Stochastic Modeling of the Levelized Cost of Electricity for Solar PV
Abstract
1. Introduction
2. Literature Review
3. Methodology
3.1. Levelized Cost of Electricity
3.2. Stochastic Approach
3.3. Sensitivity Analysis
4. Empirical Results
4.1. Data
4.1.1. Capacity Factor
4.1.2. Discount Rate
4.1.3. O&M Costs
4.1.4. CAPEX
4.1.5. System Degradation Rate
4.1.6. Corporate Tax
4.2. Results of Stochastic Simulation
4.3. Sensitivity Analysis Results
5. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Olhoff, A.; Christensen, J.M. The Emissions Gap Report 2017: A UNEP Synthesis Report; The United Nations Environment Programme (UNEP) Press: Nairobi, Kenya, 2017. [Google Scholar]
- Hwang, S.-H.; Kim, M.-K.; Ryu, H.-S. Real Levelized Cost of Energy with Indirect Costs and Market Value of Variable Renewables: A Study of the Korean Power Market. Energies 2019, 12, 2459. [Google Scholar] [CrossRef]
- Poulsen, T.; Hasager, C.B.; Jensen, C.M. The role of logistics in practical levelized cost of energy reduction implementation and government sponsored cost reduction studies: Day and night in offshore wind operations and maintenance logistics. Energies 2017, 10, 464. [Google Scholar] [CrossRef]
- Mendicino, L.; Menniti, D.; Pinnarelli, A.; Sorrentino, N. Corporate power purchase agreement: Formulation of the related levelized cost of energy and its application to a real life case study. Appl. Energy 2019, 253, 113577. [Google Scholar] [CrossRef]
- Wang, X.; Kurdgelashvili, L.; Byrne, J.; Barnett, A. The value of module efficiency in lowering the levelized cost of energy of photovoltaic systems. Renew. Sust. Energ. Rev. 2011, 15, 4248–4254. [Google Scholar] [CrossRef]
- Kasperowicz, R.; Pinczyński, M.; Khabdullin, A. Modeling the power of renewable energy sources in the context of classical electricity system transformation. J. Int. Stud. 2017, 10, 264–272. [Google Scholar] [CrossRef]
- Bhandari, R.; Stadler, I. Grid parity analysis of solar photovoltaic systems in Germany using experience curves. Sol. Energy 2009, 83, 1634–1644. [Google Scholar] [CrossRef]
- Branker, K.; Pathak, M.; Pearce, J.M. A review of solar photovoltaic levelized cost of electricity. Renew. Sust. Energ. Rev. 2011, 15, 4470–4482. [Google Scholar] [CrossRef]
- Rhodes, J.D.; King, C.; Gulen, G.; Olmstead, S.M.; Dyer, J.S.; Hebner, R.E.; Beach, F.C.; Edgar, T.F.; Webber, M.E. A geographically resolved method to estimate levelized power plant costs with environmental externalities. Energy Policy 2017, 102, 491–499. [Google Scholar] [CrossRef]
- Clauser, C.; Ewert, M. The renewables cost challenge: Levelized cost of geothermal electric energy compared to other sources of primary energy–Review and case study. Renew. Sust. Energ. Rev. 2018, 82, 3683–3693. [Google Scholar] [CrossRef]
- Chadee, X.T.; Clarke, R.M. Wind resources and the levelized cost of wind generated electricity in the Caribbean islands of Trinidad and Tobago. Renew. Sust. Energ. Rev. 2018, 81, 2526–2540. [Google Scholar] [CrossRef]
- Mundada, A.S.; Shah, K.K.; Pearce, J.M. Levelized cost of electricity for solar photovoltaic, battery and cogen hybrid systems. Renew. Sust. Energ. Rev. 2016, 57, 692–703. [Google Scholar] [CrossRef]
- Nissen, U.; Harfst, N. Shortcomings of the traditional “levelized cost of energy” [LCOE] for the determination of grid parity. Energy 2019, 171, 1009–1016. [Google Scholar] [CrossRef]
- Kore Energy Economics Institute. An International Comparative Analysis on Levelized Costs based on Solar Cost Analysis; KEEI Press: Ulsan, Korea, 2017. (In Korean) [Google Scholar]
- Ragnarsson, B.F.; Oddsson, G.V.; Unnthorsson, R.; Hrafnkelsson, B. Levelized cost of energy analysis of a wind power generation system at Burfell in Iceland. Energies 2015, 8, 9464–9485. [Google Scholar] [CrossRef]
- Castro-Santos, L.; Garcia, G.P.; Estanqueiro, A.; Justino, P.A. The Levelized Cost of Energy (LCOE) of wave energy using GIS based analysis: The case study of Portugal. Int. J. Elec. Power 2015, 65, 21–25. [Google Scholar] [CrossRef]
