Improved Consistent Interpretation Approach of Fault Type within Power Transformers Using Dissolved Gas Analysis and Gene Expression Programming
Abstract
:1. Introduction
2. Gene Expression Programming
3. Proposed GEP Model
4. Results and Discussions
4.1. Comparison with Other AI-based Models
4.2. Evaluation of the Model on Units with DGA History
4.3. Advantage of the Proposed Model Over Conventional Interpretation Techniques
5. Conclusions
Funding
Conflicts of Interest
References
- Abu Bakar, N.; Abu-Siada, A.; Islam, S. A Review of DGA Measurement and Interpretation Techniques. IEEE Electr. Insul. Mag. 2014, 30, 39–49. [Google Scholar] [CrossRef]
- Abu Bakar, N.; Abu-Siada, A.; Islam, S. A Review on Chemical Diagnosis Techniques for Transformer Paper Insulation Degradation. In Proceedings of the Australasian Universities Power Engineering Conference, AUPEC’13, Hobart, Australia, 29 September–3 October 2013. [Google Scholar]
- Guide for Diagnostic Field Testing of Electric Power Apparatus—Part 1, Oil-Filled Power Transformers, Regulators, and Reactors; IEEE: Piscataway, NJ, USA, 1995; Volume 62.
- Abu Bakar, N.; Abu-Siada, A. A New Method to Detect Dissolved Gases in Transformer Oil using NIR-IR Spectroscopy. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 409–419. [Google Scholar] [CrossRef]
- Hydroelectric Research and Technical Services Group. Facilities, Illustrations, Standards and Techniques; Transformer Maintenanc; US Department of Interior Bureau of Reclamation: Denver, CO, USA, 2000; Volume 3, pp. 1–81. [Google Scholar]
- IEEE Guide for the Interpretation of Gases Generated in Oil-Immersed Transformers; IEEE Std C57; 104-2008 (Revision of IEEE Std C57.104-1991); IEEE: Piscataway, NJ, USA, 2009; pp. 1–27.
- Abu-Siada, A.; Sin, P.; Islam, S. A Novel Fuzzy Logic Approach for Furan Estimation in Transformer Oil. IEEE Trans. Power Deliv. 2012, 27, 469–474. [Google Scholar] [CrossRef]
- Abu Bakar, N.; Abu-Siada, A. Fuzzy Logic Approach for Transformer Remnant Life Prediction and Asset Management Decision. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 3199–3208. [Google Scholar] [CrossRef]
- Abu-Siada, A.; Islam, S.; Lai, S. Remnant Life Estimation of Power Transformer using Oil UV-Vis Spectral Response. In Proceedings of the IEEE PES Power Systems Conference & Exhibition (PSCE), Seattle, WA, USA, 15–20 March 2009. [Google Scholar]
- Hashemnia, N.; Abu-Siada, A.; Islam, S. Detection of Power Transformer Bushing Faults and Oil Degradation using Frequency Response Analysis. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 222–229. [Google Scholar] [CrossRef]
- Forouhari, S.; Abu-Siada, A. Application of Adaptive Neuro Fuzzy Inference System to Support Power Transformer Life Estimation and Asset Management Decision. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 845–852. [Google Scholar] [CrossRef]
- Hydroelectric Research and Technical Services Group. Facilities, Instructions, Standards and Techniques; Transformer Diagnostics; US Department of Interior Bureau of Reclamation: Denver, CO, USA, 2003; Volume 3, pp. 1–63. Available online: https://www.usbr.gov/power/data/fist/fist3_31/fist3-31.pdf (accessed on 21 February 2019).
- Rogers, R. IEEE and IEC Codes to Interpret Incipient Faults in Transformers, Using Gas in Oil Analysis. IEEE Trans. Electr. Insul. 1978, E-13, 349–354. [Google Scholar] [CrossRef]
- Mineral Oil-Impregnated Electrical Equipment in Service-Interpretation of Dissolved and Free Gas Analysis; IEC 60599; International Electrotechnical Commission: Geneva, Switzerland, 1997.
