Energy and Exergy Analysis of Using Turbulator in a Parabolic Trough Solar Collector Filled with Mesoporous Silica Modified with Copper Nanoparticles Hybrid Nanofluid
Abstract
1. Introduction
2. Methodology
2.1. Physical Model and Governing Equations
2.2. Validation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
A | Surface area (m2) |
Specific heat capacity, (J/kgK) | |
D | Diffusion |
Dh | Hydraulic diameter, (m) |
Cross diffusion term positive portion | |
d | Diameter of nanoparticles (nm) |
F1 | Blending function 1 |
F2 | Blending function 2 |
f | Mean predicted friction factor |
k | Thermal conductivity, (W/mK) |
M | Molar mass |
N | Avogadro number |
Pr | Prandtl number |
p | Pressure, (Pa) |
Q | Heat flux (W) |
q″ | Specific heat flux (W/m2) |
Re | Reynolds number |
T | Temperature (K) |
u | Velocity |
Vm | Velocity |
α | Thermal diffusion |
μ | Dynamic viscosity, (Ns/m2) |
ρ | Density, (Kg/m^3) |
φ | Nanoparticles volume fraction |
∅ | Geometrical diameter (m) |
Ω_ij | Mean rate-of-rotation tensor |
B | Brownian |
bf | Base fluid |
cro | Crude oil |
nf | Nanofluid |
np | Nanoparticle |
References
- Bi, Y.; Qin, L.; Guo, J.; Li, H.; Zang, G. Performance analysis of solar air conditioning system based on the independent-developed solar parabolic trough collector. Energy 2020, 196, 117075. [Google Scholar] [CrossRef]
- Chen, T.; Tian, H.; Tian, H.; Zhao, T.; Zhang, H.; Zhang, Z. Performance evaluation of metal-foam baffle exhaust heat exchanger for waste heat recovery. Appl. Energy 2020, 266, 114875. [Google Scholar] [CrossRef]
- Zheng, X.; Luo, X.; Luo, J.; Chen, J.; Liang, Y.; Yang, Z.; Chen, Y.; Wang, H. Experimental investigation of operation behavior of plate heat exchangers and their influences on organic Rankine cycle performance. Energy Convers. Manag. 2020, 207, 112528. [Google Scholar] [CrossRef]
- Saleem, S.; Sarfraz, O.; Bradshaw, C.R.; Bach, C.K. Development of novel experimental infrastructure for collection of high-fidelity experimental data for refrigerant to air heat exchangers. Int. J. Refrig. 2020, 114, 189–200. [Google Scholar] [CrossRef]
- Ishaque, S.; Siddiqui, I.H.; Kim, M.-H. Effect of heat exchanger design on seasonal performance of heat pump systems. Int. J. Heat Mass Transf. 2020, 151, 119404. [Google Scholar] [CrossRef]
- Abu-Hamdeh, N.H.; Bantan, R.A.; Tlili, I. Analysis of the thermal and hydraulic performance of the sector-by-sector helically coiled tube heat exchangers as a new type of heat exchangers. Int. J. Therm. Sci. 2020, 150, 106229. [Google Scholar] [CrossRef]
- Tuyen, V.; Van Hap, N.; Phu, N.M. Thermal-hydraulic characteristics and optimization of a liquid-to-suction triple-tube heat exchanger. Case Stud. Therm. Eng. 2020, 19, 100635. [Google Scholar] [CrossRef]
- Ren, M.; Yuan, Y.; Cao, X.; Sun, L.; Jiang, F. Numercial analysis on the thermal performance of capillary heat exchange system in metro running tunnel. Energy Built Environ. 2020, 1, 207–214. [Google Scholar] [CrossRef]
- Ghorbani, B.; Mahyari, K.B.; Mehrpooya, M.; Hamedi, M.-H. Introducing a hybrid renewable energy system for production of power and fresh water using parabolic trough solar collectors and LNG cold energy recovery. Renew. Energy 2020, 148, 1227–1243. [Google Scholar] [CrossRef]
- Wang, A.; Liu, J.; Zhang, S.; Liu, M.; Yan, J. Steam generation system operation optimization in parabolic trough concentrating solar power plants under cloudy conditions. Appl. Energy 2020, 265, 114790. [Google Scholar] [CrossRef]
- Quezada-García, S.; Sánchez–Mora, H.; Polo–Labarrios, M.A.; Cázares–Ramírez, R.I. Modeling and simulation to determine the thermal efficiency of a parabolic solar trough collector system. Case Stud. Therm. Eng. 2019, 16, 100523. [Google Scholar] [CrossRef]
