10-Year Wind and Wave Energy Assessment in the North Indian Ocean
Abstract
:1. Introduction
2. Methodology and Data
2.1. Model Description and Configuration
2.2. Wind Field and Bathymetry Data
2.3. Observation Wave Data
2.4. Data Validation Method
3. WS And SWH Assessment
3.1. Distribution of WS and SWH
3.2. Exploitable WS and Exploitable SWH
4. Wind Energy and Wave Energy Assessment
4.1. Calculate Method of Energy Assessment
4.2. Characteristics of Wind and Wave Energy Density
4.3. Occurrences of Exploitable Wind and Wave Energy
4.3.1. Coefficient of Variation
4.3.2. Monthly Variability Index
4.3.3. Seasonal Variability Index
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Amrutha, M.M.; Kumar, V.S.; Bhaskaran, H.; Naseef, M. Consistency of wave power at a location in the coastal waters of central eastern Arabian Sea. Ocean Dyn. 2019, 69, 543–560. [Google Scholar] [CrossRef]
- Peters, B.; Bui, H.H.; Sidney, J.; Weng, Z.; Loffredo, J.T.; Watkins, D.I.; Mothé, B.R.; Sette, A. A computational resource for the prediction of peptide binding to Indian rhesus macaque MHC class I molecules. Vaccine 2005, 23, 5212–5224. [Google Scholar] [CrossRef] [PubMed]
- Amrutha, M.M.; Sanil Kumar, V. Spatial and temporal variations of wave energy in the nearshore waters of the central west coast of India. Ann. Geophys. 2016, 34, 1197–1208. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.S.; Joseph, J.; Amrutha, M.M.; Jena, B.K.; Sivakholundu, K.M.; Dubhashi, K.K. Seasonal and interannual changes of significant wave height in shelf seas around India during 1998–2012 based on wave hindcast. Ocean Eng. 2018, 151, 127–140. [Google Scholar] [CrossRef]
- Arinaga, R.A.; Cheung, K.F. Atlas of global wave energy from 10 years of reanalysis and hindcast data. Renew. Energy 2012, 39, 49–64. [Google Scholar] [CrossRef]
- García, C.; Canals, M. Wave energy resource assessment and recoverable wave energy in Puerto Rico and the US Virgin Islands. In Proceedings of the OCEANS 2015, Genoa, Italy, 18–21 May 2015. [Google Scholar] [CrossRef]
- Sugita, M.R.I.P.; Wijaya, F.D. Design and Analysis of Tri Core Permanent Magnet Linear Generator for Wave Energy Conversion in South Coast of Java Island. In Proceedings of the 2016 6th International Annual Engineering Seminar (InAES), Yogyakarta, Indonesia, 1–3 August 2016. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Dhanju, A.; Whitaker, P.; Kempton, W. Assessing offshore wind resources: An accessible methodology. Renew. Energy 2008, 33, 55–64. [Google Scholar] [CrossRef]
- Jacobson, M.Z. Review of solutions to global warming, air pollution, and energy security. Energy Environ. Sci. 2009, 2, 148–173. [Google Scholar] [CrossRef]
- Ringwood, J.V.; Bacelli, G.; Fusco, F. Control, forecasting and optimization for wave energy conversion. IFAC Proc. Vol. (IFAC-Pap.) 2014, 9, 7678–7689. [Google Scholar] [CrossRef]
- Jiang, B.; Wei, Y.; Jiang, X.; Wang, H.; Wang, X.; Ding, J.; Zhang, R.; Shi, Y.; Cai, X.; Wu, Y. Assessment of wave energy resource of the Bohai Sea, Yellow Sea and East China Sea based on 10-year numerical hindcast data. In Proceedings of the OCEANS 2016, Shanghai, China, 10–13 April 2016. [Google Scholar]
- Kumar, V.S.; Anoop, T.R. Wave energy resource assessment for the Indian shelf seas. Renew. Energy 2015, 76, 212–219. [Google Scholar] [CrossRef]