- Duval, M. New techniques for dissolved gas-in-oil analysis. IEEE Electr. Insul. Mag. 2003, 19, 6–15. [Google Scholar] [CrossRef]
- Muhamad, N.; Phung, B.; Blackburn, T. Comparative study and analysis of DGA methods for mineral oil using fuzzy logic. In Proceedings of the International Power Engineering Conference, IPEC 2007, Singapore, 3–6 December 2007; pp. 1301–1306. [Google Scholar]
- Duval, M. The duval triangle for load tap changers, non-mineral oils and low temperature faults in transformers. IEEE Electr. Insul. Mag. 2008, 24, 22–29. [Google Scholar] [CrossRef]
- Abu-Siada, A.; Hamood, S. A New Fuzzy Logic Approach to Identify Power Transformer Criticality using Dissolved Gas-in-Oil Analysis. Int. J. Electr. Power Energy Syst. 2015, 67, 401–408. [Google Scholar] [CrossRef]
- Abu-Siada, A.; Islam, S. A Novel Approach to Identify Transformer Criticality using DGA. In Proceedings of the Condition Monitoring and Diagnosis, CMD 2010, Tokyo, Japan, 6–11 September 2010. [Google Scholar]
- Abu-Siada, A.; Hmood, S. Fuzzy Logic Approach for Power Transformer Asset Management Based on Dissolved Gas-in-Oil Analysis. Chem. Eng. Trans. 2013, 33, 997–1002. [Google Scholar]
- Abu-Siada, A.; Islam, S. A New Approach to Identify Transformer Criticality and Asset Management Decision using Dissolved Gas Analysis. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 1007–1012. [Google Scholar] [CrossRef]
- Zhenyuan, W.; Yilu, L.; Griffin, P.J. Neural net and expert system diagnose transformer faults. IEEE Comput. Appl. Power 2000, 13, 50–55. [Google Scholar] [CrossRef]
- Abu-Siada, A.; Arshad, M.; Islam, S. Fuzzy Logic Approach to Identify Transformer Criticality using Dissolved Gas Analysis. In Proceedings of the IEEE PES General Meeting, Detroit, MI, USA, 24–29 July 2010. [Google Scholar]
- Hongzhong, M.; Zheng, L.; Ju, P.; Jingdong, H.; Limin, Z. Diagnosis of power transformer faults on fuzzy three-ratio method. In Proceedings of the 7th International Power Engineering Conference, Singapore, 29 November–2 December 2005; pp. 1–4. [Google Scholar]
- Islam, S.; Wu, T.; Ledwich, G. A novel fuzzy logic approach to transformer fault diagnosis. IEEE Trans. Dielectr. Electr. Insul. 2000, 7, 177–186. [Google Scholar] [CrossRef]
- Ghoneim, S.; Taha, I. A new approach of DGA interpretation technique for transformer fault diagnosis. Int. J. Electr. Power Energy Syst. 2016, 81, 265–274. [Google Scholar] [CrossRef]
- Peimankar, A.; Weddell, S.; Jalal, T.; Lapthorn, A. Evolutionary multi-objective fault diagnosis of power transformers. Swarm Evol. Comput. 2017, 3, 62–75. [Google Scholar] [CrossRef]
- Dai, J.; Song, H.; Sheng, G.; Jiang, X. Dissolved gas analysis of insulating oil for power transformer fault diagnosis with deep belief network. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 2828–2835. [Google Scholar] [CrossRef]
- Ashkezari, A.; Ma, H.; Saha, T.; Ekanayake, C. Application of fuzzy support vector machine for determining the health index of the insulation system of in-service power transformers. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 965–973. [Google Scholar] [CrossRef]
