# Implementation of Open Boundaries within a Two-Way Coupled SPH Model to Simulate Nonlinear Wave–Structure Interactions

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

- Accurate wave generation and wave absorption through coupling an SPH solver to an FNPF solver using the open boundary formulation by Tafuni et al. [24],
- Having an online exchange of information in two directions between the SPH solver and the FNPF solver.

## 2. Smoothed Particle Hydrodynamics

#### 2.1. SPH Fundamentals

#### 2.2. Governing Equations

^{3}in this work. The parameter $\gamma $ is the polytrophic constant, ranging between 1 and 7. The maximum limit for $\rho $ is set as $B={c}^{2}{\rho}_{0}/\gamma $. Consequently, the choice of B is of high importance, since it determines the value of c. As mentioned before, c can be artificially lowered to ensure a reasonable time step [32]. However, in DualSPHysics, c is kept at least 10 times higher than the maximum expected flow velocity $\mathbf{v}$.

#### 2.3. Delta-SPH Formulation

## 3. Boundary Conditions in DualSPHysics

#### 3.1. Open Boundary Conditions

#### 3.2. Fixed Boundary Condition with Pressure Correction

#### 3.3. Comparison to the State-of-the-Art

## 4. Coupling Methodology Using DualSPHysics and OceanWave3D

#### 4.1. Inlet Velocity Correction

#### 4.2. Outlet Velocity Correction

#### 4.3. Coupling Algorithm

## 5. 2D Coupled Model: Validation

#### 5.1. DualSPHysics Solver Options

#### 5.2. Results and Discussion

## 6. 3D Coupled Model: Proof-of-Concept

#### 6.1. Experimental Set-up

#### 6.2. Numerical Set-up

#### 6.3. Results and Discussion

#### 6.4. Computational Speed-up

#### 6.5. Visual Comparison of Overtopping

## 7. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Gotoh, H.; Khayyer, A. On the state-of-the-art of particle methods for coastal and ocean engineering. Coast. Eng. J.
**2018**, 60, 79–103. [Google Scholar] [CrossRef] - SPH Numerical Development Working Group. Available online: http://spheric-sph.org/grand-challenges (accessed on 20 February 2019).
- Bouscasse, B.; Marrone, S.; Colagrossi, A.; Di Mascio, A. Multi-purpose interfaces for coupling SPH with other solvers. In Proceedings of the 8th International SPHERIC Workshop, Trondheim, Norway, 4–6 June 2013. [Google Scholar]
- Fourtakas, G.; Stansby, P.; Rogers, B.; Lind, S. An Eulerian-Lagrangian incompressible SPH formulation (ELI-SPH) connected with a sharp interface. Comput. Methods Appl. Mech. Eng. Comput. Methods Appl. Mech. Eng.
**2018**, 329, 532–552. [Google Scholar] [CrossRef] - Altomare, C.; Domínguez, J.M.; Crespo, A.J.C.; Suzuki, T.; Caceres, I.; Gómez-Gesteira, M. Hybridisation of the wave propagation model SWASH and the meshfree particle method SPH for real coastal applications. Coast. Eng. J.
**2016**, 57, 1–34. [Google Scholar] - Altomare, C.; Tagliafierro, B.; Domínguez, J.; Suzuki, T.; Viccione, G. Improved relaxation zone method in SPH-based model for coastal engineering applications. Appl. Ocean Res.
**2018**, 81, 15–33. [Google Scholar] [CrossRef] - Zijlema, M.; Stelling, G.; Smit, P. SWASH: An operational public domain code for simulating wave fields and rapidly varied flows in coastal waters. Coast. Eng.
**2011**, 58, 992–1012. [Google Scholar] [CrossRef] - Kassiotis, C.; Ferrand, M.; Violeau, D.; Rogers, B.; Stansby, P.; Benoit, M.; Rogers, B.D.; Stansby, P.K. Coupling SPH with a 1D Boussinesq-type wave model. In Proceedings of the 6th International SPHERIC Workshop, Hamburg, Germany, 8–10 June 2011; pp. 241–247. [Google Scholar]
- Narayanaswamy, M.; Crespo, A.J.C.; Gómez-Gesteira, M.; Dalrymple, R.A. SPHysics-FUNWAVE hybrid model for coastal wave propagation. J. Hydraul. Res.
