Reducing Computational Load for Mixed Integer Linear Programming: An Example for a District and an Island Energy System
Abstract
:1. Introduction
1.1. The Complexity of Microgrid Supply System Optimization
1.2. State of the Art of Complexity Reduction
1.3. Research Objective
2. Methodology
2.1. Energy System Optimization Model Formulation
2.2. 2-Level Optimization Approach
2.3. Scenario Definition
3. First Case Study—Urban Energy System
3.1. Data Basis
3.2. Technology Portfolio
3.3. Results of the First Case Study
3.3.1. Investigation of Total Annual Costs
3.3.2. Investigation of Computing Time
3.3.3. Investigation of the Supply Technologies
3.3.4. Investigation of Peak Load
3.3.5. Impact Analysis of Fixed CHP Position
4. Second Case Study—Island System
4.1. Data Basis
4.2. Technology Portfolio
4.3. Results of the Second Case Study
4.3.1. Investigation of Total Annual Costs
4.3.2. Investigation of Computing Time
4.3.3. Investigation of the Different Technology Capacities
4.3.4. Investigation of the Connection between the Storages
5. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Load Profiletable
Appendix B. Demand Characterization
Buildings | Bd1 | Bd2 | Bd3 | Bd4 | Bd5 | Bd6 |
---|---|---|---|---|---|---|
Electricity demand [kWh] | 24,718 | 19,409 | 24,892 | 17,439 | 23,310 | 19,718 |
Heating demand [kWh] | 213,008 | 211,961 | 212,160 | 212,865 | 212,987 | 213,360 |
PV potential roof 1 [kWp] | 16.42 | 16.45 | 17.88 | 17.27 | 16.16 | 16.63 |
PV potential roof 2 [kWp] | 16.42 | 16.45 | 17.88 | 17.27 | 16.16 | 16.63 |
Construction Year | 1965 | 1965 | 1965 | 1965 | 1965 | 1965 |
Building Type | Multi-Family House | Multi-Family House | Multi-Family House | Multi-Family House | Multi-Family House | Multi-Family House |
References
- Hirsch, A.; Parag, Y.; Guerrero, J. Microgrids: A review of technologies, key drivers, and outstanding issues. Renew. Sustain. Energy Rev. 2018, 90, 402–411. [Google Scholar] [CrossRef]
- Schütz, T.; Hu, X.; Fuchs, M.; Müller, D. Optimal design of decentralized energy conversion systems for smart microgrids using decomposition methods. Energy 2018, 156, 250–263. [Google Scholar] [CrossRef]
- Obara, S.Y.; Sato, K.; Utsugi, Y. Study on the operation optimization of an isolated island microgrid with renewable energy layout planning. Energy 2018, 161, 1211–1225. [Google Scholar] [CrossRef]
- Vafaei, M.; Kazerani, M. Optimal Unit-Sizing of a Wind-Hydrogen-Diesel Microgrid System for a Remote Community. In Proceedings of the IEEE Trondheim PowerTech, Trondheim, Norway, 19–23 June 2011; pp. 1–7. [Google Scholar]
- Mashayekh, S.; Stadler, M.; Cardoso, G.; Heleno, M. A mixed integer linear programming approach for optimal DER portfolio, sizing, and placement in multi-energy microgrids. Appl. Energy 2017, 187, 154–168. [Google Scholar] [CrossRef] [Green Version]
- Mehleri, E.D.; Sarimveis, H.; Markatos, N.C.; Papageorgiou, L.G. Optimal design and operation of distributed energy systems: Application to Greek residential sector. Renew. Energy 2013, 51, 331–342. [Google Scholar] [CrossRef]
- Akbari, K.; Jolai, F.; Ghaderi, S.F. Optimal design of distributed energy system in a neighborhood under uncertainty. Energy 2016, 116, 567–582. [Google Scholar] [CrossRef]
- Basu, A.K.; Chowdhury, S.P.; Chowdhury, S.; Paul, S. Microgrids: Energy management by strategic deployment of DERs-A comprehensive survey. Renew. Sustain. Energy Rev. 2011, 15, 4348–4356. [Google Scholar] [CrossRef]
- Morvaj, B.; Evins, R.; Carmeliet, J. Optimization framework for distributed energy systems with integrated electrical grid constraints. Appl. Energy 2016, 171, 296–313. [Google Scholar] [CrossRef]
- Morvaj, B.; Evins, R.; Carmeliet, J. Decarbonizing the electricity grid: The impact on urban energy systems, distribution grids and district heating potential. Appl. Energy 2017, 191, 125–140. [Google Scholar] [CrossRef]
