Silicon Substrate Treated with Diluted NaOH Aqueous for Si/PEDOT: PSS Heterojunction Solar Cell with Performance Enhancement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experiment and Device Preparation
2.3. Characterizations
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shiu, S.-C.; Chao, J.-J.; Hung, S.-C.; Yeh, C.-L.; Lin, C.-F. Morphology Dependence of Silicon Nanowire/Poly (3,4-Ethylenedioxythiophene):Poly (Styrenesulfonate) Heterojunction Solar Cells. Chem. Mater. 2010, 22, 3108–3113. [Google Scholar] [CrossRef]
- Zielke, D.; Pazidis, A.; Werner, F.; Schmidt, J. Organic-Silicon Heterojunction Solar Cells on N-Type Silicon Wafers: The Backpedot Concept. Sol. Energy Mater. Sol. Cells 2014, 131, 110–116. [Google Scholar] [CrossRef]
- Yang, Z.; Gao, P.; He, J.; Chen, W.; Yin, W.Y.; Zeng, Y.; Guo, W.; Ye, J.; Cui, Y. Tuning of the Contact Properties for High-Efficiency Si/PEDOT:PSS Heterojunction Solar Cells. ACS Energy Lett. 2017, 2, 556–562. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Rusli. Hybrid Si Nanocones/PEDOT:PSS Solar Cell. Nanoscale Res. Lett. 2015, 10, 191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhujel, R.; Swain, B.P. Fabrication and Characterization of Silicon Nanowires Hybrid Solar Cells: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2018, 377, 012193. [Google Scholar] [CrossRef]
- Thomas, J.P.; Leung, K.T. Defect-Minimized PEDOT:PSS/Planar-Si Solar Cell with Very High Efficiency. Adv. Funct. Mater. 2014, 24, 4978–4985. [Google Scholar] [CrossRef]
- Yoon, S.-S.; Khang, D.-Y. Ag Nanowire/ PEDOT:PSS Bilayer Transparent Electrode for High Performance Si- PEDOT:PSS Hybrid Solar Cells. J. Phys. Chem. Solids 2019, 129, 128–132. [Google Scholar] [CrossRef]
- Zhu, J.; Yang, X.; Yang, Z.; Wang, D.; Gao, P.; Ye, J. Achieving a Record Fill Factor for Silicon-Organic Hybrid Heterojunction Solar Cells by Using a Full-Area Metal Polymer Nanocomposite Top Electrode. Adv. Funct. Mater. 2018, 28, 1705425. [Google Scholar] [CrossRef]
- Fan, Q.; Zhang, Q.; Zhou, W.; Xia, X.; Yang, F.; Zhang, N.; Xiao, S.; Li, K.; Gu, X.; Xiao, Z.; et al. Novel Approach to Enhance Efficiency of Hybrid Silicon-Based Solar Cells Via Synergistic Effects of Polymer and Carbon Nanotube Composite Film. Nano Energy 2017, 33, 436–444. [Google Scholar] [CrossRef]
- Cui, W.; Wu, S.; Chen, F.; Xia, Z.; Li, Y.; Zhang, X.; Song, T.; Lee, S.; Sun, B. Silicon/Organic Heterojunction for Photoelectrochemical Energy Conversion Photoanode with a Record Photovoltage. ACS Nano 2016, 10, 9419. [Google Scholar] [CrossRef]
- Young, J.; Shin, M.; Lee, J.B.; Ahn, J.H.; Baik, H.K.; Jeong, U. Effect of Pedot Nanofibril Networks on the Conductivity, Flexibility, and Coatability of Pedot: Pss Films. ACS Appl. Mater. Interfaces 2014, 6, 6954–6961. [Google Scholar]
- Singh, P.; Sanjay, K.; Srivastava, B.; Sivaiah, P.; Prathap, C.; Rauthan, M.S. Enhanced Photovoltaic Performance of Pedot:Pss/Si Solar Cells Using Hierarchical Light Trapping Scheme. Sol. Energy 2018, 170, 221–233. [Google Scholar] [CrossRef]
