Experimental Research of High-Temperature and High-Pressure Water Jet Characteristics in ICRC Engine Relevant Conditions
Abstract
:1. Introduction
2. Experimental Setup
2.1. Bosch Method for High-Pressure Water Injection Characteristics Measurement
2.2. Schlieren Method for High-Temperature Water Spray Characteristics Measurement
3. Results and Discussion
3.1. High-Pressure Water Injection Characteristics under Different Water Injection and Ambient Pressure
3.1.1. Water Injection Characteristics under Different Water Injection Pressure
3.1.2. Water Injection Characteristics under Different Ambient Pressure
3.2. High-Temperature Water Spray Characteristics under Different Water Injection and Ambient Temperature
3.2.1. Water Spray Characteristics under Different Water Injection Temperature
3.2.2. Water Spray Characteristics under Different Ambient Temperature
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
ICE | Internal combustion engine |
BEV | Battery electric vehicle |
FCV | Fuel cell vehicle |
ICRC | Internal combustion Rankine cycle |
HEV | Hybrid electric vehicle |
REEV | Range extension electric vehicle |
DWI | Direct water injection |
TGDI | Turbocharge gasoline direct injection |
SA | Spark advance |
MBT | maximum torque |
AFR | Air-fuel ratio |
WI | Water injection |
PFI | Port fuel injection |
PWI | Port water injection |
WLTP | Worldwide harmonized light vehicles test procedure |
OEM | Original equipment manufacturer |
VVA | Variable valve actuation |
SAT | Steam assistant technology |
SLFB | Superheated liquid flash boiling |
CVV | Constant volume vessel |
DAQ | Data acquisition |
PID | Proportion integration differentiation |
ASOI | After start of injection |
SMD | Sauter mean diameter |
References
- Kalghatgi, G. Is it really the end of internal combustion engines and petroleum in transport? Appl. Energy 2018, 225, 965–974. [Google Scholar] [CrossRef]
- Grube, T.; Stolten, D. The Impact of Drive Cycles and Auxiliary Power on Passenger Car Fuel Economy. Energies 2018, 11, 1010. [Google Scholar] [CrossRef]
- Balluchi, A.; Benvenuti, L.; Di Benedetto, M.D.; Pinello, C.; Sangiovanni-Vincentelli, A.L. Automotive engine control and hybrid systems: Challenges and opportunities. Proc. IEEE 2000, 88, 888–912. [Google Scholar] [CrossRef]
- Zeng, X.H.; Feng, T.; Yang, N.N. Engine Operation Region Based Energy Management Strategy for the All-Wheel-Drive Plug-in Hybrid Electric Vehicle. In Proceedings of the 14th IFToMM World Congress, Taipei, Taiwan, 25–30 October 2015; pp. 460–470. [Google Scholar]
- Bilger, R.W.; Wu, Z. Carbon capture for automobiles using internal combustion Rankine cycle engines. J. Eng. Gas Turbines Power 2009, 131, 034502. [Google Scholar] [CrossRef]
- Bilger, R.W. Zero Release Combustion Technologies and the Oxygen Economy. In Proceedings of the Fifth International Conference on Technologies and Combustion for a Clean Environment, Lisbon, Portugal, 12–15 July 1999; pp. 1039–1046. [Google Scholar]
- Wu, Z.-J.; Yu, X.; Fu, L.-Z.; Deng, J.; Li, L.-G. Experimental study of the effect of water injection on the cycle performance of an internal-combustion Rankine cycle engine. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2014, 228, 580–588. [Google Scholar] [CrossRef]
- Yu, X.; Wu, Z.; Fu, L.; Deng, J.; Hu, Z.; Li, L. Study of Combustion Characteristics of a Quasi Internal Combustion Rankine Cycle Engine; SAE Technical Paper 2013-01-2698; SAE International: Detroit, MI, USA, 2013. [Google Scholar]
- Wu, Z.; Fu, L.; Gao, Y.; Yu, X.; Deng, J.; Li, L. Thermal efficiency boundary analysis of an internal combustion Rankine cycle engine. Energy 2016, 94, 38–49. [Google Scholar] [CrossRef]
