Next Article in Journal
Internal Heat Gains in a Lunar Base—A Contemporary Case Study
Previous Article in Journal
Dependencies for Determining the Thermal Conductivity of Moist Capillary-Porous Materials
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Power Optimization of a Modified Closed Binary Brayton Cycle with Two Isothermal Heating Processes and Coupled to Variable-Temperature Reservoirs

1
Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
2
School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
3
College of Power Engineering, Naval University of Engineering, Wuhan 430033, China
*
Author to whom correspondence should be addressed.
Energies 2020, 13(12), 3212; https://doi.org/10.3390/en13123212
Submission received: 27 May 2020 / Revised: 17 June 2020 / Accepted: 18 June 2020 / Published: 20 June 2020

Abstract

:
A modified closed binary Brayton cycle model with variable isothermal pressure drop ratios is established by using finite time thermodynamics in this paper. A topping cycle, a bottoming cycle, two isothermal heating processes and variable-temperature reservoirs are included in the new model. The topping cycle is composed of a compressor, a regular combustion chamber, a converging combustion chamber, a turbine and a precooler. The bottoming cycle is composed of a compressor, an ordinary regenerator, an isothermal regenerator, a turbine and a precooler. The heat conductance distributions among the six heat exchangers are optimized with dimensionless power output as optimization objective. The results show that the double maximum dimensionless power output increases first and then tends to be unchanged while the inlet temperature ratios of the regular combustion chamber and the converging combustion chamber increase. There also exist optimal thermal capacitance rate matchings among the working fluid and heat reservoirs, leading to the optimal maximum dimensionless power output.

1. Introduction

Due to the characteristics of high power density (PD), small vibration, high automation, low operating pressure and easy lubrication, gas turbine plants (Brayton heat engine cycle) are extensively applied in the fields of aviation, energy, transportation, etc. According to the different working fluid (WF) circulation modes, the Brayton cycle is divided into open and closed cycles, and many works concerning the classical thermodynamic analyses and optimizations for various Brayton cycles have been performed [1,2,3]. The WF of closed Brayton cycle is not directly connected with the atmosphere, and does not participate in the combustion process. Hence, it is applied to convert nuclear energy, geothermal energy, solid fuel and other primary energy into electricity energy.
For the case of simple heating, the temperature of the gas elevates in the direction of a duct when the subsonic compressible gas flows through the smooth heating duct with a fixed cross-sectional area. For the case of simple cross-sectional area change, the temperature drops when the gas flows through the smooth adiabatic duct with a reduced cross-sectional area. Based on these two gas properties, the isothermal processes can be realized when the subsonic compressible gas flows through the smooth heating duct with a reduced cross-sectional area. Vecchiarelli et al. [4] presented a combustion chamber where the WF could be heated isothermally. The introduction of this type of combustion chamber could effectively improve the thermal efficiency (TEF) of the Brayton cycle, and reduce the emissions of nitrogen oxides and other harmful gases. Göktun and Yavuz [5] applied the isothermal heating combustion chamber to the regenerative Brayton cycle, and discovered the isothermal pressure drop ratio impacted the cycle performance significantly. Based on [5], Erbay et al. [6] compared the optimal performances of an isothermal heating regenerative Brayton cycle under maximum power output (PO) and maximum PD. Jubeh [7] found the exergy efficiency was enhanced by adding the isothermal heating combustion chamber in regenerative Brayton cycle. El-Maksoud [8] combined the isothermal concept and double Brayton cycle to establish a new cycle model. Based on [8], Qi et al. [9] derived the specific work and exergy efficiency, and analyzed the impacts of different parameters on the exergy efficiency. All those works were carried out by using classical thermodynamics.
Finite time thermodynamics (FTT) [10] have been extensively applied in the analyses and optimizations of many thermodynamic systems. The purpose of FTT is to reduce the irreversibilities of processes and cycles and to improve the energy utilization rates [11]. Plenty of FTT studies have been conducted for various heat engine cycles, including the Novikov engine [12], the Stirling engine [13], Rankine cycles [14,15,16,17,18,19,20,21], heated gas expansion process [22], thermoelectric generators [23,24,25,26], the fuel cell hybrid cycle [27], the gas–mercury combined cycle [28], the thermocapacitive heat engine [29], the Maisotsenko–Diesel cycle [30], the trigeneration cycle [31], Dual-Miller cycles [32,33,34], Feynman’s ratchet [35], the Kalina cycle [36] and so on.
For the Brayton cycles, FTT studies have been also conducted for simple cycles [37], regenerative cycles [38,39,40], multi-intercooling-and-regenerative cycles [41,42,43], the fuel cell–Brayton combined cycle [44], Maisotsenko–Brayton cycles [45,46], Brayton cycle-based cooling, heat and power combined cycles [47,48] and so on.
For the Brayton cycles with isothermal heating modification, Kaushik et al. [49] optimized the regenerative Brayton cycle with isothermal process whose optimization objective was the PO. Tyagi et al. [50,51,52,53,54,55,56] optimized the performances of the isothermal heating modified simple, regenerated and intercooling Brayton cycles with different optimization objectives. Based on [49,50,51,52,53,54,55,56], Wang et al. [57,58] and Tang et al. [59,60] analyzed and optimized the endoreversible simple, irreversible simple and irreversible regenerative Brayton cycles with isothermal processes. Arora et al. [61] optimized the regenerative Brayton cycle with isothermal process by employing the NSGA-II algorithm.
Based on El-Maksoud’s classical thermodynamic model [8], Qi et al. [62] established a closed endoreversible binary Brayton cycle model with two isothermal processes, without internal irreversibility, and coupled to constant-temperature reservoirs (CTRs). They derived the functional expressions of PO, TEF, PD and ecological function, respectively. The impacts of different thermodynamic parameters on the relationships among performance indexes and the pressure ratio of the topping cycle were analyzed, and the heat conductance distributions (HCDs) among heat exchangers were further optimized.
Based on the previously established cycle models in [8,62], a modified closed binary Brayton cycle (MCBBC) with variable isothermal pressure drop ratios and internal and external irreversibilities will be established by using FTT in this paper. The HCDs will be optimized with dimensionless PO. The influences of different thermodynamic parameters on the optimal performance will be analyzed, and the thermal capacitance rate matchings (TCRMs) among the WF and the heat reservoirs will be also discussed.