**2010**, 48, 85–93. [Google Scholar] [CrossRef] - Kirby, J.T.; Wei, G.; Chen, Q.; Kennedy, A.B.; Dalrymple, R.A. FUNWAVE 1.0: Fully Nonlinear Boussinesq Wave Model-Documentation And User’s Manual; Research Report NO. CACR-98-06; University of Delaware: Delaware, NJ, USA, 1998. [Google Scholar]
- Ma, Q.; Yan, S. QALE-FEM for numerical modelling of nonlinear interaction between 3D moored floating bodies and steep waves. Int. J. Numer. Methods Eng.
**2009**, 78, 713–756. [Google Scholar] [CrossRef] - Fourtakas, G.; Stansby, P.K.; Rogers, B.D.; Lind, S.J.; Yan, S.; Ma, Q.W. On the coupling of Incompressible SPH with a Finite Element potential flow solver for nonlinear free surface flows. In Proceedings of the 27th International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers, San Francisco, CA, USA, 25–30 June 2017. [Google Scholar]
- Chicheportiche, J.; Hergault, V.; Yates, M.; Raoult, C.; Leroy, A.; Joly, A.; Violeau, D. Coupling SPH with a potential Eulerian model for wave propagation problems. In Proceedings of the 11th SPHERIC International Workshop, Munich, Germany, 14–16 June 2016; pp. 246–252. [Google Scholar]
- Didier, E.; Neves, D.; Teixeira, P.R.F.; Neves, M.G.; Viegas, M.; Soares, H. Coupling of FLUINCO mesh-based and SPH mesh-free numerical codes for the modeling of wave overtopping over a porous breakwater. In Proceedings of the International Short Course on Applied Coastal Research, Lisbon, Portugal, 4–7 June 2013. [Google Scholar]
- Teixeira, P.R.D.F.; Awruch, A.M. Numerical simulation of fluid–structure interaction using the finite element method. Comput. Fluids
**2005**, 34, 249–273. [Google Scholar] [CrossRef] - Kumar, P.; Yang, Q.; Jones, V.; Mccue-Weil, L. Coupled SPH-FVM simulation within the OpenFOAM framework. Procedia IUTAM
**2015**, 18, 76–84. [Google Scholar] [CrossRef] - Marrone, S.; Di Mascio, A.; Le Touzé, D. Coupling of Smoothed Particle Hydrodynamics with Finite Volume method for free-surface flows. J. Comput. Phys.
**2016**, 310, 161–180. [Google Scholar] [CrossRef] - Napoli, E.; De Marchis, M.; Gianguzzi, C.; Milici, B.; Monteleone, A. A coupled Finite Volume–Smoothed Particle Hydrodynamics method for incompressible flows. Comput. Methods Appl. Mech. Eng.
**2016**, 310, 674–693. [Google Scholar] [CrossRef] [Green Version] - Engsig-Karup, A.P.; Bingham, H.B.; Lindberg, O. An efficient flexible-order model for 3D nonlinear water waves. J. Comput. Phys.
**2009**, 228, 2100–2118. [Google Scholar] [CrossRef] - Crespo, A.; Domínguez, J.; Rogers, B.; Gómez-Gesteira, M.; Longshaw, S.; Canelas, R.; Vacondio, R.; Barreiro, A.; García-Feal, O. DualSPHysics: Open-source parallel CFD solver based on Smoothed Particle Hydrodynamics (SPH). Comput. Phys. Commun.
**2015**, 187, 204–216. [Google Scholar] [CrossRef] - Verbrugghe, T.; Domínguez, J.M.; Crespo, A.J.; Altomare, C.; Stratigaki, V.; Troch, P.; Kortenhaus, A. Coupling methodology for smoothed particle hydrodynamics modelling of nonlinear wave–structure interactions. Coast. Eng.
**2018**, 138, 184–198. [Google Scholar] [CrossRef] - Tafuni, A.; Domínguez, J.; Vacondio, R.; Sahin, I.; Crespo, A. Open boundary conditions for large-scale SPH simulations. In Proceedings of the 11th SPHERIC International Workshop, Munich, Germany, 14–16 June 2016. [Google Scholar]
- Tafuni, A.; Domínguez, J.M.; Vacondio, R.; Crespo, A. Accurate and efficient SPH open boundary conditions for real 3D engineering problems. In Proceedings of the 12th International SPHERIC Workshop, Ourense, Spain, 13–15 June 2017; pp. 1–12. [Google Scholar]
- Tafuni, A.; Domínguez, J.; Vacondio, R.; Crespo, A. A versatile algorithm for the treatment of open boundary conditions in Smoothed particle hydrodynamics GPU models. Comput. Methods Appl. Mech. Eng.