- Wei, S.; Liang, X.; Mohsin, T.; Wu, X.; Li, Y. A simplified dynamic model of integrated parabolic trough concentrating solar power plants: Modeling and validation. Appl. Therm. Eng. 2020, 169, 114982. [Google Scholar] [CrossRef]
- Xu, L.; Sun, F.; Ma, L.; Li, X.; Lei, D.; Yuan, G.; Zhu, H.; Zhang, Q.; Xu, E.; Wang, Z.; et al. Analysis of optical and thermal factors’ effects on the transient performance of parabolic trough solar collectors. Sol. Energy 2019, 179, 195–209. [Google Scholar] [CrossRef]
- Sadripour, S. 3D numerical analysis of atmospheric-aerosol/carbon-black nanofluid flow within a solar air heater located in Shiraz, Iran. Int. J. Numer. Methods Heat Fluid Flow 2019, 29, 1378–1402. [Google Scholar] [CrossRef]
- Rashidi, I.; Kolsi, L.; Ahmadi, G.; Mahian, O.; Wongwises, S.; Abu-Nada, E. Three-dimensional modelling of natural convection and entropy generation in a vertical cylinder under heterogeneous heat flux using nanofluids. Int. J. Numer. Methods Heat Fluid Flow 2019, 30, 119–142. [Google Scholar] [CrossRef]
- Sadripour, S. Investigation of flow characteristics and heat transfer enhancement of a corrugated duct using nanofluid. J. Appl. Mech. Tech. Phys. 2018, 59, 1049–1057. [Google Scholar] [CrossRef]
- Mahian, O.; Kolsi, L.; Amani, M.; Estellé, P.; Ahmadi, G.; Kleinstreuer, C.; Marshall, J.S.; Siavashi, M.; Taylor, R.A.; Niazmand, H.; et al. Recent advances in modeling and simulation of nanofluid flows-Part I: Fundamentals and theory. Phys. Rep. 2019, 790, 1–48. [Google Scholar] [CrossRef]
- Omid, M.; Lioua, K.; Mohammad, A.; Patrice, E.; Goodarz, A.; Clement, K.; Jeffrey, S.; Marshall, R.A.; Taylor, E.A.-N.; Saman, R.; et al. Recent Advances in Modeling and Simulation of Nanofluid Flows. Phys. Rep. 2019, 791, 1–59. [Google Scholar]
- Sadripour, S. First and second laws analysis and optimization of a solar absorber; using insulator mixers and MWCNTs nanoparticles. Glob. J. Res. Eng. A Mech. Mech. 2017, 17, 37–48. [Google Scholar]
- Al-Rashed, A.A.; Aich, W.; Kolsi, L.; Mahian, O.; Hussein, A.K.; Naceur, B.M. Effects of movable-baffle on heat transfer and entropy generation in a cavity saturated by CNT suspensions: Three-dimensional modeling. Entropy 2017, 19, 200. [Google Scholar] [CrossRef]
- Kolsi, L.; Mahian, O.; Öztop, H.F.; Aich, W.; Borjini, M.N.; Abu-Hamdeh, N.; Ben Aissia, H. 3D buoyancy-induced flow and entropy generation of nanofluid-filled open cavities having adiabatic diamond shaped obstacles. Entropy 2016, 18, 232. [Google Scholar] [CrossRef]
- Sadripour, S.; Adibi, M.; Sheikhzadeh, G.A. Two different viewpoints about using aerosol-carbon nanofluid in corrugated solar collectors: Thermal-hydraulic performance and heating performance. Glob. J. Res. Eng. A Mech. Mech. 2017, 17, 19–36. [Google Scholar]
- Rashidi, S.; Eskandarian, M.; Mahian, O.; Poncet, S. Combination of nanofluid and inserts for heat transfer enhancement. J. Therm. Anal. Calorim. 2018, 135, 437–460. [Google Scholar] [CrossRef]
- He, B.; Lin, X.-F.; Zhang, Y.-F. Effect of a novel compound nucleating agent calcium sulfate whisker/β-nucleating agent dicyclohexyl-terephthalamide on crystallization and melting behavior of isotactic polypropylene. J. Therm. Anal. Calorim. 2018, 132, 1145–1152. [Google Scholar] [CrossRef]
- Rashidi, S.; Mahian, O.; Languri, E.M. Applications of nanofluids in condensing and evaporating systems. J. Therm. Anal. Calorim. 2017, 131, 2027–2039. [Google Scholar] [CrossRef]