2. Cycle Model

Figure 1a shows the schematic diagram of the MCBBC with two isothermal heating processes [8]. A topping cycle and a bottoming cycle are included in the model. The topping cycle is composed of a compressor (Com1), a regular combustion chamber (RCC), a converging combustion chamber (CCC), a turbine (Tur1) and a precooler (PC1). The bottoming cycle is composed of a compressor (Com2), an ordinary regenerator (OR), an isothermal regenerator (IR), a turbine (Tur2) and a precooler (PC2).
Figure 1b illustrates the T-s diagram of the MCBBC. In the figure, processes 1 2 , 2 3 , 3 4 , 4 5 , 5 6 , 6 7 and 7 1 represent the irreversible adiabatic compression, isobaric heating, isothermal heating, irreversible adiabatic expansion and three isobaric exothermic processes of the WF in Com1, RCC, CCC, Tur1, IR, OR and PC1, respectively. Processes 1 a 2 a , 2 a 3 a , 3 a 4 a , 4 a 5 a and 5 a 1 a represent the irreversible adiabatic compression, isobaric heating, isothermal heating, irreversible adiabatic expansion and isobaric exothermic process of the WF in Com2, OR, IR, Tur2 and PC2, respectively. Processes 1 2 s , 4 5 s , 1 a 2 a s and 4 a 5 a s are the isentropic processes corresponding to the processes 1 2 , 4 5 , 1 a 2 a and 4 a 5 a respectively.
It is assumed that the WFs of the topping and bottoming cycles are the same, both of which are ideal gases. The specific heat at constant pressure, thermal capacity rate, specific heat ratio, mass flow rate and gas constant of the WF are C p , C w f , k , m ˙ and R g , respectively, where C w f = C p m ˙ and m = ( k 1 ) / k . The temperatures and pressures at different state points are signed as T i and P i ( i = 1 , 2 , 3 , 4 , 5 , 6 , 7 , 1 a , 2 a , 3 a , 4 a , 5 a , 2 s , 5 s , 2 a s , 5 a s ), and the ambient temperature is T 0 . The inlet temperatures of the outer fluids in the RCC, CCC, PC1 and PC2 are T H 1 , T H 3 , T L 1 and T L 3 , and the outlet temperatures of outer fluids in the RCC, CCC, PC and PC2 are T H 2 , T H 4 , T L 2 and T L 4 , respectively. The thermal capacity rates of outer fluids in the RCC, CCC, PC1 and PC2 are C H 1 , C H 2 , C L 1 and C L 2 , respectively. The pressure ratios in the Com1 and Com2 are π com 1 and π com 2 , and the isothermal pressure drop ratios at the CCC and IR are π t and π t a , respectively. The heat conductances of the heat exchangers for the RCC, CCC, OR, IR, PC1 and PC2 are U j ( j = H 1 , H 2 , R 1 , R 2 , L 1 , L 2 ), and the corresponding effectivenesses are E j ; namely:
E H 1 = 1 exp [ N H 1 ( 1 C H 1 m i n / C H 1 m a x ) ] 1 ( C H 1 m i n / C H 1 m a x ) exp [ N H 1 ( C H 1 m i n / C H 1 m a x ) ]
E H 2 = 1 exp ( N H 2 ) , E R 1 = N R 1 / ( N R 1 + 1 ) , E R 2 = 1 exp ( N R 2 )
E L 1 = 1 exp [ N L 1 ( 1 C L 1 m i n / C L 1 m a x ) ] 1 ( C L 1 m i n / C L 1 m a x ) exp [ N L 1 ( C L 1 m i n / C L 1 m a x ) ]
E L 2 = 1 exp [ N L 2 ( 1 C L 2 m i n / C L 2 m a x ) ] 1 ( C L 2 m i n / C L 2 m a x ) exp [ N L 2 ( C L 2 m i n / C L 2 m a x ) ]
where, C H 1 m a x = m a x { C w f , C H 1 } , C H 1 m i n = m i n { C w f , C H 1 } , C L 1 m a x = m a x { C w f , C L 1 } , C L 1 m i n = m i n { C w f , C L 1 } , C L 2 m a x = m a x { C w f , C L 2 } and C L 2 m i n = m i n { C w f , C L 2 } . The numbers of heat transfer units for the heat exchangers are calculated as:
N H 1 = U H 1 / C H 1 m i n , N H 2 = U H 2 / C H 2
N R 1 = U R 1 / C w f , N R 2 = U R 2 / C w f
N L 1 = U L 1 / C L 1 m i n , N L 2 = U L 2 / C L 2 m i n
When C H 1 m a x = C H 1 m i n , C L 1 m a x = C L 1 m i n and C L 2 m a x = C L 2 m i n , Equations (1), (3) and (4) are simplified into:
E H 1 = N H 1 / ( N H 1 + 1 ) , E L 1 = N L 1 / ( N L 1 + 1 ) , E L 2 = N L 2 / ( N L 2 + 1 )
The efficiencies in the Com1, Com2, Tur1 and Tur2 are η com 1 , η com 2 , η t ur 1 and η t ur 2 , respectively:
η com 1 = ( T 2 s T 1 ) / ( T 2 T 1 )
η com 2 = ( T 2 a s T 1 a ) / ( T 2 a T 1 a )
η t ur 1 = ( T 4 T 5 ) / ( T 4 T 5 s )
η tur 2 = ( T 4 a T 5 a ) / ( T 4 a T 5 a s )
The heat absorbing rates of WF in the RCC, CCC, OR and IR are Q ˙ 2 3 , Q ˙ 3 4 , Q ˙ 2 a 3 a and Q ˙ 3 a 4 a , and the heat releasing rates in the PC1 and PC2 are Q ˙ 7 1 and Q ˙ 5 a 1 a . They are calculated as:
Q ˙ 2 3 = C H 1 ( T H 1 T H 2 ) = C w f ( T 3 T 2 ) = C H m i n E H 1 ( T H 1 T 2 )
Q ˙ 3 4 = C H 2 ( T H 3 T H 4 ) = C H 2 E H 2 ( T H 3 T 3 ) = m ˙ ( V 4 2 V 3 2 ) / 2
Q ˙ 2 a 3 a = C w f ( T 3 a T 2 a ) = C w f ( T 6 T H 2 ) = C w f E R 1 ( T 6 T 2 a )
Q ˙ 3 a 4 a = C w f ( T 5 T 6 ) = C w f E R 2 ( T 5 T 3 a ) = m ˙ ( V 4 a 2 V 3 a 2 ) / 2
Q ˙ 7 1 = C w f ( T 7 T 1 ) = C L 1 ( T L 2 T L 1 ) = C L 1 m i n E L 1 ( T 7 T L 1 )
Q ˙ 5 a 1 a = C w f ( T 5 a T 1 a ) = C L 2 ( T L 4 T L 3 ) = C L 2 m i n E L 2 ( T 5 a T L 3 )
The power output and thermal efficiency of the cycle are W and η , respectively:
W = Q ˙ 2 3 + Q ˙ 3 4 Q ˙ 5 a 1 a Q ˙ 7 1
η = W / ( Q ˙ 2 3 + Q ˙ 3 4 )
Processes 3–4 and 3a–4a are the isothermal ones, and the heat absorbing rates of the two processes are:
Q ˙ 3 4 = m ˙ ( h 4 h 3 ) m ˙ 3 4 v d p = m ˙ R g T 3 ln π t
Q ˙ 3 a 4 a = m ˙ ( h 4 a h 3 a ) m ˙ 3 a 4 a v d p = m ˙ R g T 3 a ln π t a
Processes 1–2s, 1–2as, 4–5s and 4a–5as are the isentropic processes; namely:
T 2 s / T 1 = π com 1 m = x , T 2 a s / T 1 a = π com 2 m = x a
T 4 / T 5 = π com 1 m π t m = x y , T 4 a / T 5 a = π com 2 m π t a m = x a y a
where x , y , x a and y a are the parameters of temperature ratios which can be calculated by the pressure ratios.
The upper limits of π t and π t a are 1, which means that the isothermal heating is not used. When π t < 1 or π t a < 1 , the topping or bottoming cycle adopts the isothermal process. The isothermal pressure drop ratios must meet the following constraints:
π t π com 1 1 , π t a π com 2 1
ln π t = C p ( k 1 ) ( M 4 2 M 3 2 ) 2 R g = 0.7 ( M 4 2 M 3 2 )
ln π t a = C p ( k 1 ) ( M 4 a 2 M 3 a 2 ) 2 R g = 0.7 ( M 4 a 2 M 3 a 2 )
where M 3 and M 4 ( M 3 a and M 4 a ) are the Mach numbers at the inlet and outlet of CCC (IR), respectively. If M 3 = M 3 a = 0 and M 4 = M 4 a = 1 , ( M 4 2 M 3 2 ) and ( M 4 a 2 M 3 a 2 ) get their maximum values of 1, and π t and π t a get their minimum values of 0.4966. For the initial velocity of the WF, the Mach numbers satisfy M 3 = M 3 a = 0.2 and M 4 = M 4 a = 1 , and the corresponding minimum values of π t and π t a are 0.5107. At the same time, W ¯ must be greater than or equal to zero; otherwise, the cycle is meaningless.
The major difference between the model in this paper and that in [8] is that all the heat transfer losses in the six heat exchangers are considered in this paper. This is also the major difference between classical thermodynamic model and FTT model. The major differences between the model in this paper and that in [62] are two aspects: One is that the irreversible compression and expansion losses are considered in this paper; this is also the major difference between the endoreversible model and the irreversible one. Another is that the heat reservoirs are assumed to be variable-temperature ones in this paper; this is one of basic characteristics of practical closed engineering cycles.
According to the above model, the dimensionless PO W ¯ and TEF η can be given by:
W ¯ = { a 1 a 2 + T H 3 C H 1 m i n E H 1 ( a 1 a 2 + T H 1 ) / C w f } C H 2 E H 2 + C H 1 m i n E H 1 ( a 1 a + T H 1 ) + C w f ( a 4 a 5 ) C w f [ a 1 a 2 η com 1 / ( η com 1 + x 1 ) + a 3 ] C w f T 0
η = 1 C w f [ ( a 1 a 2 η com 1 ) / ( η com 1 + x 1 ) + a 3 a 4 + a 5 ] C H 2 E H 2 { C H 1 m i n E H 1 ( a 1 a 2 + T H 1 ) / C w f + a 1 a 2 + T H 3 } + C H 1 m i n E H 1 ( a 1 a 2 + T H 1 )
where a 2 , a 2 , a 3 , a 4 and a 5 are listed in Appendix A.
If Equations (21) and (22) are not considered when solving Equations (28) and (29), the final analytical solutions for W ¯ and η of the cycle cannot be obtained. Considering Equations (21) and (22), the values of x and y in Equations (28) and (29) are obtained by numerical calculation, and the corresponding values of W ¯ and η can be obtained.
If C H 1 , C H 2 , C L 1 , C L 2 , E H 1 , E H 2 , E R 1 , E R 2 , E L 1 , E L 2 , η com 1 , η com 2 , η t ur 1 and η t ur 2 take different values, the model can be converted into different special models; Equations (28) and (29) can be reduced to the corresponding dimensionless PO and TEF respectively, which have a certain universality.