**2018**, 342, 604–624. [Google Scholar] [CrossRef] - Ni, X.; Feng, W.; Huang, S.; Zhang, Y.; Feng, X. A SPH numerical wave flume with non-reflective open boundary conditions. Ocean Eng.
**2018**, 163, 483–501. [Google Scholar] [CrossRef] - Crespo, A.; Domínguez, J.; Gómez-Gesteira, M.; Barreiro, A.; Rogers, B. User Guide for DualSPHysics Code; The University of Manchester and Johns Hopkins University, University of Vigo: Vigo, Spain, 2018. [Google Scholar]
- Wendland, H. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math.
**1995**, 4, 389–396. [Google Scholar] [CrossRef] - Monaghan, J.J. Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys.
**1992**, 30, 543–574. [Google Scholar] [CrossRef] - Altomare, C.; Crespo, A.J.; Domínguez, J.M.; Gómez-Gesteira, M.; Suzuki, T.; Verwaest, T. Applicability of Smoothed Particle Hydrodynamics for estimation of sea wave impact on coastal structures. Coast. Eng.
**2015**, 96, 1–12. [Google Scholar] [CrossRef] - Shao, S.; Lo, E.Y. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv. Water Resour.
**2003**, 26, 787–800. [Google Scholar] [CrossRef] [Green Version] - Lo, E.Y.; Shao, S. Simulation of near-shore solitary wave mechanics by an incompressible SPH method. Appl. Ocean Res.
**2002**, 24, 275–286. [Google Scholar] - Monaghan, J.J. Simulating free surface flows with SPH. J. Comput. Phys.
**1994**, 110, 399–406. [Google Scholar] [CrossRef] - Batchelor, G.K. An Introduction to Fluid Dynamics; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Leimkuhler, B.J.; Reich, S.; Skeel, R.D. Integration methods for molecular dynamics. IMA Vol. Math. Appl.
**1996**, 82, 161–186. [Google Scholar] - Monaghan, J.; Kos, A. Solitary waves on a Cretan beach. J. Waterw. Port Coast. Ocean Eng.
**1999**, 125, 145–155. [Google Scholar] [CrossRef] - Molteni, D.; Colagrossi, A. A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH. Comput. Phys. Commun.
**2009**, 180, 861–872. [Google Scholar] [CrossRef] - Antuono, M.; Colagrossi, A.; Marrone, S. Numerical diffusive terms in weakly-compressible SPH schemes. Comput. Phys. Commun.
**2012**, 183, 2570–2580. [Google Scholar] [CrossRef] - Liu, M.; Liu, G. Restoring particle consistency in smoothed particle hydrodynamics. Appl. Numer. Math.
**2006**, 56, 19–36. [Google Scholar] [CrossRef] - Crespo, A.; Gómez-Gesteira, M.; Dalrymple, R.A. Boundary Conditions Generated by Dynamic Particles in SPH Methods; CMC-Tech Science Press: Henderson, NV, USA, 2007; Volume 5, p. 173. [Google Scholar]
- Marrone, S.; Antuono, M.; Colagrossi, A.; Colicchio, G.; Touzé, D.L.; Graziani, G. Delta-SPH model for simulating violent impact flows. Comput. Methods Appl. Mech. Eng.
**2011**, 200, 1526–1542. [Google Scholar] [CrossRef] - Dean, R.G.; Dalrymple, R.A. Wavemaker Theory. In Water Wave Mechanics for Engineers and Scientists; World Scientific: Singapore, 1991; pp. 170–186. [Google Scholar]
- Altomare, C.; Domínguez, J.; Crespo, A.; González-Cao, J.; Suzuki, T.; Gómez-Gesteira, M.; Troch, P. Long-crested wave generation and absorption for SPH-based DualSPHysics model. Coast. Eng.
**2017**, 127, 37–54. [Google Scholar] [CrossRef] - Rossum, G. Python Reference Manual; Technical Report; CWI: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Ren, B.; He, M.; Dong, P.; Wen, H. Nonlinear simulations of wave-induced motions of a freely floating body using WCSPH method. Appl. Ocean Res.
**2015**, 50, 1–12. [Google Scholar] [CrossRef] - Altomare, C.; Suzuki, T.; Domínguez, J.; Barreiro, A.; Crespo, A.; Gómez-Gesteira, M. Numerical wave dynamics using Lagrangian approach: Wave generation and passive & active wave absorption. In Proceedings of the 10th SPHERIC International Workshop, Parma, Italy, 16–18 June 2015. [Google Scholar]
- Verbrugghe, T. Coupling Methodologies for Numerical Modelling of Floating Wave Energy Converters. Ph.D. Thesis, Ghent University, Ghent, Belgium, 2018. [Google Scholar]
- Learn About Your New HERO5 Black. Available online: https://gopro.com/yourhero5/black (accessed on 20 February 2019).