- Khan, S.; Equbal, M.; Islam, T. A comprehensive comparative study of DGA based transformer fault diagnosis using fuzzy logic and ANFIS models. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 590–596. [Google Scholar] [CrossRef]
- Zhaohui, G.; Gaobin, L.; Zhenkun, Y.; Min, J. Automatic Modeling of Complex Functions with Clonal Selection-Based Gene Expression Programming. In Proceedings of the 3rd International Conference on Natural Computation (ICNC), Hainan, China, 24–27 August 2007; pp. 228–232. [Google Scholar]
- Ferreira, C. Gene Expression Programming: A New Adaptive Algorithm for solving Problems. Complex Syst. 2001, 13, 87–129. [Google Scholar]
- Ferreira, C. Gene Expression Programming: Mathematical Modelling by an Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Abu-Siada, A.; Islam, S.; Lai, S. A Novel Application of Gene Expression Programming in Transformer Diagnostics. In Proceedings of the AUPEC’08, Sydney, Australia, 14–17 December 2008. [Google Scholar]
- Abu-Siada, A. Correlation of furan concentration and spectral response of transformer oil-using expert systems. Sci. Meas. Technol. 2011, 5, 183–188. [Google Scholar] [CrossRef]
- Malik, H.; Mishra, S. Application of Gene Expression Programming (GEP) in Power Transformers Fault Diagnosis Using DGA. IEEE Trans. Ind. Appl. 2016, 52, 4556–4565. [Google Scholar] [CrossRef]
- Hashemnia, N.; Abu-Siada, A.; Masoum, M.; Islam, S. Characterization of Transformer FRA Signature under Various Winding Faults. In Proceedings of the Condition Monitoring and Diagnosis Conference, Bali, Indonesia, 23–27 September 2012. [Google Scholar]
- Li, S.; Wu, G.; Gao, B.; Hao, C.; Xin, D.; Yin, X. Interpretation of DGA for transformer fault diagnosis with complementary SaE-ELM and arctangent transform. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 586–595. [Google Scholar] [CrossRef]
Method | Methodology, Pros and Cons | Detected Faults | Used Gases |
---|---|---|---|
Key gas | concentration of all 7 key gases is required, easy to implement, conservative. | partial discharge, arcing thermal faults. | CO, CO2, H2, CH4, C2H2, C2H4 and C2H6 |
Duval Triangle | relies on graphical analysis, indicates detailed faults, does not comprise normal zone | partial discharge, low/high energy discharge, thermal faults at various temperatures | CH4, C2H2, and C2H4 |
Doernenburg | employs 4 ratios, gases should meet minimum threshold limits, may lead to out-of-code result. | thermal decomposition, partial discharge, arcing | H2, CH4, C2H2, C2H4 and C2H6 |
Rogers | uses 4 ratios that were modified to three ratios, gases used in the ratios should exceed a minimum level, may lead to out-of- code result. | partial discharge, arcing, thermal faults at various temperatures. | H2, CH4, C2H2, C2H4 and C2H6 |
IEC | same three ratios as in the revised Roger method with different ratio ranges and interpretations, may lead to out-of-code result. | partial discharge, low/high energy discharge, thermal faults at various temperatures. | H2, CH4, C2H2, C2H4 and C2H6 |