When η com 1 = η com 2 = η t ur 1 = η t ur 2 = 1 , Equations (28) and (29) can be reduced to the dimensionless PO and TEF of a modified closed endoreversible binary Brayton cycle with two isothermal heating processes and coupled to variable-temperature heat reservoirs (VTHRs):
W ¯ = C H 2 E H 2 { b 1 b 2 + T H 3 C H 1 m i n E H 1 ( b 1 b 2 + T H 1 ) / C w f } C w f [ b 1 b 2 / x + b 3 ] + C H 1 m i n E H 1 ( b 1 b 2 + T H 1 ) + C w f ( b 4 b 5 ) C w f T 0
η = 1 C w f [ b 1 b 2 / x + b 3 b 4 + b 5 ] C H 2 E H 2 { b 1 b 2 + T H 3 [ C H 1 m i n E H 1 ( b 1 b 2 + T H 1 ) ] / C w f } + C H 1 m i n E H 1 ( b 1 b 2 + T H 1 )
where b 1 , b 2 , b 3 , b 4 and b 5 are listed in Appendix A.
When C H 1 = C H 2 = C L 1 = C L 2 , Equations (28) and (29) can be reduced to the dimensionless PO and TEF of a modified closed irreversible binary Brayton cycle with two isothermal heating processes and coupled to CTRs:
W ¯ = C H 2 E H 2 [ c 1 c 2 + T H 3 E H 1 ( c 1 c 2 + T H 1 ) ] C w f [ c 1 c 2 η com 1 / ( η com 1 + x 1 ) + c 3 ] + ( c 1 c 2 + T H 1 ) C w f E H 1 + C w f ( c 4 c 5 ) C w f T 0
η = 1 C w f [ c 1 c 2 η com 1 / ( η com 1 + x 1 ) + c 3 c 4 + c 5 ] C H 2 E H 2 [ c 1 c 2 + T H 3 ( c 1 c 2 + T H 1 ) ] + C w f E H 1 ( c 1 c 2 + T H 1 )
where c 1 , c 2 , c 3 , c 4 and c 5 are listed in Appendix A.
When η com 1 = η com 2 = η t ur 1 = η t ur 2 = 1 and C H 1 = C H 2 = C L 1 = C L 2 , Equations (28) and (29) can be reduced to the dimensionless PO and TEF of a modified closed endoreversible binary Brayton cycle with two isothermal heating processes and coupled to CTRs [62]:
W ¯ = C w f [ d 1 d 2 / x + c 3 ] + C H 2 E H 2 [ d 1 d 2 + T H 3 E H 1 ( d 1 d 2 + T H 1 ) ] + C w f E H 1 ( d 1 d 2 + T H 1 ) + C w f ( d 4 d 5 ) C w f T 0
η = 1 C w f ( d 1 d 2 / x + d 3 d 4 + d 5 ) C H 2 E H 2 [ d 1 d 2 + T H 3 E H 1 ( d 1 d 2 + T H 1 ) ] + C w f E H 1 ( d 1 d 2 + T H 1 )
where d 1 , d 2 , d 3 , d 4 and d 5 are listed in Appendix A.
When E R 1 = E R 2 = E L 2 = 0 , Equations (28) and (29) can be reduced to the dimensionless PO and TEF of a modified closed irreversible Brayton cycle with an isothermal heating process and coupled to VTHRs:
W ¯ = C w f x y ( C H 2 E H 2 T H 3 + C L 1 m i n E L 1 T L 1 ) + C H 1 m i n E H 1 T H 1 { [ C w f C H 2 E H 2 + C L 1 m i n E L 1 ( η t ur 1 1 ) ] x y C L 1 m i n E L 1 η t ur 1 } + e { x y [ C H 1 m i n C w f E H 1 + C H 2 E H 2 ( C w f C H 1 m i n E H 1 ) ] + C L 1 m i n E L 1 ( C w f C H 1 m i n E H 1 ) [ ( η t ur 1 1 ) x y η t ur 1 ] } C w f 2 T 0 x y
η = C H 1 m i n C L 1 m i n E H 1 E L 1 η t ur 1 T H 1 x y { C H 1 m i n E H 1 T H 1 [ C w f C H 2 E H 2 + C L 1 m i n E L 1 ( η t ur 1 1 ) ] + C w f ( C H 2 E H 2 T H 3 + C L 1 m i n E L 1 T L 1 ) } + e { x y [ C H 1 m i n C w f E H 1 + C H 2 E H 2 ( C w f C H 1 m i n E H 1 ) ] E L 1 C L 1 m i n ( C w f C H 1 m i n E H 1 ) [ ( η t ur 1 1 ) x y η t 1 ] } x y { e 1 e 2 [ C H 2 C w f E H 2 + C H 1 m i n E H 1 ( C w f C H 2 E H 2 ) ] + C H 1 m i n E H 1 T H 1 ( C H 2 E H 2 C w f ) C H 2 C w f E H 2 T H 3 }
where e is listed in Appendix A.
When E R 1 = E R 2 = E L 2 = 0 and C H 1 = C H 2 = C L 1 , Equations (28) and (29) can be reduced to the dimensionless PO and TEF of a modified closed irreversible Brayton cycle with an isothermal heating process and coupled to CTRs:
W ¯ = x y ( C H 2 E H 2 T H 3 + C w f E L 1 T L 1 ) + E H 1 T H 1 { [ C w f C H 2 E H 2 + C w f E L 1 ( η t ur 1 1 ) ] x y C w f E L 1 η t ur 1 } + b 1 b 2 { E L C w f ( 1 E H ) [ ( η t ur 1 1 ) x y η t ur 1 ] [ C w f E H + C H 2 E H 2 ( 1 E H 1 ) ] x y } C w f T 0 x y
η = C w f E H 1 E L 1 η t ur 1 T H 1 x y { E H 1 T H 2 [ C w f C H 2 E H 2 + C w f E L 1 ( η t ur 1 1 ) ] + ( C H 2 E H 2 T H 3 + C w f E L 1 T L 1 ) } + b 1 b 2 { [ C w f E H 1 + C H 2 ( 1 E H 1 ) E H 2 ] x y C w f E L 2 ( 1 E H 1 ) [ x y ( η t ur 1 1 ) η t ur 1 ] } x y { b 1 b 2 [ C H 2 E H 2 + E H 1 ( C w f C H 2 E H 2 ) ] + E H 1 ( C H 2 E H 2 C w f ) T H 1 C H 2 E H 2 T H 3 }
When E R 1 = E R 2 = E L 2 = 0 and η com 1 = η t ur 1 = 1 , Equations (28) and (29) can be reduced to the dimensionless PO and TEF of a modified closed endoreversible Brayton cycle with an isothermal heating process and coupled to VTHRs [59,60]:
W ¯ = C w f x { C L 1 m i n C w f E L 1 T L 1 ( y 1 ) + C H 2 E H 2 ` [ C w f T H 3 ( y 1 ) + C L 1 m i n E L 1 T H 3 T L 1 x y ] } + C H 1 m i n E H 1 { C L 1 m i n E L 1 [ C w f T H 1 ( x 1 ) + C w f T L 1 x ( 1 x y ) + C H 2 E H 2 x ( T L 1 x y T H 3 ) ] + C w f x [ C w f T H 1 ( y 1 ) + C H 2 E H 2 ( T H 3 T H 1 y ) ] } C w f T 0 x [ C w f 2 y ( C w f C H 1 m i n E H 1 ) ( C w f C L 1 m i n E L 1 ) ]
η = C w f T 0 x { C L 1 m i n C w f E L 1 T L 1 ( y 1 ) + C H 2 E H 2 [ C w f T H 3 ( y 1 ) + C L 1 m i n E L 1 ( T H 3 T L 1 x y ) ] } + C H 1 m i n E H 1 { C L 1 m i n E L 1 [ C w f T H 1 ( x 1 ) + C w f T L 1 x ( 1 x y ) + C H 2 E H 2 x ( T L 1 x y T H 3 ) ] + C w f x [ C w f T H 1 ( y 1 ) + C H 2 E H 2 ( T H 3 T H 1 y ) ] } C w f T 0 x { C H 1 m i n E H 1 [ C w f 2 T H 1 ( y 1 ) + C H 2 C w f E H 2 ( T H 3 T H 1 y ) + C L 1 m i n C w f E L 1 ( T H 1 T L 1 x y ) + C H 2 C L 1 m i n E H 2 E L 1 ( T L 1 x y T H 3 ) ] + C H 2 C w f E H 2 [ C w f T H 3 ( y 1 ) + C L 1 m i n E L 1 ( T H 3 T L 1 x y ) ] }
When E R 1 = E R 2 = E L 2 = 0, C H 1 = C H 2 = C L 1 and η com 1 = η t ur 1 = 1 , Equations (28) and (29) can be reduced to the dimensionless PO and TEF of a modified closed endoreversible Brayton cycle with an isothermal heating process and coupled to CTRs:
W ¯ = x { C w f E L 1 T L 1 ( y 1 ) + C H 2 E H 2 [ T H 3 ( y 1 ) + E L 1 T H 3 T L 1 x y ] } + E H 1 { E L 1 [ C w f T H 1 ( x 1 ) + C w f T L 1 x ( 1 x y ) + C H 2 E H 2 x ( T L 1 x y T H 3 ) ] + x [ C w f T H 1 ( y 1 ) + C H 2 E H 2 ( T H 3 T H 1 y ) ] } C w f T 0 x [ y ( 1 E H 1 ) ( 1 E L 1 ) ]
η = T 0 x { C w f E L 1 T L 1 ( y 1 ) + C H 2 E H 2 [ T H 3 ( y 1 ) + E L 1 ( T H 3 T L 1 x y ) ] } + E H 1 { E L 1 [ C w f T H 1 ( x 1 ) + C w f T L 1 x ( 1 x y ) + C H 2 E H 2 x ( T L 1 x y T H 3 ) ] + x [ C w f T H 1 ( y 1 ) + C H 2 E H 2 ( T H 3 T H 1 y ) ] } C w f T 0 x { E H 1 [ C w f T H 1 ( y 1 ) + C H 2 E H 2 ( T H 3 T H 1 y ) + C w f E L 1 ( T H 1 T L 1 x y ) + C H 2 E H 2 E L 1 ( T L 1 x y T H 3 ) ] + C H 2 E H 2 [ T H 3 ( y 1 ) + E L ( T H 3 T L 1 x y ) ] }
When E H 2 = E R 1 = E R 2 = E L 2 = 0 , Equations (28) and (29) can be reduced to the dimensionless PO and TEF of a closed irreversible simple Brayton cycle coupled to VTHRs [37,63]:
W ¯ = { η com 1 C w f ( 1 η t ur 1 + η t ur 1 / x ) [ ( C w f C L 1 min E L 1 ) ( x 1 + η com 1 ) + η com 1 C L 1 min E L 1 ] } C H 1 min E H 1 τ H 1 { ( x 1 + η com 1 ) [ ( C w f C H 1 min E H 1 ) ( 1 η t ur 1 + η t ur 1 / x ) + C H 1 min E H 1 ] η com 1 C w f } C L 1 min E L 1 η com 1 C w f 2 ( x 1 + η com 1 ) ( C w f C H 1 min E H 1 ) ( C w f C L 1 min E L 1 ) ( 1 η t ur 1 + η t ur 1 / x )
η = 1 E L 1 [ E H 1 η com 1 τ H 1 ( 1 η t ur 1 + η t ur 1 / x ) η com 1 + ( x 1 + η com 1 ) ( 1 E H 1 ) ( 1 η t ur 1 + η t ur 1 / x ) ] E H 1 { τ H 1 [ η com 1 ( x 1 + η com 1 ) ( 1 E L 1 ) ( 1 η t ur 1 + η t ur 1 / x ) ] E L 1 ( x 1 + η com 1 ) }
When E H 2 = E R 1 = E R 2 = E L 2 = 0 and C H 1 = C H 2 = C L 1 , Equations (28) and (29) can be reduced to the dimensionless PO and TEF of a closed irreversible simple Brayton cycle coupled to CTRs [37,63]:
W ¯ = { E H 1 τ H 1 { η com 1 ( 1 η t ur 1 + η t ur 1 / x ) [ ( x 1 + η com 1 ) ( 1 E L 1 ) + η com 1 E L 1 ] } { ( x 1 + η com 1 ) [ ( 1 η t ur 1 + η t ur 1 / x ) ( 1 E H 1 ) + E H 1 ] η com 1 } E L 1 } η com 1 ( x 1 + η com 1 ) ( 1 E H 1 ) ( 1 E L 1 ) ( 1 η t ur 1 + η t ur 1 / x )
η = 1 E L 1 [ η com 1 E H 1 τ H 1 ( 1 η t ur 1 + η t ur 1 / x ) η com 1 + ( x 1 + η com 1 ) ( 1 E H 1 ) ( 1 η t ur 1 + η t ur 1 / x ) ] E H 1 { [ η com 1 ( x 1 + η com 1 ) ( 1 E L 1 ) ( 1 η t ur 1 + η t ur 1 / x ) ] τ H 1 E L 1 ( x 1 + η com 1 ) }
When E H 2 = E R 1 = E R 2 = E L 2 = 0 and η com 1 = η t ur 1 = 1 , Equations (28) and (29) can be reduced to the dimensionless PO and TEF of a closed endoreversible simple Brayton cycle coupled to VTHRs [64]:
W ¯ = C H 1 m i n C L 1 m i n E H 1 E L 1 ( x 1 ) ( τ H 1 x τ L 1 ) C L 1 m i n C w f E L 1 + C H 1 m i n E H 1 ( C w f C L 1 m i n E L 1 )
η = 1 x 1
When E H 2 = E R 1 = E R 2 = E L 2 = 0 , η com 1 = η t ur 1 = 1 and C H 1 = C H 2 = C L 1 , Equations (28) and (29) can be reduced to the dimensionless PO and TEF of the closed endoreversible simple Brayton cycle coupled to CTRs [65,66]:
W ¯ = E H 1 E L 1 ( 1 1 / x ) ( τ H 1 x τ L 1 ) E H 1 + E L 1 E H 1 E L 1
η = 1 x 1