**Figure 1.**Sketch of the implemented open boundary model, adapted from Tafuni et al. [24].

**Figure 2.**General sketch of coupling methodology between the OceanWave3D domain (

**top**) and the DualSPHysics domain (

**bottom**).

**Figure 3.**Sensitivity analysis on the number of buffer particle layers ${n}_{l}$ necessary for accurate wave propagation, represented by the ratio ${K}_{D}$ along the fluid domain.

**Figure 4.**Sensitivity analysis on distance ${d}_{WG}$ from the wave measurement locations $W{G}_{in}$ and $W{G}_{out}$ to the inlet/outlet buffer zone, necessary for accurate wave propagation, represented by the ratio ${K}_{D}$ along the fluid domain.

**Figure 5.**Coupling implementation scheme showing several options to generate and absorb waves within a two-way coupled model: wave theory solutions, the wave propagation model OceanWave3D or any external data.

**Figure 7.**Sketch of ’relaxation zones’ providing a smooth transition between the OceanWave3D domain and the DualSPHysics domain.

**Figure 8.**Numerical test set-up for simulation of the response of a floating box to a custom wave signal. The DualSPHysics domain and OceanWave3D domain are indicated. ${L}_{wav}$ is the wavelength.

**Figure 9.**Comparison of time series and error between numerical and experimental results of the three degrees of freedom of the box with heave, pitch and surge motions (top three graphs). The difference between the numerical results and the experimental results is expressed in the error values for heave err${}_{H}$, pitch err${}_{P}$ and surge err${}_{S}$ (bottom three graphs).

**Figure 10.**Comparison of the instantaneous surface elevation profile between one-way and two-way coupling results of OceanWave3D and DualSPHysics. The grey masked out zone is the region around the floating box, omitted from the coupling.

