.; Brajlih, T. Gasoline and LPG exhaust emissions comparison. Adv. Prod. Eng. Manag. 2011, 6, 87–94. [Google Scholar]
- Passos, F.; Bressani-Ribeiro, T.; Rezende, S.; Chernicharo, C.A.L. Potential Applications of Biogas Produced in Small-Scale UASB-Based Sewage Treatment Plants in Brazil. Energies 2020, 13, 3356. [Google Scholar] [CrossRef]
- The Price of 95 Gasoline and LPG. Available online: https://www.mylpg.eu (accessed on 20 July 2020).
- The Price of 95 Gasoline and LPG. Available online: https://pl.globalpetrolprices.com (accessed on 20 July 2020).
- Aydin, M.; Irgin, A.; Çelik, M.B. The Impact of Diesel/LPG Dual Fuel on Performance and Emissions in a Single Cylinder Diesel Generator. Appl. Sci. 2018, 8, 825. [Google Scholar] [CrossRef] [Green Version]
- Rimkus, A.; Stravinskas, S.; Matijošius, J. Comparative Study on the Energetic and Ecologic Parameters of Dual Fuels (Diesel–NG and HVO–Biogas) and Conventional Diesel Fuel in a CI Engine. Appl. Sci. 2020, 10, 359. [Google Scholar] [CrossRef] [Green Version]
- Rimkus, A.; Melaika, M.; Matijošius, J. Efficient and ecological indicators of CI engine fuelled with different diesel and LPG mixtures. Procedia Eng. 2017, 187, 504–512. [Google Scholar] [CrossRef]
- Rimkus, A.; Matijošius, J.; Manoj Rayapureddy, S. Research of Energy and Ecological Indicators of a Compression Ignition Engine Fuelled with Diesel, Biodiesel (RME-Based) and Isopropanol Fuel Blends. Energies 2020, 13, 2398. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Lähde, T.; Gandi, S.; Keller, S.; Kreutziger, P.; Mamakos, A. Assessment of 10-nm Particle Number (PN) Portable Emissions Measurement Systems (PEMS) for Future Regulations. Int. J. Environ. Res. Public Health 2020, 17, 3878. [Google Scholar] [CrossRef]
- Warguła, Ł.; Waluś, K.J.; Krawiec, P.; Kukla, M. Research of the ignition advance angle characteristics on the example of a German GX 390 combustion engine. Autobusy Technol. Eksploat. Syst. Transp. 2017, 12, 1387–1391. [Google Scholar]
- Merkisz, J.; Dobrzyński, M.; Kozak, M.; Lijewski, P.; Fuć, P. Environmental aspects of the use of cng in public urban transport. Altern. Fuels Technol. Environ. Cond. 2016. [Google Scholar] [CrossRef] [Green Version]
- Warguła, Ł.; Kaczmarzyk, P.; Dziechciarz, A. The assessment of fire risk of non-road mobile wood chopping machines. J. Res. Appl. Agric. Eng. 2019, 64, 58–64. [Google Scholar]
- Bektas, I.; Alma, M.H.; As, N. Determination of the relationships between Brinell and Janka hardness of eastern beech (Fagus orientalis Lipsky). For. Prod. J. 2001, 51, 84. [Google Scholar]
- Green, D.W.; Begel, M.; Nelson, W. Janka Hardness Using Nonstandard Specimens; US Department of Agriculture, Forest Service, Forest Product Laboratory: Washington, DC, USA, 2006; p. 303. [Google Scholar]
- Lijewski, P.; Fuć, P.; Markiewicz, F.; Dobrzański, M. Problems of exhaust emissions testing from machines and mobile devices in real operating conditions. Combust. Engines 2019, 179, 292–296. [Google Scholar]
- Hernik, H.; Hans-Jurgen, R. Electronical Engineering in Motor Vehicles, Orginal Title in Polish: Elektrotechnika i Elektronika w Pojazdach Samochdowych; WKŁ: Warszawa, Poland, 2013; ISBN 978-83-206-1921-8. [Google Scholar]
- Szpica, D.; Czaban, J. Operational assessment of selected gasoline and LPG vapour injector dosage regularity. Mechanics 2014, 20, 480–488. [Google Scholar] [CrossRef] [Green Version]