3. Optimal Heat Conductance Distributions

With W ¯ as the optimization objective, the heat conductances of six heat exchangers will be optimized by fixing the total heat conductance (THC); namely, U T = U j ( j = H 1 , H 2 , R 1 , R 2 , L 1 , L 2 ). The HCDs in the RCC, CCC, OR, IR, PC1 and PC2 are defined as:
u j = U j / U T
where u j must meet the following constraints:
u j = 1 , 0 < u j < 1
The dimensionless PO of the MCBBC can be maximized by optimizing the HCDs. Finally, the maximum dimensionless PO ( W ¯ max ) and the corresponding optimal HCDs ( ( u H 1 ) W ¯ max , ( u H 2 ) W ¯ max , ( u L 1 ) W ¯ max , ( u L 2 ) W ¯ max , ( u R 1 ) W ¯ max and ( u R 2 ) W ¯ max ) can be obtained. Moreover, the optimal isothermal pressure drop ratios ( ( π t ) W ¯ max and ( π t a ) W ¯ max ) can be calculated based on the optimal HCDs. The values or ranges of the variables are listed in Table 1. The flow chart of dimensionless PO optimization is displayed in Figure 2. Calculate the negative number of the dimensionless power output, and then the function “fmincon” in MATLAB is used to solve the minimum value. The parameters of “fmincon” are: “TolCon” is 10−6, “TolConSQP” is 300 and “TolFun” is 10−6.
Figure 3a,b, Figure 4a,b, Figure 5a,b and Figure 6 illustrate the relationships of the maximum dimensionless PO ( W ¯ max ), the corresponding dimensionless PO ( W ¯ top ) W ¯ max of the topping cycle, dimensionless PO ( W ¯ bot ) W ¯ max of the bottoming cycle, TEF η W ¯ max , isothermal pressure drop ratios ( ( π t ) W ¯ max and ( π t a ) W ¯ max ) and HCDs ( ( u H 1 ) W ¯ max , ( u H 2 ) W ¯ max , ( u L 1 ) W ¯ max , ( u L 2 ) W ¯ max , ( u R 1 ) W ¯ max , ( u R 2 ) W ¯ max and ( u R 2 ) W ¯ max ) versus the pressure ratios ( π com 1 and π com 2 ) in the Com1 and Com2, respectively.
Figure 3a shows that W ¯ max increases first and then decreases as π com 1 or π com 2 increases. There is a set of optimal pressure ratios ( ( π com 1 ) W ¯ max , 2 and ( π com 2 ) W ¯ max , 2 ), so that W ¯ max achieves the double maximum dimensionless PO W ¯ max , 2 . This is because when π com 1 gradually increases, Q ˙ 2 3 , Q ˙ 7 1 and Q ˙ 5 a 1 a gradually reduce, and Q ˙ 3 4 slightly increases. With the increase in π com 2 , Q ˙ 2 3 decreases, Q ˙ 3 4 decreases slightly, Q ˙ 7 1 decreases first and then increases, and Q ˙ 5 a 1 a decreases. Under the given conditions, W ¯ max , 2 , ( π com 1 ) W ¯ max , 2 and ( π com 2 ) W ¯ max , 2 are approximately 1.01, 7.7 and 2.8, respectively.
Figure 3b shows that ( W ¯ top ) W ¯ max increases first; then decreases as π com 1 increases; and remains substantially unchanged with the change of π com 2 . ( W ¯ bot ) W ¯ max decreases at first and then tends to remain unchanged with the increase in π com 1 , the value of which is much smaller than that of ( W ¯ top ) W ¯ max . This is because T 5 decreases at first and then tends to be constant as π com 1 increases. As π com 2 increases, ( W ¯ bot ) W ¯ max increases at first and then tends to be constant when π com 1 is smaller; ( W ¯ bot ) W ¯ max increases at first and then decreases to zero when π com 1 is larger. That is, Q ˙ 2 a 3 a and Q ˙ 3 a 4 a can only be used to maintain the operation of the bottoming cycle. Figure 4a shows that η W ¯ max increases at first and then becomes constant with the increase in π com 1 or π com 2 .
Figure 4b shows that ( π t ) W ¯ max remains unchanged as π com 1 or π com 2 increases, and is always located at the lower limit. This indicates that the degree of the isothermal heating in CCC always reaches the maximum. Therefore, Q ˙ 3 4 only slightly changes with the change of π com 1 or π com 2 . When π com 1 or π com 2 is smaller, ( π t a ) W ¯ max decreases slightly with the increase in π com 1 and reaches the lower limit with the increase in π com 2 . That indicates that under this condition, the degree of the isothermal heating in IR increases as π com 1 or π com 2 does; when π com 1 and π com 2 are larger, ( π t a ) W ¯ max increases with the increase in π com 1 or π com 2 ; when ( W ¯ bot ) W ¯ max is zero, ( π t a ) W ¯ max remains substantially unchanged as π com 1 or π com 2 increases.
Figure 5a shows that when ( u R 1 ) W ¯ max is not zero, ( u H 1 ) W ¯ max increases slightly at first and then decreases slightly with the increase in π com 1 ; ( u H 1 ) W ¯ max decreases first and then tends to remain unchanged with the increase in π com 2 . When ( u R 1 ) W ¯ max is zero but both of ( π t a ) W ¯ max and ( W ¯ bot ) W ¯ max are not zero, ( u H 1 ) W ¯ max decreases as π com 1 or π com 2 increases; when both of ( u R 1 ) W ¯ max and ( π t a ) W ¯ max are zero but ( W ¯ bot ) W ¯ max is not zero, changing π com 1 or π com 2 does not change ( u H 1 ) W ¯ max ; when ( u R 1 ) W ¯ max , ( π t a ) W ¯ max and ( W ¯ bot ) W ¯ max are zero, ( u H 1 ) W ¯ max decreases with the increase in π com 1 or π com 2 , and is far less than ( u H 1 ) W ¯ max . With the decrease in ( u H 1 ) W ¯ max , E H 1 decreases, and then Q ˙ 2 3 decreases. ( u H 2 ) W ¯ max remains basically unchanged, E H 2 is constant and the variation of Q ˙ 3 4 is very small.
Figure 5b shows that when ( u R 1 ) W ¯ max is not zero, ( u L 1 ) W ¯ max increases as π com 1 increases; it decreases first and then increases slightly as π com 2 increases; ( u L 2 ) W ¯ max decreases first and tends to remain unchanged with the increase in π com 1 ; it increases first and then tends to be the same with the increase in π com 2 . When ( u R 1 ) W ¯ max is zero but both of ( π t a ) W ¯ max and ( W ¯ bot ) W ¯ max are not zero, ( u L 1 ) W ¯ max decreases sharply with the increase in π com 1 or π com 2 , while ( u L 2 ) W ¯ max increases sharply with the increase in π com 1 or π com 2 . When both of ( u R 1 ) W ¯ max and ( π t a ) W ¯ max are zero but ( W ¯ bot ) W ¯ max is not zero, ( u L 1 ) W ¯ max increases slightly with the increase in π com 1 or π com 2 , and ( u L 2 ) W ¯ max remains basically unchanged with the increase in π com 1 or π com 2 . When ( u R 1 ) W ¯ max , ( π t a ) W ¯ max and ( W ¯ bot ) W ¯ max are zero, ( u L 1 ) W ¯ max decreases and ( u L 2 ) W ¯ max increases as π com 1 or π com 2 increases.
Figure 6 shows that ( u R 1 ) W ¯ max decreases to zero with the increase in π com 1 , and increases at first and then decreases to zero as π com 2 increases. When ( π t a ) W ¯ max is not zero, ( u R 2 ) W ¯ max increases with the increase in π com 1 or π com 2 . When ( π t a ) W ¯ max is zero but ( W ¯ bot ) W ¯ max is not zero, ( u R 2 ) W ¯ max decreases with the increase in π com 1 or π com 2 . When both of ( π t a ) W ¯ max and ( W ¯ bot ) W ¯ max are zero, ( u R 2 ) W ¯ max increases with the increase in π com 1 or π com 2 . Because increasing ( u R 2 ) W ¯ max leads to the increases in E R 2 and Q ˙ 3 a 4 a so as to avoid the negative value of ( W ¯ bot ) W ¯ max , namely, inverse dimensionless PO of the bottoming cycle.
According to the numerical calculation, the influences of the temperature ratios, compressor efficiencies, turbine efficiencies and THC on optimization results are further analyzed. Figure 7a,b illustrates the relationships of the double maximum dimensionless PO ( W ¯ max , 2 ) and the corresponding TEF ( η W ¯ max , 2 ) versus the temperature ratios ( τ H 1 and τ H 3 ). As can be seen from figure 7a,b, both W ¯ max , 2 and η W ¯ max , 2 increase first and then tend to be unchanged with the increase in π com 1 or π com 2 . There is an optimal temperature ratio ( τ H 3 ) opt which makes W ¯ max , 2 reach the optimal. The corresponding fitting expression is ( τ H 3 ) opt = 1.1 τ H 1 + 0.14 , and the correlation coefficient is r = 0.9964 . As for η W ¯ max , 2 , there also exists ( τ H 3 ) opt that satisfies the fitting expression: ( τ H 3 ) opt = 1.1 τ H 1 + 0.18 , and its correlation coefficient is also r = 0.9964 . In the actual design process, τ H 1 and τ H 3 should meet the relationship similar to ( τ H 3 ) opt = 1.1 τ H 1 + 0.14 or ( τ H 3 ) opt = 1.1 τ H 1 + 0.18 , in order to obtain as much W ¯ max , 2 and η W ¯ max , 2 as possible and reduce the requirement for high temperature resistances of materials.
Figure 8a illustrates the relationships of W ¯ max , 2 , ( W ¯ top ) W ¯ max , 2 , ( W ¯ bot ) W ¯ max , 2 and η W ¯ max , 2 versus η com 2 . It shows that W ¯ max , 2 , η W ¯ max , 2 and ( W ¯ bot ) W ¯ max , 2 increase and ( W ¯ top ) W ¯ max , 2 decreases slightly with the increase in η com 2 . With the increase in η com 2 , Q ˙ 2 3 and Q ˙ 7 1 basically increase. With the increase in η com 2 , Q ˙ 3 4 remains substantially unchanged, Q ˙ 5 a 1 a decreases and Q ˙ 3 a 4 a increases. The amount of change in W ¯ max , 2 is mainly affected by that in Q ˙ 5 a 1 a . It should be noted that when η com 2 0.75 , W ¯ max , 2 , η W ¯ max , 2 , ( W ¯ top ) W ¯ max , 2 and ( W ¯ bot ) W ¯ max , 2 do not exist and are indicated by dashed lines.
Figure 8b illustrates the relationships of ( π com 1 ) W ¯ max , 2 , ( π com 2 ) W ¯ max , 2 , ( π t ) W ¯ max , 2 and ( π t a ) W ¯ max , 2 versus η com 2 . It shows that ( π com 1 ) W ¯ max , 2 decreases and ( π com 2 ) W ¯ max , 2 increases as η com 2 increases. The decrease in ( π com 1 ) W ¯ max , 2 reduces T 2 , thereby increasing Q ˙ 2 3 . Under the given condition, T 4 a is less than T 5 a when η com 2 is less than or equal to 0.76. As η com 2 increases, ( π t ) W ¯ max , 2 remains the lower limit, which indicates that the degree of the isothermal heating in CCC always reaches the maximum. As η com 2 increases, ( π t a ) W ¯ max , 2 decreases to the lower limit, which indicates that increasing η com 2 improves the degree of the isothermal heating in IR.
Figure 8c illustrates the relationship of ( u j ) W ¯ max , 2 versus η com 2 . It shows that as η com 2 decreases, ( u H 1 ) W ¯ max , 2 , ( u H 2 ) W ¯ max , 2 and ( u R 1 ) W ¯ max , 2 remains basically unchanged; ( u L 1 ) W ¯ max , 2 decreases first and then tends to remain unchanged; ( u L 2 ) W ¯ max , 2 increases first and then tends to be unchanged; ( u R 2 ) W ¯ max , 2 increases.
Similarly, both of W ¯ max , 2 and η W ¯ max , 2 increase as η com 1 , η t ur 1 and η t ur 2 increase. The effects of η com 1 and η t ur 1 on W ¯ max , 2 and η W ¯ max , 2 are greater than those of η com 2 and η tur 2 . ( W ¯ top ) W ¯ max , 2 increases with the increases in η com 1 and η t ur 1 , while ( W ¯ top ) W ¯ max , 2 decreases with the increases in η com 2 and η t ur 2 . ( W ¯ bot ) W ¯ max , 2 decreases with the increases in η com 1 and η tur 1 , while ( W ¯ top ) W ¯ max , 2 increases with the increases in η com 2 and η t ur 2 . It should be noted that when η t ur 2 0.74 , W ¯ max , 2 , η W ¯ max , 2 , ( W ¯ top ) W ¯ max , 2 and ( W ¯ bot ) W ¯ max , 2 also do not exist. When η t ur 2 > 0.74 , the change of η t ur 2 has little effects on W ¯ max , 2 and η W ¯ max , 2 . Within the given range, the changes in W ¯ max , 2 and η W ¯ max , 2 do not exceed 7% and 4%, respectively. In practical design of improving cycle performance, it is suggested to give priority to appropriately increasing η com 2 and η t ur 2 . Then one can choose to increase η com 1 and η tur 1 , successively. Apart from this, W ¯ max , 2 and η W ¯ max , 2 increase as U T increases.

