Next Article in Journal
LCOE Analysis of Tower Concentrating Solar Power Plants Using Different Molten-Salts for Thermal Energy Storage in China
Previous Article in Journal
Innovative Policies for Energy Efficiency and the Use of Renewables in Households
Article Menu
Issue 7 (April-1) cover image

Export Article

Open AccessArticle
Energies 2019, 12(7), 1393; https://doi.org/10.3390/en12071393

Three Vectors Model Predictive Torque Control Without Weighting Factor Based on Electromagnetic Torque Feedback Compensation

1
Department of Mechanical and Control Engineering, Guilin University of Technology, Guilin 541000, China
2
College of Electrical Engineering, Guangxi University, Nanning 530004, China
*
Author to whom correspondence should be addressed.
Received: 14 March 2019 / Revised: 6 April 2019 / Accepted: 9 April 2019 / Published: 11 April 2019
  |  
PDF [7457 KB, uploaded 12 April 2019]
  |  

Abstract

Finite control set-model predictive torque control (FCS-MPTC) depends on the system parameters and the weight coefficients setting. At the same time, since the actual load disturbance is unavoidable, the model parameters are not matched, and there is a torque tracking error. In traditional FCS-MPTC, the outer loop—that is, the speed loop—adopts a classic Proportional Integral (PI) controller, abbreviated as PI-MPTC. The pole placement of the PI controller is usually designed by a plunge-and-test, and it is difficult to achieve optimal dynamic performance and optimal suppression of concentrated disturbances at the same time. Aiming at squirrel cage induction motors, this paper first proposes an outer-loop F-ETFC-MPTC control strategy based on a feed-forward factor for electromagnetic torque feedback compensation (F-ETFC). The electromagnetic torque was imported to the input of the current regulator, which is used as the control input signal of feedback compensation of the speed loop; therefore, the capacity of an anti-load-torque-disturbance of the speed loop was improved. The given speed is quantified by a feed-forward factor into the input of the current regulator, which is used as the feed-forward adjustment control input of the speed controller to improve the dynamic response of the speed loop. The range of the feed-forward factor and feed-back compensation coefficient can be obtained according to the structural analysis of the system, which simplifies the process of parameter design adjustment. At the same time, the multi-objective optimization based on the sorting method replaces the single cost function in traditional control, so that the selection of the voltage vector works without the weight coefficient and can solve complicated calculation problems in traditional control. Finally, according to the relationship between the voltage vector and the switch state, the virtual six groups of three vector voltages can be adjusted in both the direction and amplitude, thereby effectively improving the control performance and reducing the flow rate and torque ripple. The experiment is based on the dSPACE platform, and experimental results verify the feasibility of the proposed F-ETFC-MPTC. Compared with traditional PI-MPTC, the feed-forward factor can effectively improve the stability time of the system by more than 10 percent, electromagnetic torque feedback compensation can improve the anti-load torque disturbance ability of the system by more than 60 percent, and the three-vector voltage method can effectively reduce the disturbance. View Full-Text
Keywords: model predictive torque control; electromagnetic torque feedback compensation; feed-forward factor; weight coefficient; three vectors model predictive torque control; electromagnetic torque feedback compensation; feed-forward factor; weight coefficient; three vectors
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Li, H.; Lin, J.; Lu, Z. Three Vectors Model Predictive Torque Control Without Weighting Factor Based on Electromagnetic Torque Feedback Compensation. Energies 2019, 12, 1393.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Energies EISSN 1996-1073 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top