- Warguła, Ł.; Krawiec, P.; Waluś, K.J.; Kukla, M. Fuel Consumption Test Results for a Self-Adaptive, Maintenance-Free Wood Chipper Drive Control System. Appl. Sci. 2020, 10, 2727. [Google Scholar] [CrossRef] [Green Version]
Woodchipper Red Dragon RS-100 | |
Parameter | Characteristic |
Cutting mechanism type | Cylindrical |
Cut branches maximal diameter | 100 mm |
Cut branches length (mechanism has 4 knives) | 140 50 mm |
Average mass flow rate [12] | 0.66 t/h |
Average volumetric flow rate [12] | 3.5 m3/h |
Lifan GX390 Engine | |
Parameter | Characteristic |
Swept volume | 389 cm3 |
Engine maximal power at 3600 rpm | 9.56 kW/13 HP |
Engine maximal torque at 2500 rpm | 26.5 Nm |
Bore/Stroke | 88 mm/64 mm |
Engine Type | Four-stroke, OHV (Over Head Valve) |
Number of cylinders | 1 |
Ignition | Electronic, without ignition timing adjustment [39] |
Weight | 31 kg |
Average cost | 270 EUR |
System Components and Service | Cost |
---|---|
Carburetor | 46 € |
LPG gas reducer with pressure gauge | 7 € |
Installation hose | 6 € |
11 kg gas tank | 23 € |
Working time spent on the modernization of the structure and system regulation 1 h | 23 € |
Fuel | Gasoline 95 | Liquefied Petroleum Gas Propane–Butane 50%/50% |
---|---|---|
Density under reference conditions (liquid phase) (kg/m3) | 720–775 | 520 |
Fuel calorific value (MJ/kg) | 42.6 | 46 |
Boiling temperature (°C) | 40–210 | −30 |
Excess air coefficient λ up to the ignitability boundaries | 0.4–1.4 | 0.4–1.7 |
Octane number MON (RON) | 85 (95) | 95 (100) |
Air fuel ratio (AFR) for stoichiometric mix (mass) | 14.7:1 | 15.5:1 |
Tested Design | A | B |
---|---|---|
Average branch feeding frequency | 3.9 min−1 | 4.1 min−1 |
Cylindrical chipper mass flow rate | 0.75 t/h | 0.71 t/h |
Gas | Measurement Range | Sensitivity | Characteristic |
---|---|---|---|
HC Propane | 0–4000 ppm | ±3% | 1 ppm |
CO | 0–10% | ±3% | 0.01 vol.% |
CO2 | 0–16% | ±3% | 0.01 vol.% |
NOx | 0–4000 ppm | ±4% | 1 ppm |
O2 | 0–25% | ±3% | 0.01 vol.% |
Category | Power (P) | Engine Displacement (V) | Date | Permitted Emission | ||
---|---|---|---|---|---|---|
CO | HC + NOx | |||||
A | NRS-vr/vi-1b | P < 19 kW | V225 cm3 | 2019 | 610 g/kWh | 8 g/kWh |
B | NRS-vr/vi-1b | ≈10 kW | 390 cm3 | 2019 | 6100 g/h | 80 g/h |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Warguła, Ł.; Kukla, M.; Lijewski, P.; Dobrzyński, M.; Markiewicz, F. Influence of the Use of Liquefied Petroleum Gas (LPG) Systems in Woodchippers Powered by Small Engines on Exhaust Emissions and Operating Costs. Energies 2020, 13, 5773. https://doi.org/10.3390/en13215773
Warguła Ł, Kukla M, Lijewski P, Dobrzyński M, Markiewicz F. Influence of the Use of Liquefied Petroleum Gas (LPG) Systems in Woodchippers Powered by Small Engines on Exhaust Emissions and Operating Costs. Energies. 2020; 13(21):5773. https://doi.org/10.3390/en13215773
Chicago/Turabian StyleWarguła, Łukasz, Mateusz Kukla, Piotr Lijewski, Michał Dobrzyński, and Filip Markiewicz. 2020. "Influence of the Use of Liquefied Petroleum Gas (LPG) Systems in Woodchippers Powered by Small Engines on Exhaust Emissions and Operating Costs" Energies 13, no. 21: 5773. https://doi.org/10.3390/en13215773
APA StyleWarguła, Ł., Kukla, M., Lijewski, P., Dobrzyński, M., & Markiewicz, F. (2020). Influence of the Use of Liquefied Petroleum Gas (LPG) Systems in Woodchippers Powered by Small Engines on Exhaust Emissions and Operating Costs. Energies, 13(21), 5773. https://doi.org/10.3390/en13215773