- Goettsche-Wanli, G. Sustainable Production of Offshore Renewable Energy: A Global Perspective. In Sustainable Ocean Resource Governance; Brill Nijhoff: Leiden, The Netherlands, 2018; pp. 8–75. [Google Scholar] [CrossRef]
- Vivekanandan, E.; Srinath, M.; Pillai, V.N.; Immanuel, S.; Kurup, K.N. Marine fisheries along the southwest coast of India. Gen. Inf. 2003, 1705, 757–792. [Google Scholar]
- Hamza, F.R.; Priotti, J.P. Maritime trade and piracy in the Gulf of Aden and the Indian Ocean (1994–2017). J. Transp. Secur. 2018, 1–18. [Google Scholar] [CrossRef]
- Anderson, J.A. China’s Southwestern Silk Road in World History; University of North Carolina at Greensboro: Greensboro, NC, USA, 2009; pp. 1–3. [Google Scholar]
- Upadhyaya, S. Expansion of Chinese maritime power in the Indian Ocean: implications for India. Def. Stud. 2017, 17, 63–83. [Google Scholar] [CrossRef]
- Amrutha, M.M.; Kumar, V.S.; Sandhya, K.G.; Nair, T.B.; Rathod, J.L. Wave hindcast studies using SWAN nested in WAVEWATCH III-comparison with measured nearshore buoy data off Karwar, eastern Arabian Sea. Ocean Eng. 2016, 119, 114–124. [Google Scholar] [CrossRef]
- Du, S.; Xiang, R.; Chen, M.; Liu, J.; Zhang, L.; Luo, C.; Su, X.; Zhang, Q. Progress of applied research of tephra in the Indian Ocean sediments. J. Trop. Oceanogr. 2017, 36, 12–18. [Google Scholar]
- Gurney, G.G.; Cinner, J.; Ban, N.C.; Pressey, R.L.; Pollnac, R.; Campbell, S.J.; Tasidjawa, S.; Setiawan, F. Poverty and protected areas: an evaluation of a marine integrated conservation and development project in Indonesia. Glob. Environ. Chang. 2014, 26, 98–107. [Google Scholar] [CrossRef]
- Ardhuin, F.; Bertotti, L.; Bidlot, J.R.; Cavaleri, L.; Filipetto, V.; Lefevre, J.M.; Wittmann, P. Comparison of wind and wave measurements and models in the Western Mediterranean Sea. Ocean Eng. 2007, 34, 526–541. [Google Scholar] [CrossRef]
- Cornett, A.M. A global wave energy resource assessment. In Proceedings of the ISOPE 18th International Conference on Offshore and Polar Engineering, Vancouver, BC, Canada, 6–11 July 2008. [Google Scholar]
- Zheng, C.; Pan, J.; Li, J. Assessing the China Sea wind energy and wave energy resources from 1988 to 2009. Ocean Eng. 2013, 65, 39–48. [Google Scholar] [CrossRef]
- Gallagher, S.; Tiron, R.; Dias, F. A long-term nearshore wave hindcast for Ireland: Atlantic and Irish Sea coasts (1979–2012). Ocean Dyn. 2014, 64, 1163–1180. [Google Scholar] [CrossRef]
- Kumar, V.S.; Anoop, T.R. Spatial and temporal variations of wave height in shelf seas around India. Nat. Hazards 2015, 78, 1693–1706. [Google Scholar] [CrossRef]
- Anoop, T.R.; SanilKumar, V.; Shanas, P.R.; Glejin, J.; Amrutha, M.M. Indian Ocean Dipole modulated wave climate of eastern Arabian Sea. Ocean Sci. 2016, 12, 369–378. [Google Scholar] [CrossRef] [Green Version]
- Aboobacker, V.M.; Shanas, P.R.; Alsaafani, M.A.; Albarakati, A.M. Wave energy resource assessment for Red Sea. Renew. Energy 2017, 114, 46–58. [Google Scholar] [CrossRef]
- Bitner-Gregersen, E.M.; Ewans, K.C.; Johnson, M.C. Some uncertainties associated with wind and wave description and their importance for engineering applications. Ocean Eng. 2014, 86, 11–25. [Google Scholar] [CrossRef]