4. Optimal Thermal Capacitance Rate Matchings

The W ¯ of the cycle also affected by the TCRMs. By taking W ¯ as the optimization objective, TCRMs are optimized. Figure 9a,b illustrates the relationships of W ¯ max and η W ¯ max versus C H 1 / C w f and C H 2 / C w f when C L 1 / C H 1 = 1 and C L 2 / C H 2 = 1.2 . The figures show that both of W ¯ max and η W ¯ max increase, and then tend to remain constant with the increase in C H 1 / C w f or C H 2 / C w f . These indicate that there is a set of the optimal C H 1 / C w f and C H 2 / C w f , so that W ¯ max gets the optimal value. Similarly, there is a set of the optimal C H 1 / C w f and C H 2 / C w f , so that η W ¯ max gets the optimal value.
Figure 10 illustrates that the effects of C L 1 / C H 1 on the characteristics of W ¯ max C H 1 / C w f and η W ¯ max C H 1 / C w f when C H 2 = 1 and C L 2 / C H 2 = 1.2 . It shows that when W ¯ max and η W ¯ max reach the optimal values, C L 1 / C H 1 mainly reduces the corresponding C H 1 / C w f , and has little effect on the optimal values of W ¯ max and η W ¯ max . Similarly, C L 1 / C H 1 mainly reduces the corresponding C H 1 / C w f when W ¯ max and η W ¯ max reach the optimal values, and has little effects on the optimal values of W ¯ max and η W ¯ max .

5. Conclusions

Based on the previous established models in [8,62], a modified closed binary Brayton cycle model coupled to VTHRs with two isothermal heating processes and variable isothermal pressure drop ratios is established by using FTT in this paper. The HCDs of the six heat exchangers are optimized, and the effects of τ H 1 , τ H 3 , U T , η com 1 , η com 2 , η t ur 1 , η t ur 2 , C H 1 / C w f and C H 2 / C w f on the optimal performances are analyzed by taking W ¯ as the optimization objective. The results show that there is a set of π com 1 and π com 2 which makes W ¯ max reach W ¯ max , 2 = 1.01 . τ H 1 and τ H 3 have certain linear relationship ( ( τ H 3 ) opt = 1.1 τ H 1 + 0.14 , and the correlation coefficient is r = 0.9964 ), which makes W ¯ max , 2 optimal. W ¯ max , 2 increases with the increases in U T , η com 1 , η com 2 , η t ur 1 and η t ur 2 . It should be noted that when η com 2 0.75 or η t ur 2 0.74 , W ¯ max , 2 does not exist. W ¯ max , 2 increases first and then remain unchanged with the increases in C H 1 / C w f and C H 2 / C w f . This cycle can effectively improve energy efficiency and reduce emissions of nitrogen oxide and other harmful gases. Additionally, the optimal results can guide the practical designs for the gas turbine plants.

Author Contributions

C.T., L.C., H.F., W.W. and Y.G. collectively finished the manuscript. All authors have read and approved the final manuscript.

Funding

This research was funded the National Natural Science Foundation of China (project number 51779262).

Acknowledgments

The authors wish to thank the reviewers for their careful, unbiased and constructive suggestions, which led to this revised manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

Nomenclature

a, b, c, d, e, m, x, yIntermediate variables
CThermal capacity rate (kW/K)
CpSpecific heat at constant pressure (kJ/(kg·K))
EEffectiveness of heat exchanger
kSpecific heat ratio
MMach number
NNumber of heat transfer units
Q ˙ Heat absorbing rate or heat releasing rate
RgGas constant (kJ/(kg·K))
TTemperature (K)
UHeat conductance (kW/K)
uHeat conductance distribution
WPower output(kW)
W ¯ Dimensionless power output
Greek symbol
η Efficiency
πPressure ratio
τ Temperature ratio
Subscripts
botBottoming cycle
comCompressor
HHot-side heat exchanger
LCold-side heat exchanger
RRegenerator
sIsentropic
t/taConverging combustion chamber/isothermal regenerator
totTotal
turTurbine
topTopping cycle
wfWorking fluid
1,2,3,4,5,6,7,1a,2a,3a,4a,5a,2s,5s,2as,5asState points

Abbreviations

CCCConverging combustion chamber
CTRConstant-temperature reservoir
FTTFinite-time thermodynamics
HCDHeat conductance distribution
IRIsothermal regenerator
MCBBCModified closed binary Brayton cycle
POPower output
PDPower density
OROrdinary regenerator
RCCRegular combustion chamber
TCRMThermal capacitance rate matching
TEFThermal efficiency
THCTotal heat conductance
TurTurbine
VTHRVariable-temperature heat reservoir
WFWorking fluid