- Fu, L.Z.; Yu, X.; Deng, J.; Wu, Z.J. Development of internal combustion Rankine cycle engine test system. Chin. Intern. Combust. Engine Eng. 2013, 6, 87–92. [Google Scholar]
- Yu, X.; Fu, L.; Deng, J.; Wu, Z. Influence of Engine Load on Thermo Efficiency of Internal Combustion Rankine Engine. J. Combust. Sci. Technol. 2014, 20, 492–497. [Google Scholar]
- Fu, L.Z.; Wu, Z.; Li, L.; Yu, X. Effect of Water Injection Temperature on Characteristics of Combustion and Emissions for Internal Combustion Rankine Cycle Engine; SAE Technical Paper 2014-01-2600; SAE International: Detroit, MI, USA, 2014. [Google Scholar]
- Kang, Z.; Wu, Z.; Fu, L.; Deng, J.; Hu, Z.; Li, L. Experimental Study of Ion Current Signals and Characteristics in an Internal Combustion Rankine Cycle Engine Based on Water Injection. J. Eng. Gas Turbines Power 2018, 140, 111506. [Google Scholar] [CrossRef]
- Kang, Z.; Fu, L.; Deng, J. Experimental study of knock control in an internal combustion rankine cycle engine. J. Tongji Univ. Nat. Sci. 2017, 7, 1030–1036. [Google Scholar]
- Wu, Z.; Kang, Z.; Deng, J.; Hu, Z.; Li, L. Effect of oxygen content on n-heptane auto-ignition characteristics in a HCCI engine. Appl. Energy 2016, 184, 594–604. [Google Scholar] [CrossRef]
- Kang, Z.; Wu, Z.; Zhang, Z.; Deng, J.; Hu, Z.; Li, L. Study of the combustion characteristics of a HCCI engine coupled with oxy-fuel combustion mode. SAE Int. J. Engines 2017, 10, 908–916. [Google Scholar] [CrossRef]
- Kang, Z.; Chen, S.; Wu, Z.; Deng, J.; Hu, Z.; Li, L. Simulation Study of Water Injection Strategy in Improving Cycle Efficiency Based on a Novel Compression Ignition Oxy-Fuel Combustion Engine. SAE Int. J. Engines 2018, 11, 935–945. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, H.; Reitz, R.D. Knocking combustion in spark-ignition engines. Prog. Energy Combust. Sci. 2017, 61, 78–112. [Google Scholar] [CrossRef]
- Bradley, D.; Kalghatgi, G.T. Pre-ignition and super knock in turbo charged spark ignition engines. Int. J. Engine Res. 2012, 13, 399–414. [Google Scholar]
- Xu, H.; Yao, A.; Yao, C.; Gao, J. Investigation of energy transformation and damage effect under severe knock of engines. Appl. Energy 2017, 203, 506–521. [Google Scholar] [CrossRef]
- Wang, Z.; Qi, Y.; He, X.; Wang, J.; Shuai, S.; Law, C.K. Analysis of pre-ignition to super-knock: Hotspot-induced deflagration to detonation. Fuel 2015, 144, 222–227. [Google Scholar] [CrossRef]
- Boretti, A. Water injection in directly injected turbocharged spark ignition engines. Appl. Therm. Eng. 2013, 52, 62–68. [Google Scholar] [CrossRef]
- De Bellis, V.; Bozza, F.; Teodosio, L.; Valentino, G. Experimental and numerical study of the water injection to improve the fuel economy of a small size turbocharged SI engine. SAE Int. J. Engines 2017, 10, 550–561. [Google Scholar] [CrossRef]
- Worm, J.; Naber, J.; Duncan, J.; Barros, S.; Atkinson, W. Water injection as an enabler for increased efficiency at high-load in a direct injected, boosted, SI engine. SAE Int. J. Engines 2017, 10, 951–958. [Google Scholar] [CrossRef]
- Böhm, M.; Mährle, W.; Bartelt, H.C.; Rubbert, S. Functional integration of water injection into the gasoline engine. MTZ Worldw. 2016, 77, 36–41. [Google Scholar] [CrossRef]
- Pauer, T.; Frohnmaier, M.; Walther, J.; Schenk, P.; Hettinger, A.; Kampmann, S. Optimization of gasoline engines by water injection. In Proceedings of the 37th International Vienna Motor Symposium, Vienna, Austria, 28–29 April 2016. [Google Scholar]
