Environmental Performance Measures to Assess Building Refurbishment from a Life Cycle Perspective
Abstract
:1. Introduction
2. Method
- Production stage includes raw material supply, transport and manufacturing. Environmental Product Declarations (EPD) can be used to locate impact data.
- Construction stage includes transport and the construction installation process.
- Use stage includes the impact of maintenance, repair, operational use of energy and water.
- End-of-life stage includes the impact of deconstruction, reuse, transport and disposal.
3. Case Study
3.1. Added Embodied Impact
3.2. Change in Operational Impact
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BR-LCA | Building Refurbishment-Life Cycle Assessment |
EPBT | Energy Payback Time |
EROI | Energy Return On Investment |
ROI | Return On Investment |
AY | Annual Yield |
EPM | Environmental Performance Measure |
TSL | Technical Service Life |
GHGe | Greenhouse Gas emissions |
CAGR | Compound Annual Growth Rate |
EPD | Environmental Product Declarations |
RM | Refurbishment Measures |
CHP | Combined Heat- and Power |
DH | District Heating |
LCC | Life Cycle Cost |
References
- United Nations. UN Sustainable Development Goals. Available online: http://www.un.org/sustainabledevelopment/sustainable-development-goals/ (accessed on 4 December 2017).
- Intergovernmental Panel on Climate Change. Special Report on Global Warming of 1.5 °C; IPCC: Geneve, Swizerland, 2018. [Google Scholar]
- European Comission. European Union Climate Action. Available online: https://ec.europa.eu/clima/citizens/eu_en (accessed on 4 December 2017).
- Dixit, M.K.; Fernández-Solís, J.L.; Lavy, S.; Culp, C.H. Need for an embodied energy measurement protocol for buildings: A review paper. Renew. Sustain. Energy Rev. 2012, 16, 3730–3743. [Google Scholar] [CrossRef]
- Olsson, S.; Malmqvist, T.; Glaumann, M. An approach towards sustainable renovation—A tool for decision support in early project stages. Build. Environ. 2016, 106, 20–32. [Google Scholar] [CrossRef]
- Brown, N.W.O.; Olsson, S.; Malmqvist, T. Embodied greenhouse gas emissions from refurbishment of residential building stock to achieve a 50% operational energy reduction. Build. Environ. 2014, 79, 46–56. [Google Scholar] [CrossRef]
- Blengini, G.A.; Di Carlo, T. The changing role of life cycle phases, subsystems and materials in the LCA of low energy buildings. Energy Build. 2010, 42, 869–880. [Google Scholar] [CrossRef]
- Moschetti, R.; Mazzarella, L.; Nord, N. An overall methodology to define reference values for building sustainability parameters. Energy Build. 2015, 88, 413–427. [Google Scholar] [CrossRef]
- Rossi, B.; Marique, A.F.; Glaumann, M.; Reiter, S. Life-cycle assessment of residential buildings in three different European locations, basic tool. Build. Environ. 2012, 51, 395–401. [Google Scholar] [CrossRef]
- Boverket. Byggnaders Klimatpåverkan Utifrån Ett Livscykelperspektiv; Boverket-The Swedish National Board of Housing, Building and Planning: Stockholm, Sweden, 2015; p. 95.