- Bitner-Gregersen, E.M.; Soares, C.G. Uncertainty of average wave steepness prediction from global wave databases. In Advancements in Marine Structures; Guedes Soares & Das, Ed.; Taylor & Francis Group: London, UK, 2007; ISBN 978-0-415-43725-7. [Google Scholar]
- Sheng, Y.; Shao, W.; Li, S.; Zhang, Y.; Yang, H.; Zuo, J. Evaluation of Typhoon Waves Simulated by Wave Watch-III Model in Shallow Waters Around Zhoushan Islands. J. Ocean Univ. China 2019, 18, 365–375. [Google Scholar] [CrossRef]
- Zieger, S.; Babanin, A.V.; Rogers, W.E.; Young, I.R. Observation-based source terms in the third-generation wave model WAVEWATCH. Ocean Model. 2015, 96, 2–25. [Google Scholar] [CrossRef] [Green Version]
- Polnikov, V.G.; Innocentini, V. Comparative Study of Performance of Wind Wave Model: Wavewatch—Modified by New Source Function. Eng. Appl. Comput. Fluid Mech. 2008, 2, 466–481. [Google Scholar] [CrossRef]
- Weedon, G.P.; Balsamo, G.; Bellouin, N.; Gomes, S.; Best, M.J.; Viterbo, P. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resour. Res. 2014, 50, 7505–7514. [Google Scholar] [CrossRef] [Green Version]
- Appendini, C.M.; Torres-Freyermuth, A.; Salles, P.; López-González, J.; Mendoza, E.T. Wave climate and trends for the Gulf of Mexico: A 30-yr wave hindcast. J. Clim. 2014, 27, 1619–1632. [Google Scholar] [CrossRef]
- Arabelos, D. Validation of ETOPO5U in the Hellenic area. Bull. Géodésique 1994, 68, 88–99. [Google Scholar] [CrossRef]
- Beyá, J.; Álvarez, M.; Gallardo, A.; Hidalgo, H.; Winckler, P. Generation and validation of the Chilean Wave Atlas database. Ocean Model. 2017, 116, 16–32. [Google Scholar] [CrossRef]
- Zhou, L.; Li, J.; Zheng, C.W.; Chen, X.B. Wave energy research in global oceans with ERA40 wave data for recent 45 years. In Proceedings of the 2011 International Conference on Remote Sensing, Environment and Transportation Engineering, Nanjing, China, 24–26 June 2011; pp. 3760–3763. [Google Scholar] [CrossRef]
- Wang, C.; Yang, L.; Wang, Y.; Meng, Z.; Li, W.; Han, F. Circuit Configuration and Control of a Grid-Tie Small-Scale Wind Generation System for Expanded Wind Speed Range. IEEE Trans. Power Electron. 2016, 32, 5227–5247. [Google Scholar] [CrossRef]
- Yazdani, M.G.; Salam, M.A. Investigation on available wind energy at Tungku beach. Front. Energy 2012, 6, 275–279. [Google Scholar] [CrossRef]
- Wan, Y.; Zhang, J.; Meng, J.; Wang, J. Exploitable wave energy assessment based on ERA-Interim reanalysis data—A case study in the East China Sea and the South China Sea. Acta Oceanol. Sin. 2015, 34, 143–155. [Google Scholar] [CrossRef]
- Zheng, C.; Pan, J. Wind Energy Resources Assessment in Global Ocean. J. Nat. Resour. 2012, 27, 1–8. [Google Scholar] [CrossRef]
- Zheng, C.W.; Wang, Q.; Li, C.Y. An overview of medium- to long-term predictions of global wave energy resources. Renew. Sustain. Energy Rev. 2017, 79, 1492–1502. [Google Scholar] [CrossRef]
- Haces-Fernandez, F.; Hua, L.; Ramirez, D. Wave Energy Characterization and Assessment in the U.S. Gulf of Mexico, East and West Coasts with Energy Event Concept. Renew. Energy 2018, 123, 312–322. [Google Scholar] [CrossRef]
- Wang, Z.; Duan, C.; Sheng, D. Long-term wind and wave energy resource assessment in the South China sea based on 30-year hindcast data. Ocean Eng. 2018, 163, 58–75. [Google Scholar] [CrossRef]
- Giorgi, G.; Ringwood, J.V. A Compact 6-DoF Nonlinear Wave Energy Device Model for Power Assessment. IEEE Trans. Sustain. Energy 2018, 10, 119–126. [Google Scholar] [CrossRef]