- Lai, C.S.; McCulloch, M.D. Levelized cost of electricity for solar photovoltaic and electrical energy storage. Appl. Energy 2017, 190, 191–203. [Google Scholar] [CrossRef]
- Kirchem, D.; Lynch, M.A.; Bertsch, V.; Casey, E. Modelling demand response with process models and energy systems models: Potential applications for wastewater treatment within the energy-water nexus. Appl. Energy 2020, 260, 114321. [Google Scholar] [CrossRef]
- Charnes, J. Financial Modeling with Crystal Ball and Excel + Website; John Wiley & Sons: Hoboken, NJ, USA, 2012; Volume 757. [Google Scholar]
- Månberger, A.A.; Stenqvist, B.A. Global metal flows in the renewable energy transition: Exploring the effects of substitutes, technological mix and development. Energy Policy 2018, 119, 226–241. [Google Scholar] [CrossRef]
- Abd Alla, S.; Bianco, V.; Tagliafico, L.A.; Scarpa, F. Life-cycle approach to the estimation of energy efficiency measures in the buildings sector. Appl. Energy 2020, 264, 114745. [Google Scholar] [CrossRef]
- Shi, Y.; Zeng, Y.; Engo, J.; Han, B.; Li, Y.; Muehleisen, R.T. Leveraging inter-firm influence in the diffusion of energy efficiency technologies: An agent-based model. Appl. Energy 2020, 263, 114641. [Google Scholar] [CrossRef]
- Tvaronavičienė, M.; Prakapienė, D.; Garškaitė-Milvydienė, K.; Prakapas, R.; Nawrot, Ł. Energy efficiency in the long run in the selected European countries. Econ. Sociol. 2018, 11, 245–254. [Google Scholar] [CrossRef]
- Adenle, A.A. Assessment of solar energy technologies in Africa-opportunities and challenges in meeting the 2030 agenda and sustainable development goals. Energy Policy 2020, 137, 111180. [Google Scholar] [CrossRef]
- Klaniecki, K.; Duse, I.A.; Lutz, L.M.; Leventon, J.; Abson, D.J. Applying the energy cultures framework to understand energy systems in the context of rural sustainability transformation. Energy Policy 2020, 137, 111092. [Google Scholar] [CrossRef]
- Ahmed, A.; Gasparatos, A. Multi-dimensional energy poverty patterns around industrial crop projects in Ghana: Enhancing the energy poverty alleviation potential of rural development strategies. Energy Policy 2020, 137, 111123. [Google Scholar] [CrossRef]
- Lopez, A.R.; Krumm, A.; Schattenhofer, L.; Burandt, T.; Montoya, F.C.; Oberlaender, N.; Oei, P.-Y. Solar PV generation in Colombia—A qualitative and quantitative approach to analyze the potential of solar energy market. Renew. Energy 2020, 148, 1266–1279. [Google Scholar] [CrossRef]
- Winston, W.L. Simulation Modeling Using@ RISK; Wadsworth Publising Company: California, CA, USA, 1996. [Google Scholar]
- Barreto, H.; Howland, F. Introductory Econometrics: Using Monte Carlo Simulation with Microsoft Excel; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Spooner, J.E. Probabilistic estimating. J. Constr. Div. 1974, 100. [Google Scholar]
- Alotaibi, R.M.; Rezk, H.R.; Ghosh, I.; Dey, S. Bivariate exponentiated half logistic distribution: Properties and application. Commun. Stat. Theory Methods 2020, 1–23, in press. [Google Scholar] [CrossRef]
- Stein, W.E.; Keblis, M.F. A new method to simulate the triangular distribution. Math. Comput. Model. 2009, 49, 1143–1147. [Google Scholar] [CrossRef]
- Choi, J.; Park, D. An Estimation of the Social Discount Rate for the Economic Feasibility Analysis of Public Investment Projects. J. Soc. Sci. 2017, 43. (In Korean) [Google Scholar]
- Richter, M.; Tjengdrawira, C.; Vedde, J.; Green, M.; Frearson, L.; Herteleer, B.; Jahn, U.; Herz, M.; Kontges, M.; Stridh, B. Technical Assumptions Used in PV Financial Models; International Energy Agency (IEA) Report; IEA Press: Paris, France, 2017. [Google Scholar]
Solar (Commercial) | Solar (Residential) | |
---|---|---|
Standard size | 100 kW | 3 kW |
CAPEX (100 million won/MW) | Normal distribution (average = 16.1, deviation = 10% of average) | Normal distribution (average = 18.3, deviation = 10% of average) |