- Olsson, S.; Liljenström, C.; Malmqvist, T. Miljöstyrning av Renoveringsprocessen: Intervjustudie Samt Litteratur-och Projektsammanställning; KTH Royal Institute of Technology: Stockohlm, Sweden, 2014. [Google Scholar]
- Saunders, C.; Landis, A.E.; Mecca, L.; Jones, A.; Schaefer, L.; Bilec, M.M. Analyzing the Practice of Life Cycle Assessment Focus on the Building Sector. J. Ind. Ecol. 2013, 17, 777–788. [Google Scholar] [CrossRef]
- Dutil, Y.; Rousse, D. Energy Costs of Energy Savings in Buildings: A Review. Sustainability 2012, 4, 1711–1732. [Google Scholar] [CrossRef] [Green Version]
- Sesana, M.M.; Salvalai, G. Overview on life cycle methodologies and economic feasibility for nZEBs. Build. Environ. 2013, 67, 211–216. [Google Scholar] [CrossRef]
- Matthews, T.; Treloar, G.J. Net energy analysis of double glazing for residential buildings in temperate climates. Struct. Surv. 2001, 19, 201–208. [Google Scholar] [CrossRef]
- Bhandari, K.P.; Collier, J.M.; Ellingson, R.J.; Apul, D.S. Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis. Renew. Sustain. Energy Rev. 2015, 47, 133–141. [Google Scholar] [CrossRef]
- Vilches, A.; Garcia-Martinez, A.; Sanchez-Montañes, B. Life cycle assessment (LCA) of building refurbishment: A literature review. Energy Build. 2017, 135, 286–301. [Google Scholar] [CrossRef]
- Anand, C.K.; Amor, B. Recent developments, future challenges and new research directions in LCA of buildings: A critical review. Renew. Sustain. Energy Rev. 2017, 67, 408–416. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Cooper, P.; Daly, D.; Ledo, L. Existing building retrofits: Methodology and state-of-the-art. Energy Build. 2012, 55, 889–902. [Google Scholar] [CrossRef]
- Hall, T.; Vidén, S. The Million Homes Programme: A review of the great Swedish planning project. Plan. Perspect. 2005, 20, 301–328. [Google Scholar] [CrossRef]
- Boverket. Delegationen för Hållbara Städer; National Board of Housing, Building and Planning: Stockohlm, Sweden, 2017.
- Vesterberg, J.; Andersson, S.; Söderström, R. Validering lärande och utveckling av hållbarhetsmål i Hållbara Ålidhem-Slutrapport; Boverket (Swedish National Board of Housing, Building and Planning): Karlskrona, Sweden, 2017.
- Nydahl, H.; Andersson, S.; Åstrand, A.P.; Olofsson, T. Building Refurbishment from a Life Cycle Perspective—An Environmental Return on Investment Approach. In Proceedings of the Cold Climate HVAC, Kiruna, Sweden, 12–15 March 2018. [Google Scholar]
- Hall, C.; Balogh, S.; Murphy, D. What is the Minimum EROI that a Sustainable Society Must Have? Energies 2009, 2, 25–47. [Google Scholar] [CrossRef] [Green Version]
- Dutil, Y.; Rousse, D.; Quesada, G. Sustainable Buildings: An Ever Evolving Target. Sustainability 2011, 3, 443–464. [Google Scholar] [CrossRef] [Green Version]
- ISO EN 15978:2011. Sustainability of Construction Works—Assessment of Environmental Performance of Buildings—Calculation Method; Swedish Standards Institute: Stokholm, Sweden, 2011; p. 72. [Google Scholar]
- Nyman, M.; Simonson, C.J. Life-Cycle Assessment (LCA) of Air-Handling Units with and without Air-to-Air Energy Exchangers. ASHRAE Trans. 2004, 110, 399–409. [Google Scholar]
- Switala-Elmhurst, K. Life cycle assessment of residential windows: Analyzing the environmental impact of window restoration versus window replacement. In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy; Udo-Inyang, B., Flamm, M., Henry, S., Serrano, S., Van Aken, B., Eds.; ProQuest Dissertations Publishing: Ann Arbor, MI, USA, 2014. [Google Scholar]
- Tettey, U.Y.A.; Dodoo, A.; Gustavsson, L. Effects of different insulation materials on primary energy and CO2 emission of a multi-storey residential building. Energy Build. 2014, 82, 369–377. [Google Scholar] [CrossRef]