Method | F2 (2 < h < 4) Thermal Fault Oil/Cellulous | F3 (4 < h < 6) Electrical Fault (Corona) | F4 (6 < h < 8) Electrical Fault (Arcing) |
---|---|---|---|
Roger | Thermal fault <150 °C; 150–300 °C; 300–700 °C; >700 °C | Low energy electrical discharge | High energy electrical discharge |
IEC | Thermal fault <150 °C; 150–300 °C; 300–700 °C; >700 °C | Low energy electrical discharge | High energy electrical discharge |
Doeren. | Thermal decomposition | Partial discharge | Arcing |
Duval | Thermal fault <300 °C; 300–700 °C; >700 °C | Low energy electrical discharge | High energy electrical discharge |
Key gas | Thermal decomposition | Low energy electrical discharge | High energy electrical discharge |
Principal gas | Oil (C2H4) Cellulose (CO) | H2 | C2H2 |
Health Index | Fault Diagnosis | Asset Management Decision |
---|---|---|
0 ≤ h < 2 | No fault. | Continue normal operation. |
2 ≤ h < 4 | Thermal fault within Cellulose and/or oil insulation. | Exercise caution. Reduce loading. Check gas generation rate monthly. |
4 ≤ h < 6 | Low energy discharge. Low temperature thermal fault. Cellulose insulation degradation. | Exercise caution. Furan analysis is recommended. Check gas generation rate monthly. |
6 ≤ h < 8 | High energy discharge. Medium to high temperature thermal fault. Cellulose insulation degradation. Winding circulating current. Significant cellulose degradation. Excessive oil decomposition. | Exercise extreme caution. Check gas generation rate weekly or daily. Reduce loading (below 50%). Further oil analysis must be conducted. Oil must be degassed/filtered. Plan for outage. |
Samples | H2 | CH4 | C2H2 | C2H4 | C2H6 | CO | CO2 | Output of the Model in [21] | Output of GEP Model (h) |
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 7 | 0 | 0 | 0 | 0 | 132 | No fault | No fault (1) |
2 | 54 | 0 | 0 | 4 | 0 | 106 | 1303 | No fault | No fault (1) |
3 | 47 | 12 | 0 | 8 | 0 | 115 | 1113 | No fault | No fault (1) |
4 | 80 | 619 | 0 | 2480 | 326 | 268 | 2952 | Thermal | Thermal (3) |
5 | 231 | 3997 | 0 | 5584 | 1726 | 0 | 2194 | Thermal | Thermal (3.8) |
6 | 507 | 1053 | 17 | 1440 | 297 | 22 | 2562 | Thermal | Thermal (3.5) |
7 | 127 | 24 | 81 | 32 | 0 | 0 | 2024 | Arcing | Arcing (6.5) |
8 | 441 | 207 | 261 | 224 | 43 | 161 | 1123 | Arcing | Arcing (7.6) |
9 | 217 | 286 | 884 | 458 | 14 | 176 | 1544 | Arcing | Arcing (7.8) |
10 | 160 | 10 | 1 | 1 | 3 | - | - | Corona | Corona (4.1) |
11 | 240 | 20 | 96 | 28 | 5 | - | - | Corona | Arcing (6.4) |
12 | 2587 | 7.88 | 0 | 1.4 | 4.7 | - | - | Corona | Corona (4.3) |
Sample Number | H2 | CH4 | C2H2 | C2H4 | C2H6 | Outcomes of Various AI-based Models | ||||
---|---|---|---|---|---|---|---|---|---|---|
ANN | SVM | ELM | SaE-ELM | GEP model (h) | ||||||
1 | 58 | 13.4 | 0.2 | 1.8 | 0.8 | D2 | D2 | D2 | D2 | No fault (1) |
2 | 103 | 5.8 | 0.7 | 7.3 | 5 | T1 | T3 | T1 | T1 | Corona (4) |
