Experimental Study on Blasting Energy Distribution and Utilization Efficiency Using Water Jet Test
Abstract
1. Introduction
2. Experimental Design
3. Experiment Analysis
3.1. Phenomenon Analysis
3.2. Data Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yang, R.; Ding, C.; Yang, L.; Lei, Z.; Zhang, Z.; Wang, Y. Visualizing the blast-induced stress wave and blasting gas action effects using digital image correlation. Int. J. Rock Mech. Min. Sci. 2018, 112, 47–54. [Google Scholar] [CrossRef]
- Li, M.; Zhu, Z.M.; Liu, R.F.; Liu, B.; Zhou, L.; Dong, Y.Q. Study of the effect of empty holes on propagating cracks under blasting loads. Int. J. Rock Mech. Min. Sci. 2018, 103, 186–194. [Google Scholar] [CrossRef]
- Silva, J.D.; Amaya, J.G.; Basso, F. Development of a predictive model of fragmentation using drilling and blasting data in open pit mining. J. S. Afr. Inst. Min. Metall. 2017, 117, 1089–1094. [Google Scholar] [CrossRef][Green Version]
- Zhang, Z. Kinetic energy and its applications in mining engineering. Int. J. Min. Sci. Technol. 2017, 27, 237–244. [Google Scholar] [CrossRef]
- Persson, P.; Lundborg, N.; Johansson, C. The basic mechanisms in rock blasting. In Proceedings of the International Society of Rock Mechanics Proceedings, Lisbon, Portugal, 22 September 1970. [Google Scholar]
- Cho, S.H.; Kaneko, K. Influence of the applied pressure waveform on the dynamic fracture processes in rock. Int. J. Rock Mech. Min. Sci. 2004, 41, 771–784. [Google Scholar] [CrossRef]
- Aliabadian, Z.; Sharafisafa, M.; Mortazavi, A.; Maarefvand, P. Wave and fracture propagation in continuum and faulted rock masses: Distinct element modeling. Arab. J. Geosci. 2014, 7, 5021–5035. [Google Scholar] [CrossRef]
- Wang, J.; Cheng, Y. Simulating test on the working process of explosion gases. Blasting 1998, 2, 5–9. (In Chinese) [Google Scholar]
- Banadaki, M.M.D.; Mohanty, B. Numerical simulation of stress wave induced fractures in rock. Int. J. Impact Eng. 2012, 40, 16–25. [Google Scholar] [CrossRef]
- Yang, R.; Ding, C.; Wang, Y.; Chen, C. Action effect study on medium under loading of explosion stress wave and explosion gas. Chin. J. Rock Mech. Eng. 2016, 35, 3501–3506. (In Chinese) [Google Scholar]
- Cho, S.H.; Kaneko, K. Rock fragmentation control in blasting. Mater. Trans. 2004, 45, 1722–1730. [Google Scholar] [CrossRef]
- Kutter, H.K.; Fairhurst, C. On the fracture process in blasting. Int. J. Rock Mech. Min. Sci. 1971, 8, 181–202. [Google Scholar] [CrossRef]
- Yang, X.; Wang, M. Mechanism of rock crack growth under detonation gas loading. Explos. Shock Waves 2001, 21, 111–116. (In Chinese) [Google Scholar]
- Trivino, L.F.; Mohanty, B. Assessment of crack initiation and propagation in rock from explosion-induced stress waves and gas expansion by cross-hole seismometry and FEM-DEM method. Int. J. Rock Mech. Min. Sci. 2015, 77, 287–299. [Google Scholar] [CrossRef]
- Mchugh, S. Crack extension caused by internal gas pressure compared with extension caused by tensile stress. Int. J. Fract. 1983, 21, 163–176. [Google Scholar] [CrossRef]
- Brinkmann, J.R. An experimental study of the effects of shock and gas penetration in blasting. In Proceedings of the Third International Symposium on Rock Fragmentation by Blasting—Fragblast 3, Brisbane, Australia, 15 January 1990. [Google Scholar]
- Yan, S. Measurement of the explosion energy of the centralized charge and the linear charge underwater. Explos. Mater. 2003, 32, 23–27. (In Chinese) [Google Scholar]
Charge Amount C/mg | 0 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | |
---|---|---|---|---|---|---|---|---|---|
Strong constraint | vmax/(m·s−1) | 0 | 257 | 350 | 420 | 503 | 572 | 601 | 637 |
W/J | 0 | 12.84 | 23.81 | 34.29 | 49.18 | 63.60 | 70.22 | 78.88 | |
Medium constraint | vmax/(m·s−1) | 0 | 197 | 273 | 343 | 426 | 511 | 557 | 592 |
W/J | 0 | 7.54 | 14.49 | 22.87 | 35.28 | 50.76 | 60.31 | 68.13 | |
Weak constraint | vmax/(m·s−1) | 0 | 171 | 255 | 313 | 362 | 407 | 429 | 454 |
W/J | 0 | 5.66 | 12.67 | 19.04 | 25.49 | 32.22 | 35.80 | 40.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, C.; Yang, R.; Lei, Z.; Chen, C.; Zheng, C. Experimental Study on Blasting Energy Distribution and Utilization Efficiency Using Water Jet Test. Energies 2020, 13, 5340. https://doi.org/10.3390/en13205340
Ding C, Yang R, Lei Z, Chen C, Zheng C. Experimental Study on Blasting Energy Distribution and Utilization Efficiency Using Water Jet Test. Energies. 2020; 13(20):5340. https://doi.org/10.3390/en13205340
Chicago/Turabian StyleDing, Chenxi, Renshu Yang, Zhen Lei, Cheng Chen, and Changda Zheng. 2020. "Experimental Study on Blasting Energy Distribution and Utilization Efficiency Using Water Jet Test" Energies 13, no. 20: 5340. https://doi.org/10.3390/en13205340
APA StyleDing, C., Yang, R., Lei, Z., Chen, C., & Zheng, C. (2020). Experimental Study on Blasting Energy Distribution and Utilization Efficiency Using Water Jet Test. Energies, 13(20), 5340. https://doi.org/10.3390/en13205340