- Omu, A.; Choudhary, R.; Boies, A. Distributed energy resource system optimisation using mixed integer linear programming. Energy Policy 2013, 61, 249–266. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, S.; Xiao, Y. Optimal design of distributed energy resource systems coupled with energy distribution networks. Energy 2015, 85, 433–448. [Google Scholar] [CrossRef]
- Gabrielli, P.; Gazzani, M.; Martelli, E.; Mazzotti, M. Optimal design of multi-energy systems with seasonal storage. Appl. Energy 2018, 219, 408–424. [Google Scholar] [CrossRef]
- Helal, S.A.; Najee, R.J.; Hanna, M.O.; Shaaban, M.F.; Osman, A.H.; Hassan, M.S. An energy management system for hybrid microgrids in remote communities. In Proceedings of the IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), Windsor, ON, Canada, 30 April–3 May 2017; pp. 1–4. [Google Scholar]
- Olivares, D.E.; Cañizares, C.A.; Kazerani, M. A Centralized Energy Management System for Isolated Microgrids. IEEE Trans. Smart Grid 2014, 5, 1864–1875. [Google Scholar] [CrossRef]
- Falke, T.; Krengel, S.; Meinerzhagen, A.-K.; Schnettler, A. Multi-objective optimization and simulation model for the design of distributed energy systems. Appl. Energy 2016, 184, 1508–1516. [Google Scholar] [CrossRef]
- Prousch, S.; Breuer, C.; Moser, A. Optimization of decentralized energy supply systems. In Proceedings of the 7th International Conference on the European Energy Market, Madrid, Spain, 23–25 June 2010; pp. 1–6. [Google Scholar]
- Fazlollahi, S.; Girardin, L.; Maréchal, F. Clustering Urban Areas for Optimizing the Design and the Operation of District Energy Systems. Comput. Aided Chem. Eng. 2014, 33, 1291–1296. [Google Scholar] [CrossRef]
- Stadler, P.; Girardin, L.; Ashouri, A.; Maréchal, F. Contribution of Model Predictive Control in the Integration of Renewable Energy Sources within the Built Environment. Front. Energy Res. 2018, 6, 22. [Google Scholar] [CrossRef]
- Unternährer, J.; Moret, S.; Joost, S.; Maréchal, F. Spatial clustering for district heating integration in urban energy systems: Application to geothermal energy. Appl. Energy 2017, 190, 749–763. [Google Scholar] [CrossRef] [Green Version]
- Geidl, M.; Andersson, G. A modeling and optimization approach for multiple energy carrier power flow. In Proceedings of the IEEE Russia Power Tech, St. Petersburg, Russia, 27–30 June 2005; pp. 1–7. [Google Scholar]
- Bracco, S.; Dentici, G.; Siri, S. DESOD: A mathematical programming tool to optimally design a distributed energy system. Energy 2016, 100, 298–309. [Google Scholar] [CrossRef]
- Haikarainen, C.; Pettersson, F.; Saxén, H. A model for structural and operational optimization of distributed energy systems. Appl. Therm. Eng. 2014, 70, 211–218. [Google Scholar] [CrossRef]
- Harb, H.; Schwager, C.; Streblow, R.; Müller, D. Optimal Design of Energy Systems in Residential Districts with Interconnected Local Heating and Electrical Networks. In Proceedings of the Building Simulation Conference, Hyderabad, India, 7–9 December 2015. [Google Scholar]
- Jennings, M.; Fisk, D.; Shah, N. Modelling and optimization of retrofitting residential energy systems at the urban scale. Energy 2014, 64, 220–233. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, P.; Li, Z.; Ni, W. Economic assessment of a distributed energy system in a new residential area with existing grid coverage in China. Comput. Chem. Eng. 2013, 48, 165–174. [Google Scholar] [CrossRef]
- Domínguez-Muñoz, F.; Cejudo-López, J.M.; Carrillo-Andrés, A.; Gallardo-Salazar, M. Selection of typical demand days for CHP optimization. Energy Build. 2011, 43, 3036–3043. [Google Scholar] [CrossRef]
- Kotzur, L.; Markewitz, P.; Robinius, M.; Stolten, D. Impact of different time series aggregation methods on optimal energy system design. Renew. Energy 2018, 117, 474–487. [Google Scholar] [CrossRef] [Green Version]