3 | 45 | 29 | 0 | 15.7 | 8 | D1 | D1 | D1 | D1 | No fault (1) |
4 | 416 | 21 | 1 | 43.1 | 10.5 | T1 | T3 | T1 | T3 | Corona (4.3) |
5 | 59 | 53 | 0.8 | 60.3 | 17.7 | T2 | T2 | T2 | T2 | Thermal (2.5) |
6 | 10.5 | 4.8 | 2.2 | 4.8 | 5 | D1 | D1 | D1 | D1 | No fault (1) |
7 | 137 | 97 | 1.5 | 29 | 12 | T2 | T2 | T2 | T2 | Corona (4.1) |
8 | 89 | 73 | 5 | 6.8 | 6 | D2 | D2 | D2 | D2 | No fault (1) |
9 | 240 | 157 | 0.8 | 127 | 98 | T2 | T2 | T2 | T2 | High energy discharge (6) |
10 | 116 | 104 | 0 | 51 | 36 | T2 | T2 | T2 | T2 | Corona (4.1) |
Gas | Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 |
---|---|---|---|---|---|
H2 | 296 | 110 | 444 | 1893 | 3894 |
CH4 | 2 | 4 | 3 | 5 | 8 |
C2H6 | 1 | 1 | 2 | 2 | 2 |
C2H4 | 1 | 1 | 3 | 3 | 2 |
C2H2 | <1 | <1 | <1 | <1 | <1 |
CO | 183 | 243 | 318 | 359 | 377 |
CO2 | 2257 | 3741 | 3826 | 4760 | 5310 |
Gas | Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 |
---|---|---|---|---|---|
H2 | 1975 | 2931 | 1614 | 1904 | <5 |
CH4 | 7 | 7 | 6 | 7 | <1 |
C2H6 | 2 | 2 | 2 | 2 | <1 |
C2H4 | 4 | 2 | 3 | 2 | 1 |
C2H2 | <1 | <1 | <1 | <1 | <1 |
CO | 445 | 412 | 480 | 285 | 14 |
CO2 | 3101 | 5096 | 6803 | 6653 | 192 |
Gas | Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 |
---|---|---|---|---|---|
H2 | 20 | 30 | 258 | 249 | 1233 |
CH4 | 2 | 3 | 4 | 4 | 5 |
C2H6 | 2 | 1 | 2 | 2 | 2 |
C2H4 | 16 | 11 | 21 | 25 | 27 |
C2H2 | <1 | <1 | <1 | <1 | <1 |
CO | 158 | 126 | 173 | 177 | 224 |
CO2 | 2386 | 1670 | 2898 | 2958 | 3425 |
Sample Number | Gas Concentration (ppm) | Conventional Interpretation Methods | Fault Type Revealed by GEP Model | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CH4 | C2H4 | C2H2 | C2H6 | H2 | CO2 | CO | Key Gas | Roger | Duval | Doernenb. | IEC | ||
1 | 0 | 0 | 0 | 2 | 51 | 9386 | 541 | F1 | F5 | F5 | F4 | F5 | F1 |
2 | 0 | 0 | 0 | 0 | 53 | 7030 | 537 | F1 | F3 | F5 | F4 | F5 | F1 |
3 | 27 | 4 | 1 | 49 | 1 | 53 | 254 | F1 | F4 | F4 | F4 | F4 | F1 |
4 | 68 | 0 | 0 | 0 | 1088 | 53,048 | 387 | F3 | F3 | F3 | F5 | F5 | F3 |
5 | 24 | 32 | 81 | 0 | 127 | 2024 | 0 | F4 | F3 | F4 | F4 | F3 | F4 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu-Siada, A. Improved Consistent Interpretation Approach of Fault Type within Power Transformers Using Dissolved Gas Analysis and Gene Expression Programming. Energies 2019, 12, 730. https://doi.org/10.3390/en12040730
Abu-Siada A. Improved Consistent Interpretation Approach of Fault Type within Power Transformers Using Dissolved Gas Analysis and Gene Expression Programming. Energies. 2019; 12(4):730. https://doi.org/10.3390/en12040730
Chicago/Turabian StyleAbu-Siada, Ahmed. 2019. "Improved Consistent Interpretation Approach of Fault Type within Power Transformers Using Dissolved Gas Analysis and Gene Expression Programming" Energies 12, no. 4: 730. https://doi.org/10.3390/en12040730
APA StyleAbu-Siada, A. (2019). Improved Consistent Interpretation Approach of Fault Type within Power Transformers Using Dissolved Gas Analysis and Gene Expression Programming. Energies, 12(4), 730. https://doi.org/10.3390/en12040730