- Wang, Y.; Shao, P.; Chen, Q.; Li, Y.; Li, J.; He, D. Nanostructural Optimization of Silicon/PEDOT:PSS Hybrid Solar Cells for Performance Improvement. J. Phys. D Appl. Phys. 2017, 50, 175105. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Z.; Lin, H.; Wang, W.; Wang, J.; Zhang, H.; Sheng, J.; Wu, S.; Gao, P.; Ye, J. Thickness-Modulated Passivation Properties of PEDOT:PSS Layers over Crystalline Silicon Wafers in Back Junction Organic/Silicon Solar Cells. Nanotechnology 2019, 30, 195401. [Google Scholar] [CrossRef]
- Wu, S.; Cui, W.; Aghdassi, N.; Song, T.; Duhm, S.; Lee, S.T.; Sun, B. Nanostructured Si/Organic Heterojunction Solar Cells with High Open-Circuit Voltage Via Improving Junction Quality. Adv. Funct. Mater. 2016, 26, 5035–5041. [Google Scholar] [CrossRef]
- He, J.; Wan, Y.; Gao, P.; Tang, J.; Ye, J. Over 16.7% Efficiency Organic-Silicon Heterojunction Solar Cells with Solution-Processed Dopant-Free Contacts for Both Polarities. Adv. Funct. Mater. 2018, 28, 1802192. [Google Scholar] [CrossRef]
- He, L.; Jiang, C.; Wang, H.; Lai, D.; Rusli. High Efficiency Planar Si/Organic Heterojunction Hybrid Solar Cells. Appl. Phys. Lett. 2012, 100, 073503. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Y.; Guo, H.; Jiang, Q.; Dong, P.; Zhang, C. Efficient Planar Hybrid n-Si/ PEDOT:PSS Solar Cells with Power Conversion Efficiency up to 13.31% Achieved by Controlling the Siox Interlayer. Energies 2018, 11, 1397. [Google Scholar] [CrossRef] [Green Version]
- Nam, Y.-H.; Song, J.-W.; Park, M.-J.; Sami, A.; Lee, J.-H. Ultrathin Al2O3 Interface Achieving an 11.46% Efficiency in Planar n-Si/ PEDOT:PSS Hybrid Solar Cells. Nanotechnology 2017, 28, 155402. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Wu, H.; Cui, W.; Wang, R.; Ding, K.; Lee, S.-T.; Sun, B. Low-Temperature Synthesis TiOx Passivation Layer for Organic-Silicon Heterojunction Solar Cell with a High Open-Circuit Voltage. Nano Energy 2017, 34, 257–263. [Google Scholar] [CrossRef]
- Yadav, T.S.; Sharma, A.K.; Kottantharayil, A.; Basu, P.K. Comparative Study of Different Silicon Oxides Used as Interfacial Passivation Layer (SiNy:H/SiOx/n+-Si) in Industrial Monocrystalline Silicon Solar Cells. Sol. Energy Mater. Sol. Cells 2019, 201, 110077. [Google Scholar] [CrossRef]
- Kern, W. The Evolution of Silicon Wafer Cleaning Technology. J. Electrochem. Soc. 1990, 137, 1887–1892. [Google Scholar] [CrossRef]
- Untila, G.G.; Kost, T.N.; Chebotareva, A.B. F-In-Codoped ZnO (FiZO) Films Produced by Corona-Discharge-Assisted Ultrasonic Spray Pyrolysis and Hydrogenation as Electron-Selective Contacts in FiZo/SiO/p-Si Heterojunction Crystalline Silicon Solar Cells with 10.5% Efficiency. Sol. Energy 2019, 181, 148–160. [Google Scholar] [CrossRef]
- Pollock, K.L.; Junge, J.; Hahn, G. Detailed Investigation of Surface Passivation Methods for Lifetime Measurements on P-Type Silicon Wafers. IEEE J. Photovolt. 2011, 2, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Dixit, P.; Chen, X.; Miao, J.; Divakaran, S.; Preisser, R. Study of Surface Treatment Processes for Improvement in the Wettability of Silicon-Based Materials Used in High Aspect Ratio through-Via Copper Electroplating. Appl. Surf. Sci. 2007, 253, 8637–8646. [Google Scholar] [CrossRef]
- Song, J.-W.; Nam, Y.-H.; Park, M.-J.; Shin, S.-M.; Wehrspohn, R.B.; Lee, J.-H. Hydroxyl Functionalization Improves the Surface Passivation of Nanostructured Silicon Solar Cells Degraded by Epitaxial Regrowth. RSC Adv. 2015, 5, 39177–39181. [Google Scholar] [CrossRef]