Appendix A

a 1 = { C L 2 m i n E L 2 [ ( η t ur 2 1 ) x a y a η t ur 2 ] { C w f ( 2 E R 1 1 ) ( E R 2 1 ) ( η com 1 + x 1 ) [ ( η t ur 1 1 ) x y η t ur 1 ] ( C H 1 m i n E H 1 + C L 1 m i n E L 1 ) + C H 1 m i n C L 1 m i n E H 1 E L 1 ( 2 E R 1 1 ) ( E R 2 1 ) ( η com 1 + x 1 ) [ ( η t ur 1 1 ) x y η t ur 1 ] + C w f 2 { ( 2 E R 1 1 ) ( E R 2 1 ) ( η com 1 + x 1 ) η t ur 1 ( x y 1 ) + x y { E R 1 [ η com 1 + 2 x 2 2 E R 2 ( η com 1 + x 1 ) ] + E R 2 ( η com 1 + x 1 ) x + 1 } } } / { ( η com 1 + x 1 ) C w f x y [ E R 1 ( 2 E R 2 1 ) E R 2 ] ( C w f C L 1 m i n E L 1 ) } + { C H 1 m i n E H 1 ( E R 2 1 ) [ ( η t ur 1 1 ) x y η t ur 1 ] { x a y a [ E R 1 ( η com 2 + 2 x a 2 ) + x a 1 ] + ( 2 E R 1 1 ) η t ur 2 ( η com 2 + x a 1 ) ( x a y a 1 ) } / ( x y ) + C w f 2 η com 1 { x a y a [ ( η com 2 + x a 1 E R 2 η com 2 ) E R 1 x a + 1 ] η t ur 2 ( E R 1 1 ) ( η com 2 + x a 1 ) ( x a y a 1 ) } / [ ( η com 1 + x 1 ) ( C w f C L 1 m i n E L 1 ) ] + C w f ( E R 2 1 ) [ ( η t ur 1 1 ) x y η t ur 1 ] { ( 2 E R 1 1 ) η t ur 2 ( η com 2 + x a 1 ) ( x a y a 1 ) + x a y a [ x a 1 E R 1 ( η com 2 + 2 x a 2 ) ] } / ( x y ) } / [ ( 2 E R 1 E R 2 + E R 1 + E R 2 ) ( η com 2 + x a 1 ) ] } / ( x a y a ) a 2 = { { x a y a { C L 1 m i n E L 1 { C L 2 m i n E L 2 ( η com 2 + x a 1 ) [ E R 1 T L 3 ( 2 E R 2 1 ) + ( E R 1 1 ) ( η t ur 2 1 ) T L 1 E R 2 T L 3 ] C w f T L 1 [ E R 1 η com 2 ( E R 2 + η t ur 2 1 ) + E R 1 ( η t ur 2 1 ) ( x a 1 ) η t ur 2 ( η com 2 + x a ) + η t ur 2 + x a 1 ] } [ E R 1 ( 2 E R 2 1 ) E R 2 ] C L 2 m i n C w f E L 2 T L 3 ( x a + η com 2 1 ) } + C L 1 m i n E L 1 η t ur 2 T L 1 ( E R 1 1 ) ( η com 2 + x a 1 ) ( C w f C L 2 m i n E L 2 ) } / { ( η com 2 + x a 1 ) x a y a ( C w f C L 1 m i n E L 1 ) [ E R 1 ( 2 E R 2 1 ) E R 2 ] } C H 1 m i n E H 1 ( E R 2 1 ) T H 1 [ ( η t ur 1 1 ) x y η t 1 ] { ( 2 E R 1 1 ) C L 2 m i n E L 2 ( η com 2 + x a 1 ) ( η t ur 2 + x a y a x a y a η t ur 2 ) + C w f x a y a [ E R 1 η com 2 ( 2 η t ur 2 1 ) + 2 E R 1 ( η t ur 2 1 ) ( x a 1 ) ( η com 2 + x a ) η t ur 2 + η t ur 2 + x a 1 ] C w f η t ur 2 ( 2 E R 1 1 ) ( x a + η com 2 1 ) } } / { C w f x y x a y a [ E R 1 ( 2 E R 2 1 ) E R 2 ] ( η com 2 + x a 1 ) } a 3 = { a 1 E R 1 [ E R 1 ( 2 E R 2 1 ) E R 2 ] { C H 1 m i n E H 1 ( E R 2 1 ) [ ( η t ur 1 1 ) x y η t ur 1 ] { C L 1 m i n C L 2 m i n E L 1 E L 2 ( η com 1 + x 1 ) { x a y a [ E R 1 ( η t ur 2 1 ) T L 1 E R 1 T L 3 + T L 3 ] E R 1 η t ur 2 T L 1 } + C L 1 m i n C w f E L 1 E R 1 T L 1 ( η com 1 + x 1 ) ( η t ur 2 + x a y a x a η t ur 2 y a ) + C L 2 m i n C w f E L 2 { E R 1 η com 1 η t ur 2 T H 1 + x a y a [ E R 1 η com 1 ( T H 1 + T L 3 η t ur 2 T H 1 ) + E R 1 T L 3 ( x 1 ) T L 3 ( η com 1 + x ) + T L 3 ] } / C w f + C w f 2 E R 1 η com 1 T H 1 [ ( η t ur 2 1 ) x a y a η t ur 2 ] } + C L 1 m i n E L 1 ( η com 1 + x 1 ) [ ( η t ur 1 1 ) x y η t ur 1 ] ( E R 2 1 ) { [ ( C w f C L 2 m i n E L 2 ) E R 1 T L 1 ( η t ur 2 1 ) + C L 2 m i n E L 2 ( E R 1 1 ) T L 3 ] x a y a + E R 1 η t ur 2 T L 1 ( C L 2 m i n E L 2 C w f ) } C L 2 m i n C w f E L 2 T L 3 x a y a { ( E R 1 1 ) ( E R 2 1 ) η t ur 1 ( η com 1 + x 1 ) ( x y 1 ) + x y [ E R 1 ( E R 2 + η com 1 + x 1 2 E R 2 η com 1 E R 2 x ) + E R 2 ( η com 1 + x 1 ) x + 1 ] } } / [ x x a y y a ( η com 1 + x 1 ) ] a 1 a 2 E R 2 ( E R 1 1 ) ( E R 1 + E R 2 2 E R 1 E R 2 ) { C H 1 m i n E H 1 E R 1 ( C w f C L 1 m i n E L 1 ) ( E R 2 1 ) [ ( η t ur 1 1 ) x y η t ur 1 ] / ( C w f E R 2 x y ) + E R 1 η t ur 1 ( E R 2 1 ) ( C w f C L 1 m i n E L 1 ) / ( E R 2 x y ) E R 1 ( E R 2 1 ) ( η t ur 1 1 ) ( C w f C L 1 m i n E L 1 ) / E R 2 + C w f η com 1 ( E R 1 1 ) / ( η com 1 + x 1 ) } + E R 2 ( E R 1 1 ) ( 2 E R 1 E R 2 + E R 1 + E R 2 ) { C H 1 m i n E H 1 E R 1 ( E R 2 1 ) T H 1 ( C w f C L 1 m i n E L 1 ) [ ( η t ur 1 1 ) x y η t ur 1 ] / ( C w f E R 2 x y ) C L 1 m i n E L 1 ( E R 1 1 ) T L 1 } } / [ ( C w f C L 1 m i n E L 1 ) ( E R 1 + E R 2 2 E R 1 E R 2 ) 2 ] a 4 = { η com 2 { { a 1 a 2 ( E R 1 1 ) { { C H 1 m i n E H 1 ( E R 1 1 ) ( E R 2 1 ) [ ( η t ur 1 1 ) x y η t ur 1 ] } / ( C w f x y ) + [ ( E R 1 E R 2 1 ) C w f η com 1 ] / [ ( x + η com 1 1 ) ( C w f C L 1 m i n E L 1 ) ] [ ( E R 1 1 ) ( E R 2 1 ) ( x y 1 ) η t ur 1 ] / ( x y ) + E R 1 E R 2 E R 1 E R 2 + 1 } } / ( E R 1 + E R 2 2 E R 1 E R 2 ) { E R 1 { { C H 1 m i n E H 1 E R 1 T H 1 ( E R 2 1 ) [ ( η t ur 1 1 ) x y η t ur 1 ] } / ( C w f x y ) + [ C L 1 m i n E L 1 E R 2 T L 1 ( E R 1 1 ) ] / ( C w f C L 1 m i n E L 1 ) } } / ( E R 1 + E R 2 2 E R 1 E R 2 ) { { C H 1 m i n E H 1 E R 1 ( E R 2 1 ) T H 1 ( C w f C L 1 m i n E L 1 ) [ ( η t ur 1 1 ) x y η t ur 1 ] } / ( C w f E R 2 x y ) + E L 1 T L 1 C L 1 m i n ( E R 1 1 ) } / [ ( E R 1 + E R 2 2 E R 1 E R 2 ) ( C w f C L 1 m i n E L 1 ) ] + { C H 1 m i n E H 1 ( E R 2 1 ) T H 1 [ ( η t ur 1 1 )   x y η t ur 1 ] } / ( C w f E R 2 x y ) } } / [ ( E R 1 1 ) ( η com 2 + x a 1 ) ] a 5 = [ 1 / ( C w f E R 2 x x a y y a ) ] [ ( η t ur 2 1 ) x a y a η t ur 2 ] { { { a 1 a 2 E R 2 { C H 1 m i n E H 1 ( 2 E R 1 1 ) ( E R 2 1 ) [ ( η t ur 1 1 ) x y η t ur 1 ] + [ x y η com 1 ( E R 1 1 ) C w f 2 ] / [ ( η com 1 + x 1 ) ( C w f C L 1 m i n E L 1 ) ] C w f ( 2 E R 1 1 ) ( E R 2 1 ) [ ( η t ur 1 1 ) x y η t ur 1 ] } } / ( E R 1 + E R 2 2 E R 1 E R 2 ) } + { C H 1 m i n E H 1 E R 1 T H 1 ( E R 2 1 ) ( C w f C L 1 m i n E L 1 ) [ ( η t ur 1 1 ) x y η t ur 1 ] + ( E R 1 1 ) C L 1 m i n C w f E L 1 E R 2 T L 1 x y } / { [ E R 1 ( 2 E R 2 1 ) E R 2 ] ( C w f C L 1 m i n E L 1 ) } + C H 1 m i n E H 1 ( E R 2 1 ) T H 1 [ ( η t ur 1 1 ) x y η t ur 1 ] } b 1 = { C L 2 m i n E L 2 { C w f x ( 2 E R 1 1 ) ( E R 2 1 ) ( C H 1 m i n E H 1 + C L 1 m i n E L 1 ) C H 1 m i n C L 1 m i n E H 1 E L 1 x ( 2 E R 1 1 ) ( E R 2 1 ) + C w f 2 { x ( 2 E R 1 1 ) ( E R 2 1 ) ( x y 1 ) + x y [ E R 1 ( 2 x 1 2 E R 2 x ) + E R 2 x x + 1 ] } } / { [ E R 1 ( 2 E R 2 1 ) E R 2 ] C w f x 2 y ( C w f C L 1 m i n E L 1 ) } + { C H 1 m i n E H 1 ( E R 2 1 ) { [ x a 1 + x a ( 2 E R 1 1 ) ( x a y a 1 ) E R 1 ( 2 x a 1 ) ] x a y a } / ( x y ) + C w f 2 { x a y a [ ( x a E R 2 ) E R 1 x a + 1 ] x a ( E R 1 1 ) ( x a y a 1 ) } / [ x ( C w f C L 1 m i n E L 1 ) ] C w f ( E R 2 1 ) { x a ( 2 E R 1 1 ) ( x a y a 1 ) + x a y a [ x a 1 E R 1 ( 2 x a 1 ) ] } / ( x y ) } / [ x a ( E R 1 + E R 2 2 E R 1 E R 2 ) ] } / ( x a y a ) b 2 = { { x a y a { C L 1 m i n E L 1 { C L 2 m i n E L 2 x a [ E R 1 T L 3 ( 2 E R 2 1 ) E R 2 T L 3 ] C w f T L 1 [ E R 1 E R 2 ( 1 + x a ) + x a ] } C L 2 m i n C w f E L 2 T L 3 x a [ E R 1 ( 2 E R 2 1 ) E R 2 ] } + C L 1 m i n E L 1 T L 1 x a ( E R 1 1 ) ( C w f C L 2 m i n E L 2 ) } / { x a 2 y a ( C w f C L 1 m i n E L 1 ) [ E R 1 ( 2 E R 2 1 ) E R 2 ] } + C H 1 m i n E H 1 T H 1 ( E R 2 1 ) { ( 2 E R 1 1 ) C L 2 m i n E L 2 x a + C w f x a y a [ E R 1 ( 1 + x a ) + x a ] ( 2 E R 1 1 ) C w f x a } } / { C w f x y x a 2 y a [ E R 1 ( 2 E R 2 1 ) E R 2 ] } b 3 = { b 1 E R 1 [ E R 1 ( 2 E R 2 1 ) E R 2 ] { C H 1 m i n E H 1 ( E R 2 1 ) { C L 1 m i n C L 2 m i n E L 1 E L 2 x [ x a y a ( T L 3 E R 1 T L 3 ) E R 1 T L 1 ] + C w f E L 1 C L 1 m i n E R 1 T L 1 x + C L 2 m i n C w f E L 2 { E R 1 T H 1 + x a y a [ x E R 1 T L 3 T L 3 ( 1 + x ) + T L 3 ] } / C w f C w f 2 E R 1 T H 1 } x C L 1 m i n E L 1 ( E R 2 1 ) [ x a E L 2 C L 2 m i n T L 3 y a ( E R 1 1 ) + E R 1 T L 1 ( C L 2 m i n E L 2 C w f ) ] C L 2 m i n C w f E L 2 T L 3 x a y a { x ( E R 1 1 ) ( E R 2 1 ) ( x y 1 ) + x y [ E R 1 ( E R 2 + x 2 E R 2 E R 2 x ) + E R 2 x x + 1 ] } } / ( x 2 x a y y a ) b 1 b 2 E R 2 ( E R 1 1 ) ( E R 1 + E R 2 2 E R 1 E R 2 ) { C H 1 m i n E H 1 E R 1 ( C w f E L 1 C L 1 m i n ) ( E R 2 1 ) / ( C w f E R 2 x y ) + E R 1 ( C w f C L 1 m i n E L 1 ) ( E R 2 1 ) / ( E R 2 x y ) + C w f ( E R 1 1 ) / x } + E R 2 ( E R 1 1 ) ( E R 1 + E R 2 2 E R 1 E R 2 ) { C H 1 m i n E H 1 E R 1 T H 1 ( C w f C L 1 m i n E L 1 ) ( E R 2 1 ) / ( C w f E R 2 x y ) C L 1 m i n E L 1 ( E R 1 1 ) T L 1 } } / [ ( C w f C L 1 m i n E L 1 ) ( E R 1 + E R 2 2 E R 1 E R 2 ) 2 ] b 4 = { { { b 1 b 2 ( E R 1 1 ) { [ C H 1 m i n E H 1 ( E R 1 1 ) ( E R 2 1 ) ] / ( C w f x y ) + [ ( E R 1 E R 2 1 ) C w f ] / [ x ( C w f C L 1 m i n E L 1 ) ] [ ( E R 1 1 ) ( E R 2 1 ) ( x y 1 ) ] / ( x y ) + E R 1 E R 2 E R 1 E R 2 + 1 } } / ( E R 2 + E R 1 2 E R 1 E R 2 ) + { E R 1 { [ C H 1 m i n E H 1 E R 1 ( E R 2 1 ) T H 1 ] / ( C w f x y ) + [ C L 1 m i n E L 1 E R 2 T L 1 ( E R 1 1 ) ] / ( C w f C L 1 m i n E L 1 ) / ( E R 1 + E R 2 2 E R 1 E R 2 ) { [ E H 1 C H 1 m i n E R 1 T H 1 ( E R 2 1 ) ( C w f C L 1 m i n E L 1 ) ] / ( C w f E R 2 x y ) + C L 1 m i n E L 1 T L 1 ( E R 1 1 ) } / [ ( C w f C L 1 m i n E L 1 ) ( E R 1 + E R 2 2 E R 1 E R 2 ) + [ C H 1 m i n E H 1 ( E R 2 1 ) T H 1 ] / ( C w f E R 2 x y ) } } / [ x a ( E R 1 1 ) ] b 5 = [ 1 / ( C w f E R 2 x x a y y a ) ] { { { b 1 b 2 E R 2 { C H 1 m i n E H 1 ( 2 E R 1 1 ) ( E R 2 1 ) + [ C w f 2 x y ( E R 1 1 ) ] / [ ( C w f C L 1 m i n E L 1 ) ] + C w f ( 2 E R 1 1 ) ( E R 2 1 ) } } / ( 2 E R 1 E R 2 + E R 1 + E R 2 ) } + { C H 1 m i n E H 1 E R 1 T H 1 ( E R 2 1 ) ( C w f C L 1 m i n E L 1 ) + C L 1 m i n C w f E L 1 E R 2 T L 1 x y ( E R 1 1 ) } / { [ E R 1 ( 2 E R 2 1 ) E R 2 ] ( C w f C L 1 m i n E L 1 ) } C H 1 m i n E H 1 T H 1 ( E R 2 1 ) c 1 = { C w f E L 2 [ ( η t ur 2 1 ) x a y a η t ur 2 ] { C w f ( 2 E R 1 1 ) ( E R 2 1 ) ( η com 1 + x 1 ) [ ( η t ur 1 1 ) x y η t ur 1 ] ( C w f E H 1 + C w f E L 1 ) + E H 1 C w f 2 E L 1 ( 2 E R 1 1 ) ( E R 2 1 ) ( η com 1 + x 1 ) [ ( η t ur 1 1 ) x y η t ur 1 ] + C w f 2 { η t ur 1 ( 2 E R 1 1 ) ( E R 2 1 ) ( η com 1 + x 1 ) ( x y 1 ) + x y { E R 1 [ η com 1 + 2 x 2 2 E R 2 ( η com 1 + x 1 ) ] + E R 2 ( η com 1 + x 1 ) x + 1 } } } / { ( η com 1 + x 1 ) [ E R 1 ( 2 E R 2 1 ) E R 2 ] C w f 2 x y ( 1 E L 1 ) } + { C w f E H 1 ( E R 2 1 ) [ ( η t ur 1 1 ) x y η t ur 1 ] { x a y a [ x a 1 E R 1 ( η com 2 + 2 x a 2 ) ] + η t ur 2 ( 2 E R 1 1 ) ( η com 2 + x a 1 ) ( x a y a 1 ) } / ( x y ) + C w f 2 η com 1 { x a y a [ ( η com 2 + x a 1 E R 2 η com 2 ) E R 1 x a + 1 ] η t ur 2 ( E R 1 1 ) ( η com 2 + x a 1 ) ( x a y a 1 ) } / [ C w f ( η com 1 + x 1 ) ( 1 E L 1 ) ] + C w f ( E R 2 1 ) [ ( η t ur 1 1 ) x y η t ur 1 ] { ( 2 E R 1 1 ) ( η com 2 + x a 1 ) ( x a y a 1 ) η t ur 2 + x a y a [ x a 1 E R 1 ( η com 2 + 2 x a 2 ) ] } / ( x y ) } / [ ( E R 1 + E R 2 2 E R 1 E R 2 ) ( η com 2 + x a 1 ) ] } / ( x a y a ) c 2 = { { x a y a { C w f E L 1 { C w f E L 2 ( η com 2 + x a 1 ) [ E R 1 T L 3 ( 2 E R 2 1 ) + ( E R 1 1 ) ( η t ur 2 1 ) T L 1 E R 2 T L 3 ] C w f T L 1 { ( E R 2 + η t ur 2 1 ) E R 1 η com 2 + E R 1 ( η t ur 2 1 ) ( x a 1 ) η t ur 2 ( η com 2 + x a ) + η t ur 2 + x a 1 } } C w f 2 E L 2 T L 3 [ E R 1 ( 2 E R 2 1 ) E R 2 ] ( η com 2 + x a 1 ) } + C w f 2 E L 1 η t ur 2 T L 1 ( E R 1 1 ) ( η com 2 + x a 1 ) ( 1 E L 2 ) } / { ( η com 2 + x a 1 ) x a y a C w f ( 1 E L 1 ) [ E R 1 ( 2 E R 2 1 ) E R 2 ] } C w f E H 1 ( E R 2 1 ) T H 1 [ ( η t ur 1 1 ) x y η t ur 1 ] { C w f E L 2 ( 2 E R 1 1 ) ( η com 2 + x a 1 ) ( η t ur 2 + x a y a x a η t ur 2 y a ) + C w f x a y a [ E R 1 η com 2 ( 2 η t ur 2 1 ) + 2 E R 1 ( η t ur 2 1 ) ( x a 1 ) ( η com 2 + x a ) η t ur 2 + η t ur 2 + x a 1 ] C w f η t ur 2 ( 2 E R 1 1 ) ( η com 2 + x a 1 ) } } / { ( η com 2 + x a 1 ) C w f x y x a y a [ E R 1 ( 2 E R 2 1 ) E R 2 ] } c 3 = { c 1 E R 1 [ E R 1 ( 2 E R 2 1 ) E R 2 ] { C w f E H 1 ( E R 2 1 ) [ ( η t ur 1 1 ) x y η t ur 1 ] { C w f 2 E L 1 E L 2 ( η com 1 + x 1 ) { E R 1 η t ur 2 T L 1 x a y a [ E R 1 T L 1 ( η t ur 2 1 ) E R 1 T L 3 + T L 3 ] } + C w f 2 E L 1 E R 1 T L 1 ( η com 1 + x 1 ) ( η t ur 2 + x a y a x a η t ur 2 y a ) + C w f E L 2 { E R 1 η com 1 η t ur 2 T H 1 + x a y a [ T L 3 + E R 1 η com 1 ( T H 1 + T L 3 η t ur 2 T H 1 ) + E R 1 T L 3 ( x 1 ) T L 3 ( η com 1 + x ) ] } + C w f 2 E R 1 η com 1 T H 1 [ ( η t ur 2 1 ) x a y a η t ur 2 ] } + C w f ( η com 1 + x 1 ) E L 1 [ ( η t ur 1 1 ) x y η t ur 1 ] ( E R 2 1 ) { x a y a [ C w f E R 1 T L 1 ( 1 E L 2 ) ( η t ur 2 1 ) + C w f E L 2 ( E R 1 1 ) T L 3 ] + E R 1 η t ur 2 T L 1 ( C w f E L 2 C w f ) } C w f 2 E L 2 T L 3 x a y a { ( η t ur 1 E R 1 1 ) ( E R 2 1 ) ( η com 1 + x 1 ) ( x y 1 ) + x y [ E R 1 ( E R 2 + η com 1 + x 1 2 η com 1 E R 2 E R 2 x ) + E R 2 ( η com 1 + x 1 ) x + 1 ] } } / [ x x a y y a ( η com 1 + x 1 ) ] c 1 c 2 E R 2 ( E R 1 1 ) ( E R 1 + E R 2 2 E R 1 E R 2 ) { C w f 2 ( 1 E L 1 ) ( E R 2 1 ) E H 1 E R 1 [ ( η t ur 1 1 ) x y η t ur 1 ] / ( C w f E R 2 x y ) + E R 1 C w f ( E R 2 1 ) ( 1 E L 1 ) η t ur 1 / ( E R 2 x y ) C w f ( η t ur 1 1 ) ( 1 E L 1 ) ( E R 2 1 ) E R 1 / E R 2 + C w f η com 1 ( E R 1 1 ) / ( η com 1 + x 1 ) } + E R 2 ( E R 1 1 ) ( E R 1 + E R 2 2 E R 1 E R 2 ) { C w f 2 E H 1 E R 1 T H 1 ( E R 2 1 ) ( 1 E L 1 ) [ ( η t ur 1 1 ) x y η t ur 1 ] / ( C w f E R 2 x y ) C w f E L 1 T L 1 ( E R 1 1 ) } } / [ C w f ( 1 E L 1 ) ( E R 1 + E R 2 2 E R 1 E R 2 ) 2 ] c 4 = { η com 2 { { c 1 c 2 ( E R 1 1 ) { E H 1 ( E R 1 1 ) ( E R 2 1 ) [ ( η t ur 1 1 ) x y η t ur 1 ] / ( x y ) + η com 1 ( E R 1 E R 2 1 ) / [ ( η com 1 + x 1 ) ( 1 E L 1 ) ] η t ur 1 ( E R 1 1 ) ( E R 2 1 ) ( x y 1 ) / ( x y ) + E R 1 E R 2 E R 1 E R 2 + 1 } } / ( E R 1 + E R 2 2 E R 1 E R 2 ) + { E R 1 { ( E R 2 1 ) E H 1 E R 1 T H 1 [ ( η t ur 1 1 ) x y η t ur 1 ] / ( x y ) + [ E L 1 E R 2 T L 1 ( E R 1 1 ) ] / ( 1 E L 1 ) } } / ( E R 1 + E R 2 2 E R 1 E R 2 ) { { C w f ( E R 2 1 ) ( 1 E L 1 ) C w f E H 1 E R 1 T H 1 [ ( η t ur 1 1 ) x y η t ur 1 ] } / ( C w f E R 2 x y ) + C w f E L 1 T L 1 ( E R 1 1 ) } / [ C w f ( E R 1 + E R 2 2 E R 1 E R 2 ) ( 1 E L 1 ) ] + { C w f E H 1 ( E R 2 1 ) T H 1 [ ( η t ur 1 1 ) x y η t ur 1 ] } / ( C w f E R 2 x y ) } } / [ ( E R 1 1 ) ( η com 2 + x a 1 ) ] c 5 = [ 1 / ( C w f E R 2 x x a y y a ) ] [ ( η t ur 2 1 ) x a y a η t ur 2 ] { { { c 1 c 2 E R 2 { C w f E H 1 ( 2 E R 1 1 ) ( E R 2 1 ) [ ( η t ur 1 1 ) x y η t ur 1 ] + C w f x y η com 1 ( E R 1 1 ) / [ ( η com 1 + x 1 ) ( 1 E L 1 ) ] C w f ( 2 E R 1 1 ) ( E R 2 1 ) [ ( η t ur 1 1 ) x y η t ur 1 ] } } / ( E R 1 + E R 2 2 E R 1 E R 2 ) } + { C w f E H 1 E R 1 T H 1 ( E R 2 1 ) ( 1 E L 1 ) [ ( η t ur 1 1 ) x y η t ur 1 ] + C w f E L 1 E R 2 T L 1 x y ( E R 1 1 ) } / { [ E R 1 ( 2 E R 2 1 ) E R 2 ] ( 1 E L 1 ) } + C w f E H 1 T H 1 ( E R 2 1 ) [ ( η t ur 1 1 ) x y η t ur 1 ] } d 1 = { C w f E L 2 { C w f 2 x ( 2 E R 1 1 ) ( E R 2 1 ) ( E H 1 + E L 1 ) C w f 2 E H 1 E L 1 x ( 2 E R 1 1 ) ( E R 2 1 ) + C w f 2 { x ( 2 E R 1 1 ) ( E R 2 1 ) ( x y 1 ) + x y { E R 1 [ 2 x 1 2 E R 2 x ] + E R 2 x x + 1 } } } / { C w f 2 x 2 y ( 1 E L 1 ) [ E R 1 ( 2 E R 2 1 ) E R 2 ] } + { C w f E H 1 ( E R 2 1 ) { x a y a [ E R 1 ( 2 x a 1 ) + x a 1 + x a ( 2 E R 1 1 ) ( x a y a 1 ) ] } / ( x y ) + C w f { x a y a [ ( x a E R 2 ) E R 1 x a + 1 ] x a ( E R 1 1 ) ( x a y a 1 ) } / [ x ( 1 E L 1 ) ] C w f ( E R 2 1 ) { x a ( 2 E R 1 1 ) ( x a y a 1 ) + x a y a [ x a 1 E R 1 ( 2 x a 1 ) ] } / ( x y ) } / [ x a ( E R 1 + E R 2 2 E R 1 E R 2 ) ] } / ( x a y a ) d 2 = { { x a y a { C w f 2 E L 1 { E L 2 x a [ E R 1 T L 3 ( 2 E R 2 1 ) E R 2 T L 3 ] T L 1 ( E R 1 E R 2 1 ) } C w f 2 E L 2 T L 3 x a [ E R 1 ( 2 E R 2 1 ) E R 2 ] } + C w f 2 E L 1 T L 1 x a ( E R 1 1 ) ( 1 E L 2 ) / { C w f x a 2 y a ( 1 E L 1 ) [ E R 1 ( 2 E R 2 1 ) E R 2 ] } + C w f 2 E H 1 T H 1 ( E R 2 1 ) { ( 2 E R 1 1 ) E L 2 x a + x a y a ( E R 1 1 ) x a ( 2 E R 1 1 ) } } / { C w f x y x a 2 y a [ E R 1 ( 2 E R 2 1 ) E R 2 ] } d 3 = { d 1 E R 1 [ E R 1 ( 2 E R 2 1 ) E R 2 ] { C w f E H 1 ( E R 2 1 ) { C w f 2 E L 1 E L 2 x [ x a y a T L 3 ( 1 E R 1 ) E R 1 T L 1 ] + x C w f 2 E L 1 E R 1 T L 1 + C w f E L 2 { E R 1 T H 1 + x a y a [ E R 1 T L 3 + E R 1 T L 3 ( x 1 ) T L 3 x ] } C w f 2 E R 1 T H 1 } { E L 2 T L 3 x a y a ( E R 1 1 ) + ( E L 2 1 ) E R 1 T L 1 } C w f 2 x E L 1 ( E R 2 1 ) C w f 2 E L 2 T L 3 x a y a { x y [ E R 1 ( E R 2 + x 2 E R 2 E R 2 x ) + E R 2 x x + 1 ] + x ( E R 1 1 ) ( E R 2 1 ) ( x y 1 ) } } / ( x 2 x a y y a ) d 1 d 2 E R 2 ( E R 1 1 ) ( E R 1 + E R 2 2 E R 1 E R 2 ) { C w f 2 ( 1 E L 1 ) ( E R 2 1 ) E H 1 E R 1 / ( C w f E R 2 x y ) + C w f E R 1 ( 1 E L 1 ) ( E R 2 1 ) / ( E R 2 x y ) + C w f ( E R 1 1 ) / x } + ( E R 1 + E R 2 2 E R 1 E R 2 ) E R 2 ( E R 1 1 ) { C w f 2 E H 1 E R 1 T H 1 ( 1 E L 1 ) ( E R 2 1 ) / ( C w f E R 2 x y ) C w f E L 1 ( E R 1 1 ) T L 1 } / [ ( C w f C w f E L 1 ) ( E R 1 + E R 2 2 E R 1 E R 2 ) 2 ] d 4 = { { { d 1 d 2 ( E R 1 1 ) { E H 1 ( E R 1 1 ) ( E R 2 1 ) / ( x y ) + ( E R 1 E R 2 1 ) / [ x ( 1 E L 1 ) ] ( E R 1 1 ) ( E R 2 1 ) ( x y 1 ) / ( x y ) + E R 1 E R 2 E R 1 E R 2 + 1 } } / ( E R 2 + E R 1 2 E R 1 E R 2 ) + { E R 1 { E H 1 E R 1 ( E R 2 1 ) T H 1 / ( x y ) + E L 1 E R 2 T L 1 ( E R 1 1 ) / ( 1 E L 1 ) } } / ( 2 E R 1 E R 2 + E R 1 + E R 2 ) { E H 1 E R 1 T H 1 ( E R 2 1 ) ( 1 E L 1 ) / ( E R 2 x y ) + E L 1 T L 1 ( E R 1 1 ) } / [ ( 1 E L 1 ) ( E R 1 + E R 2 2 E R 1 E R 2 ) ] E H 1 T H 1 ( E R 2 1 ) / ( E R 2 x y ) } } / [ x a ( E R 1 1 ) ] d 5 = [ 1 / ( C w f E R 2 x x a y y a ) ] { { { d 1 d 2 E R 2 { C w f E H 1 ( 2 E R 1 1 ) ( E R 2 1 ) C w f x y ( E R 1 1 ) / ( 1 E L 1 ) + C w f ( 2 E R 1 1 ) ( E R 2 1 ) } } / ( E R 1 + E R 2 2 E R 1 E R 2 ) } + { C w f 2 E L 1 E R 2 T L 1 x y ( E R 1 1 ) C w f 2 E H 1 E R 1 ( E R 2 1 ) ( 1 E L 1 ) T H 1 } / { C w f ( 1 E L 1 ) [ E R 1 ( 2 E R 2 1 ) E R 2 ] } C w f E H 1 T H 1 ( E R 2 1 ) } e = { ( η com 1 + x 1 ) { C H 1 m i n E H 1 ( C w f C L 1 m i n E L 1 ) T H 1 [ ( η t ur 1 1 ) x y η t ur 1 ] C L 1 m i n C w f E L 1 T L 1 x y } } / { C H 1 m i n C L 1 m i n E H 1 E L 1 ( η com 1 + x 1 ) [ ( η t ur 1 1 ) x y η t ur 1 ] + C w f 2 [ ( 1 x ) x y + η t ur 1 ( η com 1 + x 1 ) ( x y 1 ) ] C w f ( C H 1 m i n E H 1 + E L C L 1 m i n ) ( η com 1 + x 1 ) [ ( η t ur 1 1 ) x y η t ur 1 ] }