- Pfenninger, S. Dealing with multiple decades of hourly wind and PV time series in energy models: A comparison of methods to reduce time resolution and the planning implications of inter-annual variability. Appl. Energy 2017, 197, 1–13. [Google Scholar] [CrossRef]
- Bahl, B.; Kümpel, A.; Seele, H.; Lampe, M.; Bardow, A. Time-series aggregation for synthesis problems by bounding error in the objective function. Energy 2017, 135, 900–912. [Google Scholar] [CrossRef]
- Baumgärtner, N.; Bahl, B.; Hennen, M.; Bardow, A. RiSES3: Rigorous Synthesis of Energy Supply and Storage Systems via time-series relaxation and aggregation. Comput. Chem. Eng. 2019, 127, 127–139. [Google Scholar] [CrossRef]
- Bahl, B.; Söhler, T.; Hennen, M.; Bardow, A. Typical Periods for Two-Stage Synthesis by Time-Series Aggregation with Bounded Error in Objective Function. Front. Energy Res. 2018, 5, 35. [Google Scholar] [CrossRef]
- Yokoyama, R.; Shinano, Y.; Wakayama, Y.; Wakui, T. Model reduction by time aggregation for optimal design of energy supply systems by an MILP hierarchical branch and bound method. Energy 2019, 181, 782–792. [Google Scholar] [CrossRef]
- Welder, L.; Ryberg, D.S.; Kotzur, L.; Grube, T.; Robinius, M.; Stolten, D. Spatio-temporal optimization of a future energy system for power-to-hydrogen applications in Germany. Energy 2018, 158, 1130–1149. [Google Scholar] [CrossRef]
- Welder, L.; Linssen, J.; Robinius, M.; Stolten, D. FINE—Framework for Integrated Energy System Assessment 2018. Available online: https://github.com/FZJ-IEK3-VSA/FINE (accessed on 1 July 2019).
- Kotzur, L.; Markewitz, P.; Robinius, M.; Stolten, D. tsam—Time Series Aggregation Module 2017. Available online: https://github.com/FZJ-IEK3-VSA/tsam (accessed on 1 July 2019).
- Kotzur, L.; Markewitz, P.; Robinius, M.; Stolten, D. Time series aggregation for energy system design: Modeling seasonal storage. Appl. Energy 2018, 213, 123–135. [Google Scholar] [CrossRef] [Green Version]
- Nahmmacher, P.; Schmid, E.; Hirth, L.; Knopf, B. Carpe diem: A novel approach to select representative days for long-term power system modeling. Energy 2016, 112, 430–442. [Google Scholar] [CrossRef]
- Ward, J.H., Jr. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 5, 236–244. [Google Scholar] [CrossRef]
- Richardson, I.; Thomson, M.; Infield, D. A high-resolution domestic building occupancy model for energy demand simulations. Energy Build. 2008, 40, 1560–1566. [Google Scholar] [CrossRef] [Green Version]
- Richardson, I.; Thomson, M.; Infield, D. Domestic electricity use: A high-resolution energy demand model. Energy Build. 2010, 42, 1878–1887. [Google Scholar] [CrossRef] [Green Version]
- Richardson, I.; Thomson, M.; Infield, D.; Delahunty, A. Domestic lighting: A high-resolution energy demand model. Energy Build. 2009, 41, 781–789. [Google Scholar] [CrossRef] [Green Version]
- Kemmler, A.; Straßburg, S.; Seefeldt, F.; Anders, N.; Rohde, C.; Fleiter, T.; Aydemir, A.; Kleeberger, H.; Hardi, L.; Geiger, B. Datenbasis Zur Bewertung Von Energieeffizienzmaßnahmen in Der Zeitreihe 2005–2014; Umweltbundesamt: Berlin, Germany, 2017. [Google Scholar]
- Holmgren, W.F.; Hansen, C.W.; Mikofski, M.A. pvlib python: A python package for modeling solar energy systems. J. Open Sour. Softw. 2018, 3, 884. [Google Scholar] [CrossRef]
- Lindberg, K.B.; Doorman, G.; Fischer, D.; Korpås, M.; Ånestad, A.; Sartori, I. Methodology for optimal energy system design of Zero Energy Buildings using mixed-integer linear programming. Energy Build. 2016, 127, 194–205. [Google Scholar] [CrossRef] [Green Version]
- Frauenhofer ISE. Current and Future Cost of Photovoltaics. Long-term Scenarios for Market Development, System Prices and LcoE of Utility-Scale Pv Systems 2015. Available online: https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/AgoraEnergiewende_Current_and_Future_Cost_of_PV_Feb2015_web.pdf (accessed on 1 July 2019).