- Hoppe, F.; Thewes, M.; Baumgarten, H.; Dohmen, J. Water injection for gasoline engines: Potentials, challenges, and solutions. Int. J. Engine Res. 2016, 17, 86–96. [Google Scholar] [CrossRef]
- Atkinson, W.; Barros, S.; Piduru, N. In Cylinder NOx Emissions Control via Water Injection. In Proceedings of the ASME 2015 Internal Combustion Engine Division Fall Technical Conference, Houston, TX, USA, 8–11 November 2015; p. V002T04A008. [Google Scholar]
- Zhu, S.; Hu, B.; Akehurst, S.; Copeland, C.; Lewis, A.; Yuan, H.; Kennedy, I.; Bernards, J.; Branney, C. A review of water injection applied on the internal combustion engine. Energy Convers. Manag. 2019, 184, 139–158. [Google Scholar] [CrossRef]
- Hoppe, F.; Thewes, M.; Seibel, J.; Balazs, A.; Scharf, J. Evaluation of the Potential of Water Injection for Gasoline Engines. SAE Int. J. Engines 2017, 10, 2500–2512. [Google Scholar] [CrossRef]
- Kim, J.; Park, H.; Bae, C.; Choi, M.; Kwak, Y. Effects of water direct injection on the torque enhancement and fuel consumption reduction of a gasoline engine under high-load conditions. Int. J. Engine Res. 2016, 17, 795–808. [Google Scholar] [CrossRef]
- Miyamoto, N.; Ogawa, H.; Wang, J.; Ohashi, H. Significant NOx reductions with direct water injection into the sub-chamber of an IDI diesel engine. SAE Trans. 1995, 104, 1085–1092. [Google Scholar]
- Chybowski, L.; Laskowski, R.; Gawdzińska, K. An overview of systems supplying water into the combustion chamber of diesel engines to decrease the amount of nitrogen oxides in exhaust gas. J. Mar. Sci. Technol. 2015, 20, 393–405. [Google Scholar] [CrossRef]
- Laskowski, R.; Chybowski, L.; Gawdzińska, K. An engine room simulator as a tool for environmental education of marine engineers. In New Contributions in Information Systems and Technologies; Springer: Cham, Switzerland, 2015; pp. 311–322. [Google Scholar]
- Zhang, Z.; Kang, Z.; Jiang, L.; Chao, Y.; Deng, J.; Hu, Z.; Li, L.; Wu, Z. Effect of direct water injection during compression stroke on thermal efficiency optimization of common rail diesel engine. Energy Procedia 2017, 142, 1251–1258. [Google Scholar] [CrossRef]
- Tauzia, X.; Maiboom, A.; Shah, S.R. Experimental study of inlet manifold water injection on combustion and emissions of an automotive direct injection diesel engine. Energy 2010, 35, 3628–3639. [Google Scholar] [CrossRef]
- Pei, P.; Lu, Y. Energy-saving technologies of the unconventional thermal cycle internal combustion engines. J. Automot. Saf. Energy 2013, 4, 1–15. [Google Scholar]
- Osman, A. Feasibility Study of a Novel Combustion Cycle Involving Oxygen and Water; SAE Technical Paper 2009-01-2808; SAE International: Detroit, MI, USA, 2009. [Google Scholar]
- Conklin, J.C.; Szybist, J.P. A highly efficient six stroke internal combustion engine cycle with water injection for in-cylinder exhaust heat recovery. Energy 2010, 35, 1658–1664. [Google Scholar] [CrossRef]
- Fu, J.; Liu, J.; Ren, C.; Wang, L.; Deng, B.; Xu, Z. An open steam power cycle used for IC engine exhaust gas energy recovery. Energy 2012, 44, 544–554. [Google Scholar] [CrossRef]
- Boretti, A.; Osman, A.; Aris, I. Direct injection of hydrogen, Oxygen and water in a novel two stroke engine. Int. J. Hydrogen Energy 2011, 36, 10100–10106. [Google Scholar] [CrossRef]
- Hewavitarane, D.; Yoshiyama, S.; Wadahama, H.; Li, X. The Development of a Superheated Liquid Flash, Boiling (S.L.F.B) Engine for Waste Heat Recovery from Reciprocating Internal Combustion Engines. SAE Int. J. Engines 2014, 7, 1705–1721. [Google Scholar] [CrossRef]
- Shen, L.; Li, F. Study on the measuring experiment for Bosch injection rate. Chin. Intern. Combust. Engine Eng. 1981, 2, 9–15. [Google Scholar]