- Gustavsson, L.; Sathre, R. Variability in energy and carbon dioxide balances of wood and concrete building materials. Build. Environ. 2006, 41, 940–951. [Google Scholar] [CrossRef]
- De Wild-Scholten, M.J. Energy payback time and carbon footprint of commercial photovoltaic systems. Sol. Energy Mater. Sol. Cells 2013, 119, 296–305. [Google Scholar] [CrossRef]
- Gaidajis, G.; Angelakoglou, K. Environmental performance of renewable energy systems with the application of life-cycle assessment: A multi-Si photovoltaic module case study. Civ. Eng. Environ. Syst. 2012, 29, 231–238. [Google Scholar] [CrossRef]
- Engström, R.; Gode, J.; Axelsson, U. Vägledning till Metodval vid Beräkning av Påverkan Från Förändrad Energianvändning på de Svenska Miljömålen; Framtagen med stöd av Miljömålsrådet, Energimyndigheten och Naturvårdsverket: Stockholm, Sweden, 2009; p. 76. [Google Scholar]
- VVS-tekniska föreningen. VVS Handboken; Förlags AB VVS: Stockholm, Sweden, 1974. [Google Scholar]
- Lund, H.; Werner, S.; Connolly, D.; Vad Mathiesen, B.; Alberg Østergaard, P.; Möller, B.; Nielsen, S.; Persson, U.; Nilsson, D.; Trier, D. Heat Roadmap Europe 2050; Alborg University: Alborg, Denmark, 2012; p. 99. [Google Scholar]
- Dotzauer, E. Greenhouse gas emissions from power generation and consumption in a nordic perspective. Energy Policy 2010, 38, 701–704. [Google Scholar] [CrossRef]
- Levihn, F. CO2 emissions accounting: Whether, how, and when different allocation methods should be used. Energy 2014, 68, 811–818. [Google Scholar] [CrossRef]
- Olkkonen, V.; Syri, S. Spatial and temporal variations of marginal electricity generation: The case of the Finnish, Nordic, and European energy systems up to 2030. J. Clean. Prod. 2016, 126, 515–525. [Google Scholar] [CrossRef]
- Lund, H.; Mathiesen, B.V.; Christensen, P.; Schmidt, J.H. Energy system analysis of marginal electricity supply in consequential LCA. Int. J. Life Cycle Assess. 2010, 15, 260–271. [Google Scholar] [CrossRef]
- Martinsson, F.; Gode, J.; Arnell, J.; Höglund, J. Emissionsfaktor för nordisk elmix, IVL; Swedish Environmental Research Institute: Stockholm, Sweden, 2012; p. 35. [Google Scholar]
- Schakenda, V.; Askham Nyland, C. CO2-Emissions Associated with Different Electricity Mixes; Ostfold Research: Krakeroy, Norway, 2010; p. 20. [Google Scholar]
- Spath, P.; Mann, M. Life Cycle Assessment of a Natural Gas Combined-Cycle Power Generation System; National Renewable Energy Laboratory: Golden, CO, USA, 2000; p. 56.
- Gode, J.; Byman, K.; Persson, A.; Trygg, L. Miljövärdering av el ur ett Systemperspektiv; IVL Swedish Environmental Research Institute: Stockholm, Sweden, 2009; p. 12. [Google Scholar]
- EU. A Roadmap for moving to a competitive low carbon economy in 2050. In European Capitals of Culture; European Commission: Brussels, Belgium, 2011; p. 15. [Google Scholar]
- Recast, E. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings. Off. J. Eur. Union 2010, 153, 13–35. [Google Scholar]
- The European Parliament and The Council of the European Union. Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency (Text with EEA relevance), PE/4/2018/REV/1. Off. J. Eur. Union 2018, 156, 75–91. [Google Scholar]
- EU. EU Countries’ Nearly Zero-Energy Buildings National Plans; European Commission: Brussels, Belgium, 2018. [Google Scholar]
Before Refurbishment | Refurbishment Measures | Acronym | Annual Reduction in Operational Energy (GJ/year) |
---|---|---|---|
Balanced ventilation | Energy recovery ventilation | RM1 | 263 |
2-glass windows (U-value of 2.2 WK−1 m−2) | 3-glass windows (U-value of 1.1 WK−1 m−2) | RM2 | 37.8 |
Roof insulation of 25 cm wood chips | Roof insulation of 50 cm loose glass wool | RM3 | 76.0 |
Envelope wall insulation of 10 cm glass wool | Additional wall insulation. 2.8 cm glass wool on short sides and 9.0 cm on long sides | RM4 | 23.4 |
- | 70 m2 of CIGS Photovoltaics | RM5 | 18.8 |
- | 55 m2 Multi-Si Photovoltaics | RM6 | 18.1 |
Refurbishment Measure | Production Stage | Construction Stage | Use Stage | End-of-Life Stage |
---|---|---|---|---|
RM1 | European impact data. Resource-related impacts have been allocated the recyclability of the materials in the air-handling unit, 70% for steel, 90 % for copper and 75% for aluminum [27]. | No considerations given to transport and construction installation processes [27]. | Changing of filters every six months (40 used over the TSL) [27]. | No regards to environmental impact from deconstruction, reuse, transport or disposal [27]. |
RM2 | European impact data. GaBi Software was used to estimate the AEI [28]. | No considerations given to transport and construction installation processes [28]. | No maintenance [28]. | No regards to environmental impact from deconstruction, reuse, transport or disposal [28]. |
RM3 & RM4 | Northern Europe impact data. Primary energy use includes extraction, process, transport and assembly [29]. Emission factors, oil (0.022 tonne CO2-eq/GJ), fossil gas (0.018 tonne CO2-eq/GJ) and coal (0.03 tonne CO2-eq/GJ) [30]. | No considerations given to transport and construction installation processes [29]. | No maintenance [29]. | No regards to environmental impact from deconstruction, reuse, transport or disposal [29]. |
RM5 & RM 6 | European impact data. Primary energy use include extraction, process, transport and assembly. Solar-grade poly-silicone is assumed to be produced by hydropower. The other components by the UCTE electricity mix [31]. | No considerations given to transport and construction installation processes [31]. | Maintenance requires water use for cleaning the PV, infrastructure and energy use for water treatment and transportation to end user. Transport impact by maintenance personnel, PV module-check performed three times annually [32]. | No regards to environmental impact from deconstruction, reuse, transport or disposal [31]. |
Refurbishment Measure | Technical Service Life (years) | Weight/Area Unit | Specific Added Embodied Energy | Specific Added Embodied GHG Emissions |
---|---|---|---|---|
RM1 | 20 a | 0.69 tonne | 33.9 GJ/tonne | 1.90 tonne CO2-eq/tonne |
RM2 | 35 b | 114 m2 | 0.13 GJ/m2 | 0.11 tonne CO2-eq/m2 |
RM3 | 50 c | 3 tonne | 19.5 GJ/tonne | 0.62 tonne CO2-eq/tonne |
RM4 | 50 c | 1.6 tonne | 19.5 GJ/tonne | 0.62 tonne CO2-eq/tonne |
RM5 | 30 d | 70 m2 | 1.57 GJ/m2 | 0.09 tonne CO2-eq/m2 |
RM6 | 30 d | 55 m2 | 2.28 GJ/m2 | 0.12 tonne CO2-eq/m2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nydahl, H.; Andersson, S.; Åstrand, A.P.; Olofsson, T. Environmental Performance Measures to Assess Building Refurbishment from a Life Cycle Perspective. Energies 2019, 12, 299. https://doi.org/10.3390/en12020299
Nydahl H, Andersson S, Åstrand AP, Olofsson T. Environmental Performance Measures to Assess Building Refurbishment from a Life Cycle Perspective. Energies. 2019; 12(2):299. https://doi.org/10.3390/en12020299
Chicago/Turabian StyleNydahl, Helena, Staffan Andersson, Anders P. Åstrand, and Thomas Olofsson. 2019. "Environmental Performance Measures to Assess Building Refurbishment from a Life Cycle Perspective" Energies 12, no. 2: 299. https://doi.org/10.3390/en12020299
APA StyleNydahl, H., Andersson, S., Åstrand, A. P., & Olofsson, T. (2019). Environmental Performance Measures to Assess Building Refurbishment from a Life Cycle Perspective. Energies, 12(2), 299. https://doi.org/10.3390/en12020299