O&M costs (10,000 won/MW·year) | Normal distribution (average = 1167, deviation = 5% of average) | Normal distribution (average = 3737; deviation = 5% of average) |
Capacity factor (%) | Logistic distribution (average = 14.78, scale = 0.22) | |
Discount rate (%) | Triangular distribution (minimum = 4.5, mode = 5.5, maximum = 7.5) | |
Corporate tax (%) | Triangular distribution (minimum = 0, mode and maximum = 24.2) | 0 |
System degradation rate (%) | Triangular distribution (minimum = 0, mode = 0.7, maximum = 0.8) | |
Loan interest rate (%/year) | 3.46 | |
Inflation (%) | 0.97 | |
Lifespan (year) | 20 | |
Debt ratio (%) | 70 |
Distribution | K-S Statistics (Dn) | Statistics |
---|---|---|
Logistic | 0.0147 | Average = 14.78%, Scale = 0.22% |
Student t | 0.0149 | Intermediate point = 14.78%, Scale = 0.35%, Freedom = 7.28199 |
Normal | 0.0369 | Average = 14.78%, Standard deviation = 0.41% |
Log-normal | 0.0369 | Location = −4714.30%, Average = 14.78%, Standard deviation = 0.41% |
Beta | 0.0376 | Minimum = 9.01%, Maximum = 20.54%, Alpha = 100, Beta = 100 |
Gamma | 0.0378 | Location = 8.85%, Scale = 0.03%, Form = 207.5021 |
Weibull | 0.0447 | Location = 13.02%, Scale = 1.91%, Form = 4.92757 |
Minimum extreme value | 0.0868 | Highest probability = 14.98%, Scale = 0.42% |
Maximum extreme value | 0.1214 | Highest possibility = 14.57%, Scale = 0.48% |
BetaPERT | 0.1801 | Minimum = 12.65%, Highest possibility = 14.85%, Maximum = 16.47% |
Triangular | 0.2268 | Minimum = 12.65%, Highest possibility = 14.85%, Maximum = 16.47% |
Uniform | 0.3409 | Minimum = 12.66%, Minimum = 16.46% |
Pareto | 0.4606 | Location = 12.66%, Form = 6.47827 |
Exponential | 0.5933 | Ratio = 676.83% |
Statistics | Value | Statistics | Value |
---|---|---|---|
Reference value | 165.97 | Kurtosis | 3.04 |
Average | 159.49 | Variation coefficient | 0.0835 |
Median value | 159.46 | Minimum | 114.84 |
Standard deviation | 13.31 | Maximum | 216.08 |
Variance | 177.29 | Range width | 101.24 |
Skewness | 0.0647 | Standard error | 0.13 |
Statistics | Value | Statistics | Value |
---|---|---|---|
Reference value | 135.65 | Kurtosis | 2.97 |
Average | 137.15 | Variation coefficient | 0.1079 |
Median value | 136.75 | Minimum | 75.77 |
Standard deviation | 14.80 | Maximum | 197.15 |
Variance | 219.06 | Range width | 100.56 |
Skewness | 0.1977 | Standard error | 0.15 |
Items of Hhardware Costs | KRW | Items of Soft Costs | KRW | Items of O&M Costs | KRW | |
---|---|---|---|---|---|---|
Modules | 62,124,000 | License and permits | 9,000,000 | Land lease costs | 1,500,000 | |
Inverters | 14,375,000 | Standard facility charges | 8,390,000 | Parts replacement costs | Inverters | 718,750 |
Connection bands | 2,200,000 | Insurance premiums | 1,141,623 | Fuses, etc. | 240,000 | |
Electric wiring | 601,678 | Supervisory costs | 1,500,000 | Safety management costs | 1,277,760 | |
Structures | 5,895,677 | Other expenses | 5,136,649 | Total | 3,736,510 | |
Installation construction costs | 23,933,435 | Design costs | 1,500,000 | |||
Total | 109,129,790 | General management costs | 6,924,483 | |||
Profits | 5,570,428 | |||||
Total | 39,163,183 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-Y.; Ahn, J. Stochastic Modeling of the Levelized Cost of Electricity for Solar PV. Energies 2020, 13, 3017. https://doi.org/10.3390/en13113017
Lee C-Y, Ahn J. Stochastic Modeling of the Levelized Cost of Electricity for Solar PV. Energies. 2020; 13(11):3017. https://doi.org/10.3390/en13113017
Chicago/Turabian StyleLee, Chul-Yong, and Jaekyun Ahn. 2020. "Stochastic Modeling of the Levelized Cost of Electricity for Solar PV" Energies 13, no. 11: 3017. https://doi.org/10.3390/en13113017
APA StyleLee, C.-Y., & Ahn, J. (2020). Stochastic Modeling of the Levelized Cost of Electricity for Solar PV. Energies, 13(11), 3017. https://doi.org/10.3390/en13113017