- Ulazia, A.; Penalba, M.; Ibarra-Berastegui, G.; Ringwood, J.; Saénz, J. Wave energy trends over the Bay of Biscay and the consequences for wave energy converters. Energy 2017, 141, 624–634. [Google Scholar] [CrossRef]
- Penalba, M.; Ulazia, A.; Ibarra-Berastegui, G.; Ringwood, J.; Sáenz, J. Wave energy resource variation off the west coast of Ireland and its impact on realistic wave energy converters’ power absorption. Appl. Energy 2018, 224, 205–219. [Google Scholar] [CrossRef]
- Eskinazi, S.; Goethals, R. Multiple Pump Stage Loading of a Variable-rpin Wind Turbine. J. Energy 2015, 3, 114–119. [Google Scholar] [CrossRef]
- Zheng, C.; Zhou, L. Wave climate and wave energy analysis of the south China sea in recent 10 years. Acta Energ. Sol. Sin. 2012, 33, 1349–1356. [Google Scholar]
- Kamranzad, B.; Etemad-Shahidi, A.; Chegini, V. Developing an optimum hotspot identifier for wave energy extracting in the northern Persian Gulf. Renew. Energy 2017, 114, 59–71. [Google Scholar] [CrossRef]
- Antonio, F.D.O. Wave energy utilization: A review of the technologies. Renew. Sustain. Energy Rev. 2010, 14, 899–918. [Google Scholar]
- Zheng, C.; Zhuang, H.; Li, X.; Li, X. Wind energy and wave energy resources assessment in the East China Sea and South China Sea. Sci. China Technol. Sci. 2012, 55, 163–173. [Google Scholar] [CrossRef]
- Van Zwieten, J.; Driscoll, F.R.; Leonessa, A.; Deane, G. Design of a prototype ocean current turbine—Part I: mathematical modeling and dynamics simulation. Ocean Eng. 2006, 33, 1485–1521. [Google Scholar] [CrossRef]
- Shankar, D.; Vinayachandran, P.N.; Unnikrishnan, A.S. The monsoon currents in the north Indian Ocean. Prog. Oceanogr. 2002, 52, 63–120. [Google Scholar] [CrossRef]
- Anoop, T.R.; Kumar, V.S.; Shanas, P.R.; Johnson, G. Surface Wave Climatology and Its Variability in the North Indian Ocean Based on ERA-Interim Reanalysis. J. Atmos. Ocean. Technol. 2015, 32, 1372–1385. [Google Scholar] [CrossRef] [Green Version]
- Sanil, K.V.; Muhammed, N.T. Performance of ERA-Interim Wave Data in the Nearshore Waters around India. J. Atmos. Ocean. Technol. 2015, 32, 1257–1269. [Google Scholar] [CrossRef]
- Silva, D.; Martinho, P.; Soares, C.G. Wave energy Distribution along the Portuguese continental coast based on a thirty three years hindcast. Renew. Energy 2018, 127, 1064–1075. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Duan, S.; Fan, L.; Zheng, C.; Li, X.; Li, H.; Xu, J.; Wang, Q.; Feng, M. 10-Year Wind and Wave Energy Assessment in the North Indian Ocean. Energies 2019, 12, 3835. https://doi.org/10.3390/en12203835
Yang S, Duan S, Fan L, Zheng C, Li X, Li H, Xu J, Wang Q, Feng M. 10-Year Wind and Wave Energy Assessment in the North Indian Ocean. Energies. 2019; 12(20):3835. https://doi.org/10.3390/en12203835
Chicago/Turabian StyleYang, Shaobo, Shanhua Duan, Linlin Fan, Chongwei Zheng, Xingfei Li, Hongyu Li, Jianjun Xu, Qiang Wang, and Ming Feng. 2019. "10-Year Wind and Wave Energy Assessment in the North Indian Ocean" Energies 12, no. 20: 3835. https://doi.org/10.3390/en12203835
APA StyleYang, S., Duan, S., Fan, L., Zheng, C., Li, X., Li, H., Xu, J., Wang, Q., & Feng, M. (2019). 10-Year Wind and Wave Energy Assessment in the North Indian Ocean. Energies, 12(20), 3835. https://doi.org/10.3390/en12203835