**Figure 11.**Experimental set-up for tests with a heaving disk type WEC in the large wave flume of Ghent University. The numerical DualSPHysics domain is indicated as a green zone.

**Figure 12.**Numerical set-up for 3D modelling of a heaving cylindrical WEC in a two-way coupled model.

**Figure 13.**Comparison of a one-way coupling 3D proof-of-concept with experimental data of a heaving cylinder in overtopping nonlinear waves. (

**a**) shows the surface elevation 1 m in front of the WEC; (

**b**) the surface elevation 1 m behind the WEC; (

**c**) the horizontal surge force acting on the WEC and (

**d**) the heave motion of the WEC.

**Figure 14.**Visual comparison of overtopping waves between the 3D proof-of-concept with experimental data of a heaving cylinder in overtopping nonlinear waves. The plot shows a time progression of the wave, from left to right with a time difference of 0.4 s between each frame.

**Table 1.**Imposed and extrapolated quantities for inlet and outlet buffer particles (Imp = imposed, Ext = extrapolated, Hyd = hydrostatic).

Quantity | Horizontal Velocity u | Vertical Velocity w | Surface Elevation η | Pressure p |
---|---|---|---|---|

inlet | Imp | No | Imp | Hyd |

outlet | Imp | No | Ext | Ext |

Time Integration Scheme | Verlet |
---|---|

Time Step | Variable (including CFL and viscosity) |

Kernel | Wendland |

Smoothing Length | $2.0\xb7{d}_{p}$ |

Viscosity Treatment | Artificial ($\alpha =0.01$) |

Equation of State | Tait equation |

Boundary Conditions | Open Boundary Conditions |

$\delta $-SPH | Yes ($\delta $-SPH = 0.1) |

Wave Height H [m] | 0.12 |

Wave Period T [s] | 1.2 |

Water Depth d [m] | 0.7 |

Wave Length L${}_{wav}$ [m] | 2.17 |

Particle Size d${}_{p}$ [m] | 0.01 |

Domain Length ${L}_{SPH}$ [m] | 4.34 |

Domain Width W [m] | 1.0 |

WEC Diameter D [m] | 0.5 |

WEC Draft q${}_{WEC}$ [m] | 0.113 |

Wave Theory | Stokes 5th |

Time Step Algorithm | Verlet |

Artificial Viscosity | 0.01 |

$\delta $-SPH | 0.1 |

One-Way Coupling | Full Model | Difference | |
---|---|---|---|

# Particles | 5,010,954 | 25,473,152 | 508% |

# Fluid Particles | 2,949,433 | 21,165,100 | 718% |

GPU Memory [MB] | 780 | 3941 | 505% |

Estimated Runtime [hr] | 35 | 144 | 411% |

Real Runtime [hr] | 91 | 375 | 411% |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Verbrugghe, T.; Stratigaki, V.; Altomare, C.; Domínguez, J.M.; Troch, P.; Kortenhaus, A.
Implementation of Open Boundaries within a Two-Way Coupled SPH Model to Simulate Nonlinear Wave–Structure Interactions. *Energies* **2019**, *12*, 697.
https://doi.org/10.3390/en12040697

**AMA Style**

Verbrugghe T, Stratigaki V, Altomare C, Domínguez JM, Troch P, Kortenhaus A.
Implementation of Open Boundaries within a Two-Way Coupled SPH Model to Simulate Nonlinear Wave–Structure Interactions. *Energies*. 2019; 12(4):697.
https://doi.org/10.3390/en12040697

**Chicago/Turabian Style**

Verbrugghe, Tim, Vasiliki Stratigaki, Corrado Altomare, J. M. Domínguez, Peter Troch, and Andreas Kortenhaus.
2019. "Implementation of Open Boundaries within a Two-Way Coupled SPH Model to Simulate Nonlinear Wave–Structure Interactions" *Energies* 12, no. 4: 697.
https://doi.org/10.3390/en12040697