References

  1. Invernizzi, C.M. Prospects of mixtures as working fluids in real-gas Brayton cycles. Energies 2017, 10, 1649. [Google Scholar] [CrossRef] [Green Version]
  2. Wang, J.P.; Wang, J.; Lund, P.D.; Zhu, H.X. Thermal performance analysis of a direct-heated recompression supercritical carbon dioxide Brayton cycle using solar concentrators. Energies 2019, 12, 4358. [Google Scholar] [CrossRef] [Green Version]
  3. Jaszczur, M.; Dudek, M.; Kolenda, Z. Thermodynamic analysis of advanced gas turbine combined cycle integration with a high-temperature nuclear reactor and cogeneration unit. Energies 2020, 13, 400. [Google Scholar] [CrossRef] [Green Version]
  4. Vecchiarelli, J.; Kawall, J.G.; Wallace, J.S. Analysis of a concept for increasing the efficiency of a Brayton cycle via isothermal heat addition. Int. J. Energy Res. 1997, 21, 113–127. [Google Scholar] [CrossRef]
  5. Göktun, S.; Yavuz, H. Thermal efficiency of a regenerative Brayton cycle with isothermal heat addition. Energy Convers. Manag. 1999, 40, 1259–1266. [Google Scholar] [CrossRef]
  6. Erbay, L.B.; Göktun, S.; Yavuz, H. Optimal design of the regenerative gas turbine engine with isothermal heat addition. Appl. Energy 2001, 68, 249–264. [Google Scholar] [CrossRef]
  7. Jubeh, N.M. Exergy analysis and second law efficiency of a regenerative Brayton cycle with isothermal heat addition. Entropy 2005, 7, 172–187. [Google Scholar] [CrossRef] [Green Version]
  8. El-Maksound, R.M.A. Binary Brayton cycle with two isothermal processes. Energy Convers. Manag. 2013, 73, 303–308. [Google Scholar] [CrossRef]
  9. Qi, W.; Wang, W.H.; Chen, L.G. Exergy analysis and optimization for binary Brayton cycle with two isothermal heat additions. Therm. Turbine 2017, 46, 76–81. (In Chinese) [Google Scholar]
  10. Andresen, B.; Salamon, P.; Barry, R.S. Thermodynamics in finite time. Phys. Today 1987, 37, 62–70. [Google Scholar] [CrossRef]
  11. Chen, L.G.; Li, J. Thermodynamic optimization theory for Two-Heat-Reservoir cycles; Science Press: Beijing, China, 2020. [Google Scholar]
  12. Barranco-Jimenez, M.A.; Ramos-Gayosso, I.; Rosales, M.A.; Angulo-Brown, F. A proposal of ecologic taxes based on thermoeconomic performance of heat engine models. Energies 2009, 2, 1042–1056. [Google Scholar] [CrossRef]
  13. Chen, C.L.; Ho, C.E.; Yau, H.T. Performance analysis and optimization of a solar powered Stirling engine with heat transfer considerations. Energies 2012, 5, 3573–3585. [Google Scholar] [CrossRef] [Green Version]
  14. Gonca, G. Energy and exergy analyses of single and double reheat irreversible Rankine cycle. Int. J. Exergy 2015, 18, 402–422. [Google Scholar] [CrossRef]
  15. Han, Z.H.; Li, P.; Han, X.; Mei, Z.K.; Wang, Z. Thermo-economic performance analysis of a regenerative superheating organic Rankine cycle for waste heat recovery. Energies 2017, 10, 1593. [Google Scholar] [CrossRef] [Green Version]
  16. White, M.T.; Sayma, A.I. A generalised assessment of working fluids and radial turbines for non-recuperated subcritical organic Rankine cycles. Energies 2018, 11, 800. [Google Scholar] [CrossRef] [Green Version]
  17. Chen, W.J.; Feng, H.J.; Chen, L.G.; Xia, S.J. Optimal performance characteristics of subcritical simple irreversible organic Rankine cycle. J. Therm. Sci. 2018, 27, 555–562. [Google Scholar] [CrossRef]
  18. Vittorini, D.; Cipollone, R.; Carapellucci, R. Enhanced performances of ORC-based units for low grade waste heat recovery via evaporator layout optimization. Energy Convers. Manag. 2019, 197, 111874. [Google Scholar] [CrossRef]
  19. Koo, J.; Oh, S.R.; Choi, Y.U.; Jung, J.H.; Park, K. Optimization of an organic Rankine cycle system for an LNG-powered ship. Energies 2019, 12, 1933. [Google Scholar] [CrossRef] [Green Version]
  20. Wang, S.; Zhang, W.; Feng, Y.Q.; Wang, X.; Wang, Q.; Liu, Y.Z.; Wang, Y.; Yao, L. Entropy, entransy and exergy analysis of a dual-loop organic Rankine cycle (DORC) using mixture working fluids for engine waste heat recovery. Energies 2020, 13, 1301. [Google Scholar] [CrossRef] [Green Version]
  21. Feng, H.J.; Chen, W.J.; Chen, L.G.; Tang, W. Power and efficiency optimizations of an irreversible regenerative organic Rankine cycle. Energy Convers. Manag. 2020, 220, 113079. [Google Scholar] [CrossRef]
  22. Chen, L.G.; Ma, K.; Feng, H.J.; Ge, Y.L. Optimal configuration of a gas expansion process in a piston-type cylinder with generalized convective heat transfer law. Energies 2020, 13, in press. [Google Scholar]
  23. Chen, L.G.; Meng, F.K.; Sun, F.R. Thermodynamic analyses and optimizations for thermoelectric devices: the state of the arts. Sci. China Technol. Sci. 2016, 59, 442–455. [Google Scholar] [CrossRef]
  24. Chen, J.L.; Li, K.W.; Liu, C.W.; Li, M.; Lv, Y.C.; Jia, L.; Jiang, S.S. Enhanced efficiency of thermoelectric generator by optimizing mechanical and electrical structures. Energies 2017, 10, 1329. [Google Scholar] [CrossRef] [Green Version]
  25. Feng, Y.L.; Chen, L.G.; Meng, F.K.; Sun, F.R. Influences of external heat transfer and Thomson effect on performance of TEG-TEC combined thermoelectric device. Sci. China Technol. Sci. 2018, 61, 1600–1610. [Google Scholar] [CrossRef]
  26. Li, G.; Wang, Z.C.; Wang, F.; Wang, X.Z.; Li, S.B.; Xue, M.S. Experimental and numerical study on the effect of interfacial heat transfer on performance of thermoelectric generators. Energies 2019, 12, 3797. [Google Scholar] [CrossRef] [Green Version]
  27. Açıkkalp, E.; Chen, L.G.; Ahmadi, M.H. Comparative performance analyses of molten carbonate fuel cell-alkali metal thermal to electric converter and molten carbonate fuel cell –thermoelectric generator hybrid systems. Energy Rep. 2020, 6, 10–16. [Google Scholar] [CrossRef]
  28. Gonca, G. Exergetic and thermo-ecological performance analysis of a Gas-Mercury combined turbine system (GMCTS). Energy Convers. Manag. 2017, 151, 32–42. [Google Scholar] [CrossRef]
  29. Lin, J.; Zhang, Z.H.; Zhu, X.Y.; Meng, C.; Li, N.; Chen, J.C.; Zhao, Y.R. Performance evaluation and parametric optimization strategy of a thermocapacitive heat engine to harvest low-grade heat. Energy Convers. Manag. 2019, 184, 40–47. [Google Scholar] [CrossRef]
  30. Zhu, F.L.; Chen, L.G.; Wang, W.H. Thermodynamic analysis and optimization of irreversible Maisotsenko-Diesel cycle. J. Therm. Sci. 2019, 28, 659–668. [Google Scholar] [CrossRef]
  31. Dumitrascu, G.; Feidt, M.; Popescu, A.; Grigorean, S. Endoreversible trigeneration cycle design based on finite physical dimensions thermodynamics. Energies 2019, 12, 3165. [Google Scholar]
  32. Wu, Z.X.; Chen, L.G.; Feng, H.J. Thermodynamic optimization for an endoreversible Dual-Miller cycle (DMC) with finite speed of piston. Entropy 2018, 20, 165. [Google Scholar] [CrossRef] [Green Version]
  33. You, J.; Chen, L.G.; Wu, Z.X.; Sun, F.R. Thermodynamic performance of Dual-Miller cycle (DMC) with polytropic processes based on power output, thermal efficiency and ecological function. Sci. China Technol. Sci. 2018, 61, 453–463. [Google Scholar] [CrossRef]
  34. Abedinnezhad, S.; Ahmadi, M.H.; Pourkiaei, S.M.; Pourfayaz, F.; Mosavi, A.; Feidt, M.; Shamshirband, S. Thermodynamic assessment and multi-objective optimization of performance of irreversible Dual-Miller cycle. Energies 2019, 12, 4000. [Google Scholar] [CrossRef] [Green Version]
  35. Ding, Z.M.; Ge, Y.L.; Chen, L.G.; Feng, H.J.; Xia, S.J. Optimal performance regions of Feynman’s ratchet engine with different optimization criteria. J. Non-Equilib. Thermodyn. 2020, 45, 191–207. [Google Scholar] [CrossRef]
  36. Feng, H.J.; Qin, W.X.; Chen, L.G.; Cai, C.G.; Ge, Y.L.; Xia, S.J. Power output, thermal efficiency and exergy-based ecological performance optimizations of an irreversible KCS-34 coupled to variable temperature heat reservoirs. Energy Convers. Manag. 2020, 205, 112424. [Google Scholar] [CrossRef]
  37. Chen, L.G.; Sun, F.R.; Wu, C. Performance analysis of an irreversible Brayton heat engine. J. Inst. Energy 1997, 70, 2–8. [Google Scholar]
  38. Sadatsakkak, S.A.; Ahmadi, M.H.; Ahmadi, M.A. Thermodynamic and thermo-economic analysis and optimization of an irreversible regenerative closed Brayton cycle. Energy Convers. Manag. 2015, 94, 124–129. [Google Scholar] [CrossRef]
  39. Naserian, M.M.; Farahat, S.; Sarhaddi, F. Finite time exergy analysis and multi-objective ecological optimization of a regenerative Brayton cycle considering the impact of flow rate variations. Energy Convers. Manag. 2015, 103, 790–800. [Google Scholar] [CrossRef]
  40. Jansen, E.; Bello-Ochende, T.; Meyer, J.P. Integrated solar thermal Brayton cycles with either one or two regenerative heat exchangers for maximum power output. Energy 2015, 86, 737–748. [Google Scholar] [CrossRef]
  41. Sánchez-Orgaz, S.; Medina, A.; Calvo Hernández, A. Thermodynamic model and optimization of a multi-step irreversible Brayton cycle. Energy Convers. Manag. 2010, 51, 2134–2143. [Google Scholar] [CrossRef]
  42. Sanchez-Orgaz, S.; Pedemonte, M.; Ezzatti, P.; Curto-Risso, P.L.; Medina, A.; Calvo Hernández, A. Multi-objective optimization of a multi-step solar-driven Brayton plant. Energy Convers. Manag. 2015, 99, 346–358. [Google Scholar] [CrossRef]
  43. Chen, L.G.; Feng, H.J.; Ge, Y.L. Power and efficiency optimization for open combined regenerative Brayton and inverse Brayton cycles with regeneration before the inverse cycle. Entropy 2020, 22, 677. [Google Scholar] [CrossRef]
  44. Açıkkalp, E. Performance analysis of irreversible solid oxide fuel cell–Brayton heat engine with ecological based thermo-environmental criterion. Energy Convers. Manag. 2017, 148, 279–286. [Google Scholar] [CrossRef]
  45. Zhu, F.L.; Chen, L.G.; Wang, W.H. Thermodynamic analysis of an irreversible Maisotsenko reciprocating Brayton cycle. Entropy 2018, 20, 167. [Google Scholar] [CrossRef] [Green Version]
  46. Chen, L.G.; Shen, J.F.; Ge, Y.L.; Wu, Z.X.; Wang, W.H.; Zhu, F.L.; Feng, H.J. Power and efficiency optimization of open Maisotsenko-Brayton cycle and performance comparison with traditional open regenerated Brayton cycle. Energy Convers. Manag. 2020, 217, 113001. [Google Scholar] [CrossRef]
  47. Feng, H.J.; Tao, G.S.; Tang, C.Q.; Ge, Y.L.; Chen, L.G.; Xia, S.J. Exergoeconomic performance optimization for a regenerative gas turbine closed-cycle heat and power cogeneration plant. Energy Rep. 2019, 5, 1525–1531. [Google Scholar] [CrossRef]
  48. Chen, L.G.; Yang, B.; Feng, H.J.; Ge, Y.L.; Xia, S.J. Performance optimization of an open simple-cycle gas turbine combined cooling, heating and power plant driven by basic oxygen furnace gas in China’s steelmaking plants. Energy 2020, 203, 117791. [Google Scholar] [CrossRef]
  49. Kaushik, S.C.; Tyagi, S.K.; Singhal, M.K. Parametric study of an irreversible regenerative Brayton cycle with isothermal heat addition. Energy Convers. Manag. 2003, 44, 2013–2025. [Google Scholar] [CrossRef]
  50. Tyagi, S.K.; Kaushik, S.C.; Tiwari, V. Ecological optimization and parametric study of an irreversible regenerative modified Brayton cycle with isothermal heat addition. Entropy 2003, 5, 377–390. [Google Scholar] [CrossRef] [Green Version]
  51. Tyagi, S.K.; Chen, J.C. Performance evaluation of an irreversible regenerative modified Brayton heat engine based on the thermoeconomic criterion. Int. J. Power Energy Syst. 2006, 26, 66–74. [Google Scholar] [CrossRef]
  52. Kumar, R.; Kaushik, S.C.; Kumar, R. Power optimization of an irreversible regenerative Brayton cycle with isothermal heat addition. J. Therm. Eng. 2015, 1, 279–286. [Google Scholar] [CrossRef]
  53. Tyagi, S.K.; Chen, J.; Kaushik, S.C. Optimum criteria based on the ecological function of an irreversible intercooled regenerative modified Brayton cycle. Int. J. Exergy 2005, 2, 90–107. [Google Scholar] [CrossRef]
  54. Tyagi, S.K.; Wang, S.; Kaushik, S.C. Irreversible modified complex Brayton cycle under maximum economic condition. Indian J. Pure Appl. Phys. 2006, 44, 592–601. [Google Scholar]
  55. Tyagi, S.K.; Chen, J.; Kaushik, S.C.; Wu, C. Effects of intercooling on the performance of an irreversible regenerative modified Brayton cycle. Int. J. Power Energy Syst. 2007, 27, 256–264. [Google Scholar] [CrossRef]
  56. Tyagi, S.K.; Wang, S.; Park, S.R. Performance criteria on different pressure ratios of an irreversible modified complex Brayton cycle. Indian J. Pure Appl. Phys. 2008, 46, 565–574. [Google Scholar]
  57. Wang, J.H.; Chen, L.G.; Ge, Y.L.; Sun, F.R. Power and power density analyzes of an endoreversible modified variable-temperature reservoir Brayton cycle with isothermal heat addition. Int. J. Low-Carbon Technol. 2016, 11, 42–53. [Google Scholar] [CrossRef] [Green Version]
  58. Wang, J.H.; Chen, L.G.; Ge, Y.L.; Sun, F.R. Ecological performance analysis of an endoreversible modified Brayton cycle. Int. J. Sustain. Energy 2014, 33, 619–634. [Google Scholar] [CrossRef]
  59. Tang, C.Q.; Chen, L.G.; Wang, W.H.; Feng, H.J.; Xia, S.J. Performance optimization of the endoreversible simple MCBC coupled to variable-temperature reservoirs based on NSGA-II Algorithm. Power Gener. Technol. 2020. in press (In Chinese) [Google Scholar]
  60. Tang, C.Q.; Feng, H.J.; Chen, L.G.; Wang, W.H. Power density analysis and multi-objective optimization for a modified endoreversible simple closed Brayton cycle with one isothermal heating process. Energy Rep. 2020, 6. in press. [Google Scholar]
  61. Arora, R.; Kaushik, S.C.; Kumar, R.; Arora, R. Soft computing based multi-objective optimization of Brayton cycle power plant with isothermal heat addition using evolutionary algorithm and decision making. Appl. Soft Comput. 2016, 46, 267–283. [Google Scholar] [CrossRef]
  62. Qi, W.; Wang, W.H.; Chen, L.G. Power and efficiency performance analyses for a closed endoreversible binary Brayton cycle with two isothermal processes. Therm. Sci. Eng. Prog. 2018, 7, 131–137. [Google Scholar] [CrossRef]
  63. Chen, L.G.; Zheng, J.L.; Sun, F.R.; Wu, C. Performance comparison of an irreversible closed variable-temperature heat reservoir Brayton cycle under maximum power density and maximum power conditions. Proc. IMechE Part A J. Power Energy 2005, 219, 559–566. [Google Scholar] [CrossRef]
  64. Chen, L.G.; Zheng, J.L.; Sun, F.R.; Wu, C. Performance comparison of an endoreversible closed variable temperature heat reservoir Brayton cycle under maximum power density and maximum power conditions. Energy Convers. Manag. 2002, 43, 33–43. [Google Scholar] [CrossRef]
  65. Cheng, C.Y.; Chen, C.K. Ecological optimization of an endoreversible Brayton cycle. Energy Convers. Manag. 1998, 39, 33–34. [Google Scholar] [CrossRef]
  66. Zheng, J.L.; Chen, L.G.; Sun, F.R. Power density analysis of an endoreversible closed Brayton cycle. Int. J. Ambient Energy 2001, 22, 95–104. [Google Scholar] [CrossRef]
Figure 1. (a) Schematic diagram of the cycle [8]; (b) T-s diagram of the cycle.
Figure 1. (a) Schematic diagram of the cycle [8]; (b) T-s diagram of the cycle.
Energies 13 03212 g001
Figure 2. Flow chart of dimensionless power output (PO) optimization.
Figure 2. Flow chart of dimensionless power output (PO) optimization.
Energies 13 03212 g002
Figure 3. (a) Relationships of W ¯ max versus π com 1 and π com 2 ; (b) relationships of ( W ¯ top ) W ¯ max and ( W ¯ bot ) W ¯ max versus π com 1 and π com 2 .
Figure 3. (a) Relationships of W ¯ max versus π com 1 and π com 2 ; (b) relationships of ( W ¯ top ) W ¯ max and ( W ¯ bot ) W ¯ max versus π com 1 and π com 2 .
Energies 13 03212 g003
Figure 4. (a) Relationships of η W ¯ max versus π com 1 and π com 2 ; (b) relationships of ( π t ) W ¯ max and ( π t a ) W ¯ max versus π com 1 and π com 2 .
Figure 4. (a) Relationships of η W ¯ max versus π com 1 and π com 2 ; (b) relationships of ( π t ) W ¯ max and ( π t a ) W ¯ max versus π com 1 and π com 2 .
Energies 13 03212 g004
Figure 5. (a) Relationships of ( u H 1 ) W ¯ max and ( u H 2 ) W ¯ max versus π com 1 and π com 2 ; (b) relationships of ( u L 1 ) W ¯ max and ( u L 2 ) W ¯ max versus π com 1 and π com 2 .
Figure 5. (a) Relationships of ( u H 1 ) W ¯ max and ( u H 2 ) W ¯ max versus π com 1 and π com 2 ; (b) relationships of ( u L 1 ) W ¯ max and ( u L 2 ) W ¯ max versus π com 1 and π com 2 .
Energies 13 03212 g005
Figure 6. Relationships of ( u R 1 ) W ¯ max and ( u R 2 ) W ¯ max versus π com 1 and π com 2 .
Figure 6. Relationships of ( u R 1 ) W ¯ max and ( u R 2 ) W ¯ max versus π com 1 and π com 2 .
Energies 13 03212 g006
Figure 7. (a) Relationships of W ¯ max , 2 versus τ H 1 and τ H 3 ; (b) relationships of η W ¯ max versus τ H 1 and τ H 3 .
Figure 7. (a) Relationships of W ¯ max , 2 versus τ H 1 and τ H 3 ; (b) relationships of η W ¯ max versus τ H 1 and τ H 3 .
Energies 13 03212 g007
Figure 8. (a) Relationships of W ¯ max , 2 , η W ¯ max , 2 , ( W ¯ top ) W ¯ max , 2 and ( W ¯ bot ) W ¯ max , 2 versus η com 2 ; (b) relationships of ( π com 1 ) W ¯ max , 2 , ( π com 2 ) W ¯ max , 2 , ( π t ) W ¯ max , 2 and ( π t a ) W ¯ max , 2 versus η com 2 ; (c) relationships of ( u j ) W ¯ max , 2 versus η com 2 .
Figure 8. (a) Relationships of W ¯ max , 2 , η W ¯ max , 2 , ( W ¯ top ) W ¯ max , 2 and ( W ¯ bot ) W ¯ max , 2 versus η com 2 ; (b) relationships of ( π com 1 ) W ¯ max , 2 , ( π com 2 ) W ¯ max , 2 , ( π t ) W ¯ max , 2 and ( π t a ) W ¯ max , 2 versus η com 2 ; (c) relationships of ( u j ) W ¯ max , 2 versus η com 2 .
Energies 13 03212 g008
Figure 9. (a) Relationships of W ¯ max versus C H 1 / C w f and C H 2 / C w f ; (b) relationships of η W ¯ max versus C H 1 / C w f and C H 2 / C w f .
Figure 9. (a) Relationships of W ¯ max versus C H 1 / C w f and C H 2 / C w f ; (b) relationships of η W ¯ max versus C H 1 / C w f and C H 2 / C w f .
Energies 13 03212 g009
Figure 10. Effects of C L 1 / C H 1 on the characteristics of W ¯ max C H 1 / C w f and η W ¯ max C H 1 / C w f .
Figure 10. Effects of C L 1 / C H 1 on the characteristics of W ¯ max C H 1 / C w f and η W ¯ max C H 1 / C w f .
Energies 13 03212 g010
Table 1. Values or ranges of the variables.
Table 1. Values or ranges of the variables.
ParametersSymbolInitial ValueRangeUnit
Thermal capacity rate of outer fluid at RCC C H 1 1.2—— kW / K
Thermal capacity rate of outer fluid kW / K at CCC C H 2 1——
Thermal capacity rate of outer fluid kW / K at PC1 C L 1 1.2——
Thermal capacity rate of outer fluid at PC2 C L 2 1.2—— kW / K
Thermal capacity rate of WF C w f 1—— kW / K
Specific heats ratio k 1.4————
Gas constant R g 0.287—— kJ / ( kg K )
Ambient temperature T 0 300—— K
THC U tot 188–36 kW / K
Compressor efficiencies η com 1 , η com 2 0.90.7–1——
Turbine efficiencies η t ur 1 , η t ur 2 0.90.7–1——
Inlet temperature ratio of outer fluid at RCC τ H 1 43–6.67——
Inlet temperature ratio of outer fluid at CCC τ H 3 53–6.67——
Inlet temperature ratio of outer fluid at PC1 τ L 1 1————
Inlet temperature ratio of outer fluid at PC2 τ L 3 1————
Pressure ratio at Com1 π c 1 ——2–20——
Pressure ratio at Com2 π c 2 ——1–6——

Share and Cite

MDPI and ACS Style

Tang, C.; Chen, L.; Feng, H.; Wang, W.; Ge, Y. Power Optimization of a Modified Closed Binary Brayton Cycle with Two Isothermal Heating Processes and Coupled to Variable-Temperature Reservoirs. Energies 2020, 13, 3212. https://doi.org/10.3390/en13123212

AMA Style

Tang C, Chen L, Feng H, Wang W, Ge Y. Power Optimization of a Modified Closed Binary Brayton Cycle with Two Isothermal Heating Processes and Coupled to Variable-Temperature Reservoirs. Energies. 2020; 13(12):3212. https://doi.org/10.3390/en13123212

Chicago/Turabian Style

Tang, Chenqi, Lingen Chen, Huijun Feng, Wenhua Wang, and Yanlin Ge. 2020. "Power Optimization of a Modified Closed Binary Brayton Cycle with Two Isothermal Heating Processes and Coupled to Variable-Temperature Reservoirs" Energies 13, no. 12: 3212. https://doi.org/10.3390/en13123212

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop