How Relevant Are Non-Use Values and Perceptions in Economic Valuations? The Case of Hydropower Plants
Abstract
1. Introduction
2. Hydropower Adverse Impacts Through the Lens of Economic Valuation Methods
2.1. Introduction
2.2. The Concept of Total Economic Value (TEV)
2.3. An Overview of Non-Market Valuation Methods
3. Perceptions of Impacts Underlying Non-Use Values by Population Subgroups: A Case Study
3.1. Non-Use Values and the Perception of Population Subgroups
3.2. Case Study: Different Perceptions on Hydropower
4. Other Considerations
5. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Mattmann, M.; Logar, I.; Brouwer, R. Hydropower externalities: A meta-analysis. Energy Econ. 2016, 57, 66–77. [Google Scholar] [CrossRef]
- Fogarassy, C.; Kovacs, A. The Cost-Benefit Relations of the Future Environmental Related Developments Strategies in the Hungarian Energy Sector. YBL J. Built Environ. 2016, 4, 33. [Google Scholar] [CrossRef]
- IEA/OECD. Benign Energy? The Environmental Implications of Renewables; Organisation for Economic Co-operation and Development and International Energy Agency: Paris, France, 1998. [Google Scholar]
- Botelho, A.; Ferreira, P.; Lima, F.; Pinto, L.M.C.; Sousa, S. Assessment of the environmental impacts associated with hydropower. Renew. Sustain. Energy Rev. 2017, 70, 896–904. [Google Scholar] [CrossRef]
- Tabi, A.; Wüstenhagen, R. Keep it local and fish-friendly: Social acceptance of hydropower projects in Switzerland. Renew. Sustain. Energy Rev. 2017, 68, 763–773. [Google Scholar] [CrossRef]
- Jones, B.A.; Berrens, R.P.; Jenkins-Smith, H.C.; Silva, C.L.; Carlson, D.E.; Ripberger, J.T.; Gupta, K.; Carlson, N. Valuation in the anthropocene: Exploring options for alternative operations of the Glen Canyon Dam. Water Resour. Econ. 2016, 14, 13–30. [Google Scholar] [CrossRef]
- McCully, P. Silenced Rivers: The Ecology and Politics of Large Dams (Enlarged and Updated Edition); Zed Books: London, UK, 2001. [Google Scholar]
- Klimpt, J.-É.; Rivero, C.; Puranen, H.; Koch, F. Recommendations for sustainable hydroelectric development. Energy Policy 2002, 30, 1305–1312. [Google Scholar] [CrossRef]
- Rashad, S.M.; Ismail, M.A. Environmental-impact assessment of hydro-power in Egypt. Appl. Energy 2000, 65, 285–302. [Google Scholar] [CrossRef]
- Bednarek, A.T. Undamming Rivers: A Review of the Ecological Impacts of Dam Removal. Environ. Manag. 2001, 27, 803–814. [Google Scholar] [CrossRef]
- Pohl, M.M. Bringing Down Our Dams: Trends in American Dam Removal Rationales. JAWRA J. Am. Water Resour. Assoc. 2007, 38, 1511–1519. [Google Scholar] [CrossRef]
- Fencl, J.S.; Mather, M.E.; Costigan, K.H.; Daniels, M.D. How Big of an Effect Do Small Dams Have? Using Geomorphological Footprints to Quantify Spatial Impact of Low-Head Dams and Identify Patterns of Across-Dam Variation. PLoS ONE 2015, 10, e0141210. [Google Scholar] [CrossRef]
- Richter, B.D.; Postel, S.; Revenga, C.; Scudder, T.; Lehner, B.; Churchill, A.; Chow, M. Lost in development’s shadow: The downstream human consequences of dams. Water Altern. 2010, 3, 14–42. [Google Scholar]
- Huang, Y.; Lin, W.; Li, S.; Ning, Y. Social Impacts of Dam-Induced Displacement and Resettlement: A Comparative Case Study in China. Sustainability 2018, 10, 4018. [Google Scholar] [CrossRef]
- World Commission on Dams. Social Impact Assessment: WCD Thematic Review V. 2. Environmental and Social Assessment for Large Dams; World Commission on Dams: Cape Town, South Africa, 2000. [Google Scholar]
- Égré, D.; Senécal, P. Social impact assessments of large dams throughout the world: Lessons learned over two decades. Impact Assess. Proj. Apprais. 2003, 21, 215–224. [Google Scholar] [CrossRef]
- McDonald-Wilmsen, B.; Webber, M. Dams and Displacement: Raising the Standards and Broadening the Research Agenda. Water Altern. 2010, 3, 142–161. [Google Scholar]
- Ohno, T. Contextual Factors Affecting the Modes of Interaction in Governance: The Case of Dam Removal in Japan. In Interactive Approaches to Water Governance in Asia; Otsuka, K., Ed.; Springer: Singapore, 2019; pp. 55–76. [Google Scholar]
- American Rivers. American Rivers Dam Removal Database. Available online: https://doi.org/10.6084/m9.figshare.5234068.v2 (accessed on 1 July 2019).
- Young, S.M.; Ishiga, H. Assessment of dam removal from geochemical examination of Kuma River sediment, Kyushu, Japan. Environ. Monit. Assess. 2014, 186, 8267–8289. [Google Scholar] [CrossRef]
- Lowry, W.R. Policy Reversal and Changing Politics: State Governments and Dam Removals. State Politics Policy Q. 2005, 5, 394–419. [Google Scholar] [CrossRef]
- Pejchar, L.; Warner, K. A river might run through it again: Criteria for consideration of dam removal and interim lessons from California. Environ. Manag. 2001, 28, 561–575. [Google Scholar]
- Foley, M.M.; Bellmore, J.R.; O’Connor, J.E.; Duda, J.J.; East, A.E.; Grant, G.E.; Anderson, C.W.; Bountry, J.A.; Collins, M.J.; Connolly, P.J.; et al. Dam removal: Listening in. Water Resour. Res. 2017, 53, 5229–5246. [Google Scholar] [CrossRef]
- Moran, E.F.; Lopez, M.C.; Moore, N.; Müller, N.; Hyndman, D.W. Sustainable hydropower in the 21st century. Proc. Natl. Acad. Sci. USA 2018, 115, 11891–11898. [Google Scholar] [CrossRef]
- Grabowski, Z.J.; Denton, A.; Rozance, M.A.; Matsler, M.; Kidd, S. Removing dams, constructing science: Coproduction of undammed riverscapes by politics, finance, environment, society and technology. Water Altern. 2017, 3, 769–795. [Google Scholar]
- Germaine, M.-A.; Lespez, L. The Failure of the Largest Project to Dismantle Hydroelectric Dams in Europe? (Sélune River, France, 2009–2017). Water Altern. 2017, 10, 655–676. [Google Scholar]
- Goodland, R. Viewpoint—The World Bank Versus the World Commission on Dams. Water Altern. 2010, 3, 384–398. [Google Scholar]
- World Commission on Dams. Dams and Development: A New Framework for Decision-Making: The Report of the World Commission on Dams; Earthscan: London, UK, 2000. [Google Scholar]
- Steiner, A. Preface to the Special Issue WCD+10: Revisiting the large dam controversy. Water Altern. 2010, 3, 1–2. [Google Scholar]
- Schulz, C.; Adams, W.M. Debating Dams: The World Commission on Dams 20 Years on; Wiley Interdisciplinary Reviews Water: Hoboken, NJ, USA, 2019; p. e1396. [Google Scholar]
- IEA. World Energy Outlook 2018; OECD/IEA: Paris, France, 2018. [Google Scholar]
- Loomis, J. Quantifying recreation use values from removing dams and restoring free-flowing rivers: A contingent behavior travel cost demand model for the Lower Snake River. Water Resour. Res. 2002, 38. [Google Scholar] [CrossRef]
- McKean, J.R.; Johnson, D.; Taylor, R.G.; Johnson, R.L. Willingness to pay for non angler recreation at the lower Snake River reservoirs. J. Leis. Res. 2005, 37, 178–194. [Google Scholar] [CrossRef]
- Hynes, S.; Hanley, N. Preservation versus development on Irish rivers: Whitewater kayaking and hydro-power in Ireland. Land Use Policy 2006, 23, 170–180. [Google Scholar] [CrossRef]
- Robbins, J.L.; Lewis, L.Y. Demolish it and They Will Come: Estimating the Economic Impacts of Restoring a Recreational Fishery1. JAWRA J. Am. Water Resour. Assoc. 2008, 44, 1488–1499. [Google Scholar] [CrossRef]
- Getzner, M. Importance of free-flowing rivers for recreation: Case study of the River Mur in Styria, Austria. J. Water Resour. Plan. Manag. 2014, 141, 04014050. [Google Scholar] [CrossRef]
- Borisova, T.; Bi, X.; Hodges, A.; Holland, S. Economic Importance and Public Preferences for Water Resource Management of the Ocklawaha River; University of Florida: Gainesville, FL, USA, 2017. [Google Scholar]
- Lewis, L.Y.; Bohlen, C.; Wilson, S. Dams, dam removal, and river restoration: A hedonic property value analysis. Contemp. Econ. Pol. 2008, 26, 175–186. [Google Scholar] [CrossRef]
- Provencher, B.; Sarakinos, H.; Meyer, T. Does Small Dam Removal Affect Local Property Values? An Empirical Analysis. Contemp. Econ. Policy 2008, 26, 187–197. [Google Scholar] [CrossRef]
- Bohlen, C.; Lewis, L.Y. Examining the economic impacts of hydropower dams on property values using GIS. J. Environ. Manag. 2009, 90, S258–S269. [Google Scholar] [CrossRef]
- Sundqvist, T. Quantifying Household Preferences over the Environmental Impacts of Hydropower in Sweden: A Choice Experiment Approach. Power Generation Choice in the Presence of Environmental Externalities. Ph.D. Thesis, Luleå University of Technology, Luleå, Sweden, 2002. [Google Scholar]
- Bergmann, A.; Hanley, N.; Wright, R. Valuing the attributes of renewable energy investments. Energy Policy 2006, 34, 1004–1014. [Google Scholar] [CrossRef]
- Han, S.-Y.; Kwak, S.-J.; Yoo, S.-H. Valuing environmental impacts of large dam construction in Korea: An application of choice experiments. Environ. Impact Assess. Rev. 2008, 28, 256–266. [Google Scholar] [CrossRef]
- Kataria, M. Willingness to pay for environmental improvements in hydropower regulated rivers. Energy Econ. 2009, 31, 69–76. [Google Scholar] [CrossRef]
- Vega, D.C.; Alpízar, F. Choice experiments in environmental impact assessment: The case of the Toro 3 hydroelectric project and the Recreo Verde tourist center in Costa Rica. Impact Assess. Proj. Apprais. 2011, 29, 252–262. [Google Scholar]
- Klinglmair, A.; Bliem, M.G.; Brouwer, R. Exploring the public value of increased hydropower use: A choice experiment study for Austria. J. Environ. Econ. Policy 2015, 4, 315–336. [Google Scholar] [CrossRef]
- Xu, L.; Yu, B.; Li, Y. Ecological compensation based on willingness to accept for conservation of drinking water sources. Front. Environ. Sci. Eng. 2015, 9, 58–65. [Google Scholar] [CrossRef]
- Botelho, A.; Lourenço-Gomes, L.; Pinto, L.M.C.; Sousa, P.; Sousa, S.; Valente, M. Using Choice Experiments to Assess Environmental Impacts of Dams in Portugal. Aims Energy 2015, 3, 316–325. [Google Scholar] [CrossRef]
- Michailidis, A. Impact analysis of irrigation projects: An application of contingent valuation method. Am. J. Agric. Biol. Sci 2006, 1, 17–21. [Google Scholar]
- Håkansson, C. Costs and benefits of improving wild salmon passage in a regulated river. J. Environ. Plan. Manag. 2009, 52, 345–363. [Google Scholar] [CrossRef]
- Ehrlich, Ü.; Reimann, M. Hydropower versus non-market values of nature: A contingent valuation study of Jägala Waterfalls, Estonia. Int. J. Geol. 2010, 4, 59–63. [Google Scholar]
- Alp, E.; Yetiş, Ü. Application of the contingent valuation method in a developing country: A case study of the Yusufeli Dam in northeast Turkey. Water Sci. Technol. 2010, 62, 99–105. [Google Scholar] [CrossRef][Green Version]
- Gunawardena, U.A.D.P. Inequalities and externalities of power sector: A case of Broadlands hydropower project in Sri Lanka. Energy Policy 2010, 38, 726–734. [Google Scholar] [CrossRef]
- Ponce, R.D.; Vásquez, F.; Stehr, A.; Debels, P.; Orihuela, C. Estimating the Economic Value of Landscape Losses Due to Flooding by Hydropower Plants in the Chilean Patagonia. Water Resour. Manag. 2011, 25, 2449. [Google Scholar] [CrossRef]
- Aravena, C.; Hutchinson, W.G.; Longo, A. Environmental pricing of externalities from different sources of electricity generation in Chile. Energy Econ. 2012, 34, 1214–1225. [Google Scholar] [CrossRef]
- Botelho, A.; Pinto, L.M.C.; Lourenço-Gomes, L.; Valente, M.; Sousa, S. Social sustainability of renewable energy sources in electricity production: An application of the contingent valuation method. Sustain. Cities Soc. 2016, 26, 429–437. [Google Scholar] [CrossRef]
- Jones, B.A.; Ripberger, J.; Jenkins-Smith, H.; Silva, C. Estimating willingness to pay for greenhouse gas emission reductions provided by hydropower using the contingent valuation method. Energy Policy 2017, 111, 362–370. [Google Scholar] [CrossRef]
- Jones, B.A.; Berrens, R.P.; Jenkins-Smith, H.; Silva, C.; Ripberger, J.; Carlson, D.; Gupta, K.; Wehde, W. In search of an inclusive approach: Measuring non-market values for the effects of complex dam, hydroelectric and river system operations. Energy Econ. 2018, 69, 225–236. [Google Scholar] [CrossRef]
- Pearce, D.; Mourato, S.; Atkinson, G. Cost Benefit Analysis and the Environment: Recent Developments; OECD Publishing: Paris, France, 2006. [Google Scholar]
- Emerton, L. Economic Valuation of Wetlands: Total Economic Value. In The Wetland Book; Springer: Dordrecht, The Netherlands, 2018; pp. 1–6. [Google Scholar]
- Bateman, I.J.; Carson, R.T.; Day, B.; Hanemann, M.; Hanley, N.; Hett, T.; Jones-Lee, M.; Loomes, G.; Mourato, S.; Ozdemiroglu, E. Economic Valuation with Stated Preference Techniques: A Manual; Edward Elgar Publishing: Cheltenham, UK, 2002. [Google Scholar]
- Torras, M. The total economic value of Amazonian deforestation, 1978–1993. Ecol. Econ. 2000, 33, 283–297. [Google Scholar] [CrossRef]
- Alcamo, J. Ecosystems and Human Well-Being: A Framework for Assessment; Island Press: Washington, DC, USA, 2003. [Google Scholar]
- TEEB. The economics of ecosystems and biodiversity: Ecological and economic foundations. In The Economics of Ecosystems and Biodiversity: Ecological and Economic Foundations; Kumar, P., Ed.; Routledge: Abington, UK, 2012. [Google Scholar]
- Weisser, D. A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies. Energy 2007, 32, 1543–1559. [Google Scholar] [CrossRef]
- Weisbrod, B.A. Collective-consumption services of individual-consumption goods. Q. J. Econ. 1964, 78, 471–477. [Google Scholar] [CrossRef]
- Chan, K.M.A.; Goldstein, J.; Satterfield, T.; Hannahs, N.; Kikiloi, K.; Naidoo, R.; Vadeboncoeur, N.; Woodside, U. Cultural Services and Non-Use Values; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Freeman, A.M., III; Herriges, J.A.; Kling, C.L. The Measurement of Environmental and Resource Values: Theory and Methods; Routledge: Abington, UK, 2014. [Google Scholar]
- Kolstad, C.D. Environmental Economics; Oxford University Press: New York, NY, USA; Oxford, UK, 2000. [Google Scholar]
- Krutilla, J.V. Conservation reconsidered. Am. Econ. Rev. 1967, 57, 777–786. [Google Scholar]
- Boyce, R.R.; Brown, T.C.; McClelland, G.H.; Peterson, G.L.; Schulze, W.D. An experimental examination of intrinsic values as a source of the WTA-WTP disparity. Am. Econ. Rev. 1992, 82, 1366–1373. [Google Scholar]
- Plottu, E.; Plottu, B. The concept of Total Economic Value of environment: A reconsideration within a hierarchical rationality. Ecol. Econ. 2007, 61, 52–61. [Google Scholar] [CrossRef]
- Madariaga, B.; McConnell, K.E. Exploring existence value. Water Resour. Res. 1987, 23, 936–942. [Google Scholar] [CrossRef]
- Bergstrom, J.; Reiling, S. Does existence value exist? In Multiple Objective Decision-Making for Land, Water, and Environmental Management; El-Swaify, S.A., Yakowitz, D.S., Eds.; Lewis Publishers: Boca Raton, FL, USA, 1998; pp. 481–491. [Google Scholar]
- Pearce, D. Cost-Benefit Analysis and Environmental Policy. In Environmental Policy: Objectives, Instruments and Implementation; Helm, D., Ed.; Oxford University Press: New York, NY, USA, 2000; pp. 48–74. [Google Scholar]
- Crowards, T. Nonuse values and the environment: Economic and ethical motivations. Environ. Values 1997, 143–167. [Google Scholar] [CrossRef]
- Champ, P.; Brown, T.; Boyle, K. Primer on Nonmarket Valuation, 2nd ed.; Springer Science+Business Media B.V.: Berlin, Germany, 2017. [Google Scholar]
- Dixon, J.A.; Carpenter, R.A.; Fallon, L.A.; Sherman, P.B.; Manipomoke, S. Economic Analysis of the Environmental Impacts of Development Projects; Routledge: Abington, UK, 2013. [Google Scholar]
- Garrod, G.; Willis, K. Economic Valuation of the Environment: Methods and Case Studies; Edward Elgar: Northampton, MA, USA, 1999. [Google Scholar]
- Hanley, N.; Wright, R.; Adamowicz, V. Using Choice Experiments to Value the Environment. Environ. Resour. Econ. 1998, 11, 413–428. [Google Scholar] [CrossRef]
- Johnston, R.J.; Boyle, K.J.; Adamowicz, W.; Bennett, J.; Brouwer, R.; Cameron, T.A.; Hanemann, W.M.; Hanley, N.; Ryan, M.; Scarpa, R.; et al. Contemporary Guidance for Stated Preference Studies. J. Assoc. Environ. Resour. Econ. 2017, 4, 319–405. [Google Scholar] [CrossRef]
- Koirala, S.; Hill, D.; Morgan, R. Impacts of the delay in construction of a large scale hydropower project on potential displacees. Impact Assess. Proj. Apprais. 2017, 35, 106–116. [Google Scholar] [CrossRef]
- Verocai, I. WCD Thematic Review V. 2: Contributing Paper: Environmental and Social Impact Assessment for Large Dams-Thematic Review from the Point of View of Developing Countries; eSocialSciences: Navi Mumbai, India, 2009. [Google Scholar]
- Egré, D.; Milewski, J.C. The diversity of hydropower projects. Energy Policy 2002, 30, 1225–1230. [Google Scholar] [CrossRef]
- Smith, V.K. Nonuse Values in Benefit Cost Analysis. South. Econ. J. 1987, 54, 19–26. [Google Scholar] [CrossRef]
- Wattage, P.; Mardle, S. Total Economic Value of Wetland Conservation in Sri Lanka Identifying Use and Non-Use Values. In Wetl. Ecol. Manag.; 2008; Volume 16, pp. 359–369. [Google Scholar] [CrossRef]
- Whitehead, J.C. Improving Willingness to Pay Estimates for Quality Improvements through Joint Estimation with Quality Perceptions. South. Econ. J. 2006, 73, 100–111. [Google Scholar] [CrossRef]
- Botelho, A.; Lourenço-Gomes, L.; Pinto, L.M.C.; Sousa, S.; Valente, M. Discrete-choice experiments valuing local environmental impacts of renewables: Two approaches to a case study in Portugal. Environ. Dev. Sustain. 2018, 20, 145–162. [Google Scholar] [CrossRef]
- Botelho, A.; Lourenço-Gomes, L.; Pinto, L.; Sousa, S. How to design reliable discrete choice surveys: The use of qualitative research methods. In ICOPEV 2014—2nd International Conference on Project Evaluation (Proceedings); University of Minho: Guimarães, Portugal, 2014; pp. 157–166. ISBN 978-989-97050-3-6. [Google Scholar]
- Bakkensen, L.A.; Ding, X.; Ma, L. Flood Risk and Salience: New Evidence from the Sunshine State. South. Econ. J. 2019, 85, 1132–1158. [Google Scholar] [CrossRef]
- Loomis, J. What’s to know about hypothetical bias in stated preference valuation studies? J. Econ. Surv. 2011, 25, 363–370. [Google Scholar] [CrossRef]
- Schkade, D.A.; Payne, J.W. How People Respond to Contingent Valuation Questions: A Verbal Protocol Analysis of Willingness to Pay for an Environmental Regulation. J. Environ. Econ. Manag. 1994, 26, 88–109. [Google Scholar] [CrossRef]
- Gagnon, L.; Bélanger, C.; Uchiyama, Y. Life-cycle assessment of electricity generation options: The status of research in year 2001. Energy Policy 2002, 30, 1267–1278. [Google Scholar] [CrossRef]
- Bhat, I.K.; Prakash, R. LCA of renewable energy for electricity generation systems—A review. Renew. Sustain. Energy Rev. 2009, 13, 1067–1073. [Google Scholar]
- Zhang, Q.; Karney, B.; Maclean, H.; Feng, J. Life-Cycle Inventory of Energy Use and Greenhouse Gas Emissions for Two Hydropower Projects in China. J. Infrastruct. Syst. 2007, 13, 271–279. [Google Scholar] [CrossRef]
- Ribeiro, F.d.M.; da Silva, G.A. Life-cycle inventory for hydroelectric generation: A Brazilian case study. J. Clean. Prod. 2010, 18, 44–54. [Google Scholar] [CrossRef]