- Arani, A.A.A.; Sadripour, S.; Kermani, S. Nanoparticle shape effects on thermal-hydraulic performance of boehmite alumina nanofluids in a sinusoidal–wavy mini-channel with phase shift and variable wavelength. Int. J. Mech. Sci. 2017, 128, 550–563. [Google Scholar] [CrossRef]
- Sadripour, S.; Ghorashi, S.A.; Estajloo, M. Numerical investigation of a cavity equipped with corrugated heat source: A full convection-conduction-radiation coupling. Am. J. Aerosp. Eng. 2017, 4, 27–37. [Google Scholar] [CrossRef][Green Version]
- Moghaddaszadeh, N.; Rashidi, S.; Esfahani, J.A. Potential of gear-ring turbulator in three-dimensional heat exchanger tube from second law of thermodynamic viewpoint. Int. J. Numer. Methods Heat Fluid Flow 2019, 29, 1526–1543. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Q.; Lei, J.; Jin, H. A three-dimensional simulation of a parabolic trough solar collector system using molten salt as heat transfer fluid. Appl. Therm. Eng. 2014, 70, 462–476. [Google Scholar] [CrossRef]
- Sadripour, S.; Chamkha, A.J. The effect of nanoparticle morphology on heat transfer and entropy generation of supported nanofluids in a heat sink solar collector. Therm. Sci. Eng. Prog. 2019, 9, 266–280. [Google Scholar] [CrossRef]
- Kim, D.; Kwon, Y.; Cho, Y.; Li, C.; Cheong, S.; Hwang, Y.; Lee, J.; Hong, D.; Moon, S. Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions. Curr. Appl. Phys. 2009, 9, e119–e123. [Google Scholar] [CrossRef]
- Yang, Y.-T.; Tang, H.-W.; Zeng, B.-Y.; Wu, C.-H. Numerical simulation and optimization of turbulent nanofluids in a three-dimensional rectangular rib-grooved channel. Int. Commun. Heat Mass Transf. 2015, 66, 71–79. [Google Scholar] [CrossRef]
- Patankar, S.V. Numerical Heat Transfer and Fluid Flow; Taylor & Francis Group: Abingdon-on-Thames, UK, 1980. [Google Scholar]
- Tseng, Y.; Ferng, Y.; Lin, C. Investigating flow and heat transfer characteristics in a fuel bundle with split-vane pair grids by CFD methodology. Ann. Nucl. Energy 2014, 64, 93–99. [Google Scholar] [CrossRef]
0.85 | 1.176 | 1.000 | 2.000 | 1.168 | 0.31 | 0.0750 | 0.0828 | 0.0900 | 0.41 | 6 |
Grid Number | Nodes | ΔTout (°C) | Error (%) |
---|---|---|---|
1 | 526,928 | 15.8372 | 70.17 |
2 | 892,267 | 27.1202 | 36.52 |
3 | 1,276,128 | 36.7829 | 11.87 |
4 | 1,728,919 | 40.5289 | 2.92 |
5 | 1,917,010 | 41.1301 | 1.47 |
6 | 2,018,210 | 42.1801 | 0.02 |
7 | 2,289,192 | 42.1824 | ‒ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rostami, S.; Shahsavar, A.; Kefayati, G.; Shahsavar Goldanlou, A. Energy and Exergy Analysis of Using Turbulator in a Parabolic Trough Solar Collector Filled with Mesoporous Silica Modified with Copper Nanoparticles Hybrid Nanofluid. Energies 2020, 13, 2946. https://doi.org/10.3390/en13112946
Rostami S, Shahsavar A, Kefayati G, Shahsavar Goldanlou A. Energy and Exergy Analysis of Using Turbulator in a Parabolic Trough Solar Collector Filled with Mesoporous Silica Modified with Copper Nanoparticles Hybrid Nanofluid. Energies. 2020; 13(11):2946. https://doi.org/10.3390/en13112946
Chicago/Turabian StyleRostami, Sara, Amin Shahsavar, Gholamreza Kefayati, and Aysan Shahsavar Goldanlou. 2020. "Energy and Exergy Analysis of Using Turbulator in a Parabolic Trough Solar Collector Filled with Mesoporous Silica Modified with Copper Nanoparticles Hybrid Nanofluid" Energies 13, no. 11: 2946. https://doi.org/10.3390/en13112946
APA StyleRostami, S., Shahsavar, A., Kefayati, G., & Shahsavar Goldanlou, A. (2020). Energy and Exergy Analysis of Using Turbulator in a Parabolic Trough Solar Collector Filled with Mesoporous Silica Modified with Copper Nanoparticles Hybrid Nanofluid. Energies, 13(11), 2946. https://doi.org/10.3390/en13112946