- Bosch, W. The Fuel Rate Indicator: A New Measuring Instrument for Display of the Characteristics of Individual Injection; SAE Technical Paper 660749; SAE International: Detroit, MI, USA, 1966. [Google Scholar]
- Payri, R.; Rubio, F.J.S.; Gimeno, J.; Bracho, G. A new methodology for correcting the signal cumulative phenomenon on injection rate measurements. Exp. Tech. 2008, 32, 46–49. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, F.; Hu, Z.; Li, L. An Experimental Study of Multiple Injection Rate and Spray Characteristics Based on the Long Tube Method. Trans. CSICE 2012, 30, 330–335. [Google Scholar]
- Ostu, N. A threshold selection method from gray-level histogram. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar]
- Gao, Y.; Li, L.G.; Gao, Y.; Di Huang, W.; Deng, J.; Gu, T.L. Analysis of the difference of spray angles based on various definitions and calculation criterions. In Proceedings of the 14th ILASS—Asia Annual Conference, Jeju Island, Korea, 21–22 October 2010. [Google Scholar]
- Fu, L.; Wu, Z.; Yu, X.; Deng, J. Experimental study of effect of water injection strategy on combustion stability in internal combustion Rankine cycle engine. Chin. Intern. Combust. Engine Eng. 2014, 35, 38–45. [Google Scholar]
- Fu, L.; Wu, Z.; Yu, X.; Deng, J.; Hu, Z.; Li, L. Experimental investigation of combustion and emission characteristics for internal combustion Rankine cycle engine under different water injection laws. Energy Procedia 2015, 66, 89–92. [Google Scholar] [CrossRef]
- Rezaeiravesh, S.; Vinuesa, R.; Liefvendahl, M.; Schlatter, P. Assessment of uncertainties in hot-wire anemometry and oil-film interferometry measurements for wall-bounded turbulent flows. Eur. J. Mech. B Fluids 2018, 72, 57–73. [Google Scholar] [CrossRef]
- Vinuesa, R.; Hosseini, S.M.; Hanifi, A.; Henningson, D.S.; Schlatter, P. Pressure-gradient turbulent boundary layers developing around a wing section. Flow Turbul. Combust. 2017, 99, 613–641. [Google Scholar] [CrossRef]
- Noorani, A.; Vinuesa, R.; Brandt, L.; Schlatter, P. Aspect ratio effect on particle transport in turbulent duct flows. Phys. Fluids 2016, 28, 115103. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Water Injection Pressure/MPa | 30, 35 |
Water Injection Duration/ms | 0.4, 0.6, 0.8 1.2, 1.6, 2, 2.5, 3 |
Ambient Pressure/MPa | 0.1, 1, 3, 5, 7 |
Water Injection Temperature/°C | 25 |
Parameter | Value |
---|---|
Water Injection Temperature/°C | 25, 80, 120, 160 |
Ambient Temperature/°C | 25, 105, 160 |
Water Injection Pressure/MPa | 35 |
Ambient Pressure/MPa | 0.1 |
Water Injection Duration/ms | 3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, Z.; Zhang, Z.; Deng, J.; Li, L.; Wu, Z. Experimental Research of High-Temperature and High-Pressure Water Jet Characteristics in ICRC Engine Relevant Conditions. Energies 2019, 12, 1763. https://doi.org/10.3390/en12091763
Kang Z, Zhang Z, Deng J, Li L, Wu Z. Experimental Research of High-Temperature and High-Pressure Water Jet Characteristics in ICRC Engine Relevant Conditions. Energies. 2019; 12(9):1763. https://doi.org/10.3390/en12091763
Chicago/Turabian StyleKang, Zhe, Zhehao Zhang, Jun Deng, Liguang Li, and Zhijun Wu. 2019. "Experimental Research of High-Temperature and High-Pressure Water Jet Characteristics in ICRC Engine Relevant Conditions" Energies 12, no. 9: 1763. https://doi.org/10.3390/en12091763
APA StyleKang, Z., Zhang, Z., Deng, J., Li, L., & Wu, Z. (2019). Experimental Research of High-Temperature and High-Pressure Water Jet Characteristics in ICRC Engine Relevant Conditions. Energies, 12(9), 1763. https://doi.org/10.3390/en12091763