- Pacca, S. Impacts from decommissioning of hydroelectric dams: A life cycle perspective. Clim. Chang. 2007, 84, 281–294. [Google Scholar] [CrossRef]
- Hanafi, J.; Riman, A. Life Cycle Assessment of a Mini Hydro Power Plant in Indonesia: A Case Study in Karai River. Procedia Cirp 2015, 29, 444–449. [Google Scholar] [CrossRef]
- Woodward, D.G. Life cycle costing—Theory, information acquisition and application. Int. J. Proj. Manag. 1997, 15, 335–344. [Google Scholar] [CrossRef]
- Klöpffer, W.; Ciroth, A. Is LCC relevant in a sustainability assessment? Int. J. Life Cycle Assess. 2011, 16, 99–101. [Google Scholar] [CrossRef]
- de Assis Espécie, M.; de Carvalho, P.N.; Pinheiro, M.F.; Rosenthal, V.M.; da Silva, L.A.; de Carvalhaes Pinheiro, M.R.; Espig, S.A.; Mariani, C.F.; de Almeida, E.M.; dos Santos, F.N. Ecosystem services and renewable power generation: A preliminary literature review. Renew. Energy 2019, 140, 39–51. [Google Scholar] [CrossRef]
- Johansson, P.-O.; Kriström, B. The New Economics of Evaluating Water Projects. Annu. Rev. Resour. Econ. 2011, 3, 231–254. [Google Scholar] [CrossRef]
Methods | Values | Study | Country | Attributes Affected | |
---|---|---|---|---|---|
REVEALED PREFERENCE | TRAVEL COST | ONLY USE VALUES | Loomis (2002) [32] | USA | River recreation |
McKean et al. (2005) [33] | USA | River recreation | |||
Hynes & Hanley (2006) [34] | Ireland | Whitewater kayaking | |||
Robbins & Lewis (2008) [35] | USA | Recreational fishing | |||
Getzner (2014) [36] | Austria | River recreation | |||
Borisova et al. (2017) [37] | USA | Recreational activities | |||
HEDONIC PRICING | Lewis et al. (2008) [38] | USA | Aquatic ecosystems, fauna, flora, recreation activities, attractiveness of houses near the river | ||
Provencher et al. (2008) [39] | USA | Property values affected from dam removal | |||
Bohlen & Lewis (2009) [40] | USA | Rivers, fish, wildlife, local communities, residential properties values | |||
STATED PREFERENCE | CHOICE EXPERIMENTS | BOTH USE AND NON-USE VALUES | Sundqvist (2002) [41] | Sweden | Water level, vegetation and fish |
Bergmann et al. (2006) [42] | Scotland | Landscape, wildlife, air pollution and employment | |||
Han et al. (2008) [43] | Korea | Fauna, flora, forest and historical remains | |||
Kataria (2009) [44] | Sweden | Fish, birds, benthic invertebrates and vegetation | |||
Vega & Alpízar (2011) [45] | Costa Rica | River water flow and scenic view | |||
Klinglmair et al. (2015) [46] | Austria | Nature and landscape | |||
Xu et al. (2015) [47] | China | Drinking water sources | |||
Botelho et al. (2015) [48] | Portugal | Fauna and flora, heritage, noise and landscape | |||
Tabi, & Wüstenhagen (2017) [5] | Switzerland | Social acceptance | |||
CONTINGENT VALUATION | Michailidis (2006) [49] | Greece | Agriculture, irrigation, tourism, water quality, recreation, health, social and environment | ||
Hakansson (2009) [50] | Sweden | Wild salmon | |||
Ehrlich & Reimann (2010) [51] | Estonia | Natural river water flow | |||
Alp & Yetis (2010) [52] | Turkey | Land | |||
Gunawardena (2010) [53] | Sri Lanka | Historical monuments, landscape, recreational activities, river scenic view, carbon storage, forests and home garden productivity | |||
Ponce et al. (2011) [54] | Chile | Landscape | |||
Aravena et al. (2012) [55] | Chile | Landscape, fauna, flora, river sports, agriculture, tourism, fishing and displaced inhabitants | |||
Jones et al. (2016) [6] | USA | Social issues | |||
Botelho et al. (2016) [56] | Portugal | Social sustainability | |||
Jones et al. (2017) [57] | USA | GHG emissions reduction | |||
Jones et al. (2018) [58] | USA | Fauna and flora, pollution, GHG emissions, recreation, rural life, among others |
(a) Local residents vs. national residents | |||||
---|---|---|---|---|---|
H1 | Landscape | Fauna | Flora | Heritage | Noise |
Combined KS test | |||||
D statistic | 0.1348 | 0.1011 | 0.1532 | 0.1911 | 0.1426 |
p-value | 0.931 | 0.996 | 0.85 | 0.619 | 0.9 |
WMW test | |||||
Z statistic | 1.108 | −0.024 | 0.452 | −0.281 | −0.751 |
p-value | 0.2678 | 0.9811 | 0.6516 | 0.779 | 0.4524 |
(b) National residents in lower than median vs. higher than median installed capacity districts | |||||
H2 | Landscape | Fauna | Flora | Heritage | Noise |
Combined KS test | |||||
D statistic | 0.1746 | 0.1944 | 0.1636 | 0.1939 | 0.1583 |
p-value | 0.129 | 0.068* | 0.179 | 0.069* | 0.208 |
WMW test | |||||
Z statistic | −2.179 ** | −2.282 ** | −2.11 ** | −1.964 ** | −2.327 ** |
p-value | 0.0293 | 0.0225 | 0.0348 | 0.0495 | 0.0199 |
(c) National residents who do not see vs. those who see a dam daily | |||||
H3 | Landscape | Fauna | Flora | Heritage | Noise |
Combined KS test | |||||
D statistic | 0.3934 | 0.3878 | 0.3991 | 0.417 | 0.2866 |
p-value | 0.06 * | 0.066 * | 0.054 * | 0.038 ** | 0.3 |
WMW test | |||||
Z statistic | 2.867 *** | 2.3 ** | 2.339 ** | 2.736 *** | 2.264 ** |
p-value | 0.0041 | 0.0214 | 0.0193 | 0.0062 | 0.0235 |
(d) National residents who have not vs. have visited a dam | |||||
H4 | Landscape | Fauna | Flora | Heritage | Noise |
Combined KS test | |||||
D statistic | 0.1891 | 0.1747 | 0.1955 | 0.4171 | 0.2019 |
p-value | 0.261 | 0.348 | 0.209 | 0.038 ** | 0.198 |
WMW test | |||||
Z statistic | −1.824 * | −1.499 | −1.562 | −2.380 ** | −2.089 ** |
p-value | 0.0682 | 0.1338 | 0.1182 | 0.0173 | 0.0367 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, S.; Botelho, A.; Pinto, L.M.C.; Valente, M. How Relevant Are Non-Use Values and Perceptions in Economic Valuations? The Case of Hydropower Plants. Energies 2019, 12, 2986. https://doi.org/10.3390/en12152986
Sousa S, Botelho A, Pinto LMC, Valente M. How Relevant Are Non-Use Values and Perceptions in Economic Valuations? The Case of Hydropower Plants. Energies. 2019; 12(15):2986. https://doi.org/10.3390/en12152986
Chicago/Turabian StyleSousa, Sara, Anabela Botelho, Lígia M. Costa Pinto, and Marieta Valente. 2019. "How Relevant Are Non-Use Values and Perceptions in Economic Valuations? The Case of Hydropower Plants" Energies 12, no. 15: 2986. https://doi.org/10.3390/en12152986
APA StyleSousa, S., Botelho, A., Pinto, L. M. C., & Valente, M. (2019). How Relevant Are Non-Use Values and Perceptions in Economic Valuations? The Case of Hydropower Plants. Energies, 12(15), 2986. https://doi.org/10.3390/en12152986