- Allongue, P.; Kieling, V.C.; Gerischer, H. Etching of Silicon in NaOH Solutions I. In Situ Scanning Tunneling Microscopic Investigation of n-Si(111). J. Electrochem. Soc. 1993, 140, 1009–1018. [Google Scholar] [CrossRef]
- Allongue, P.; Kieling, V.C.; Gerischer, H. Etching of Silicon in Naoh Solutions II. Electrochemical Studies of n-Si(111) and (100) and Mechanism of the Dissolution. J. Electrochem. Soc. 1993, 140, 1018–1026. [Google Scholar] [CrossRef]
- Bressers, P.M.M.C.; Kelly, J.J.; Gardeniers, J.G.E.; Elwenspoek, M. Surface Morphology of p-Type (100) Silicon Etched in Aqueous Alkaline Solution. J. Electrochem. Soc. 1996, 143, 1744–1750. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Xu, C.Y.; Niu, L.B.; Elseman, A.M.; Wang, G.; Liu, B.; Yao, Y.Q.; Liao, L.P.; Zhou, G.D.; Song, Q.L. High Open-Circuit Voltage of 1.134 V for Inverted Planar Perovskite Solar Cells with Sodium Citrate-Doped PEDOT:PSS as a Hole Transport Layer. ACS Appl. Mater. Interfaces 2019, 11, 22021–22027. [Google Scholar] [CrossRef]
Performance Parameter | PCE (%) | Voc (eV) | Jsc (mA/cm2) | FF (%) |
---|---|---|---|---|
solar/–H | 9.4 ± 0.7 | 556 ± 3 | 32.4 ± 0.7 | 48.9 ± 3.2 |
(10.01) | (553) | (33.24) | (53.6) | |
solar/–OH(5) | 10.4 ± 0.6 | 555 ± 3 | 33.1 ± 1.0 | 56.7 ± 4.3 |
(11.04) | (556) | (33.56) | (59.2) | |
solar/–OH(15) | 11.3 ± 0.6 | 559 ± 3 | 33.9 ± 1.0 | 59.5 ± 2.4 |
(12.05) | (559) | (34.95) | (61.73) | |
solar/–OH(30) | 11.1 ± 0.6 | 560 ± 7 | 34.7 ± 0.7 | 58.1 ± 3.6 |
(11.98) | (555) | (35.67) | (60.58) | |
solar/–OH(45) | 10.7 ± 0.9 | 553 ± 2 | 34.4 ± 1.0 | 56.4 ± 3.7 |
(11.10) | (555) | (35.48) | (58.91) | |
solar/–OH(60) | 10.3 ± 0.8 | 556 ± 3 | 36.0 ± 1.5 | 55.1 ± 3.9 |
(10.83) | (555) | (36.29) | (55.23) |
Device | Rs (ohm) | Rrec (ohm) | C1 (F) | τ (μs) |
---|---|---|---|---|
solar/–H | 5.872 | 2770 | 1.33 × 10−7 | 368.41 |
solar/–OH(5) | 4.284 | 3500 | 1.39 × 10−7 | 486.5 |
solar/–OH(15) | 2.489 | 4938 | 1.33 × 10−7 | 656.75 |
solar/–OH(30) | 2.667 | 4647 | 1.36 × 10−7 | 631.99 |
solar/–OH(45) | 2.749 | 3907 | 1.35 × 10−7 | 527.45 |
solar/–OH(60) | 2.758 | 3626 | 1.32 × 10−7 | 478.63 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; Guo, H.; Yu, L.; Sun, T.; Yang, Y. Silicon Substrate Treated with Diluted NaOH Aqueous for Si/PEDOT: PSS Heterojunction Solar Cell with Performance Enhancement. Energies 2020, 13, 4659. https://doi.org/10.3390/en13184659
Chen T, Guo H, Yu L, Sun T, Yang Y. Silicon Substrate Treated with Diluted NaOH Aqueous for Si/PEDOT: PSS Heterojunction Solar Cell with Performance Enhancement. Energies. 2020; 13(18):4659. https://doi.org/10.3390/en13184659
Chicago/Turabian StyleChen, Tao, Hao Guo, Leiming Yu, Tao Sun, and Yu Yang. 2020. "Silicon Substrate Treated with Diluted NaOH Aqueous for Si/PEDOT: PSS Heterojunction Solar Cell with Performance Enhancement" Energies 13, no. 18: 4659. https://doi.org/10.3390/en13184659
APA StyleChen, T., Guo, H., Yu, L., Sun, T., & Yang, Y. (2020). Silicon Substrate Treated with Diluted NaOH Aqueous for Si/PEDOT: PSS Heterojunction Solar Cell with Performance Enhancement. Energies, 13(18), 4659. https://doi.org/10.3390/en13184659