- Sterchele, P.; Kalz, D.; Palzer, A. Technisch-ökonomische Analyse von Maßnahmen und Potentialen zur energetischen Sanierung im Wohngebäudesektor heute und für das Jahr 2050. Bauphysik 2016, 38, 193–211. [Google Scholar] [CrossRef]
- Streblow, R.; Ansorge, K. Genetischer Algorithmuszur kombinatorischen Optimierung von Gebäudehülle und Anlagentechnik; Gebäude-Energiewende: Berlin, Germany, 2017. [Google Scholar]
- Lauinger, D.; Caliandro, P.; Van herle, J.; Kuhn, D. A linear programming approach to the optimization of residential energy systems. J. Energy Storage 2016, 7, 24–37. [Google Scholar] [CrossRef]
- ASUE. BHKW-Kenndaten 2014/2015–Module, Anbieter, Kosten; Arbeitsgemeinschaft für sparsamen und umweltfreundlichen Energieverbrauch e.V.: Berlin, Germany, 2015. [Google Scholar]
- Rager, J.M.F.; Maréchal, F. Urban Energy System Design from the Heat Perspective Using Mathematical Programming Including Thermal Storage; Thèse École polytechnique fédérale de Lausanne EPFL: Lausanne, Switzerland, 2015. [Google Scholar]
- Klingler, A.-L. Self-consumption with PV+Battery systems: A market diffusion model considering individual consumer behaviour and preferences. Appl. Energy 2017, 205, 1560–1570. [Google Scholar] [CrossRef]
- Linssen, J.; Stenzel, P.; Fleer, J. Techno-economic analysis of photovoltaic battery systems and the influence of different consumer load profiles. Appl. Energy 2017, 185, 2019–2025. [Google Scholar] [CrossRef]
- Figgener, J.; Haberschusz, D.; Kairies, P.K.; Wessels, O.; Tepe, B.; Sauer, U.D. Wissenschaftliches Mess-und Evaluierungsprogramm Solarstromspeicher 2.0—Jahresbericht 2017; Institut für Stromrichtertechnik und Elektrische Antriebe der RWTH Aachen: Aachen, Germany, 2017. [Google Scholar]
- Lindberg, K.B.; Fischer, D.; Doorman, G.; Korpås, M.; Sartori, I. Cost-optimal energy system design in Zero Energy Buildings with resulting grid impact: A case study of a German multi-family house. Energy Build. 2016, 127, 830–845. [Google Scholar] [CrossRef] [Green Version]
- Bundesnetzagentur Deutschland, Haushaltskundenpreis Strom und Gas/Entwicklungen Beschaffungskosten, Netzentgelte und EEG-Umlage (Stichtag 1. April 2017), 2017. Available online: https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/Unternehmen_Institutionen/DatenaustauschUndMonitoring/Monitoring/Monitoring2017_Kapitel/E_Einzelhandel2017.pdf?__blob=publicationFile&v=1 (accessed on 1 July 2019).
- Bundesnetzagentur Deutschland. EEG-Registerdaten und EEG-Fördersätze; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar]
- Bundesministerium der Justiz und für Verbraucherschutz KWKG 2016. Available online: https://www.gesetze-im-internet.de/kwkg_2016/ (accessed on 1 July 2019).
- European Energy Exchange AG. Üblicher Strompreis gemäß KWK-Gesetz. Available online: https://www.eex.com/de/marktdaten/strom/spotmarkt/kwk-index/kwk-index-download (accessed on 1 July 2019).
- Schiebahn, S.; Grube, T.; Robinius, M.; Tietze, V.; Kumar, B.; Stolten, D. Power to gas: Technological overview, systems analysis and economic assessment for a case study in Germany. Int. J. Hydrogen Energy 2015, 40, 4285–4294. [Google Scholar] [CrossRef]
- Robinius, M.; Stein, F.T.; Schwane, A.; Stolten, D. A Top-Down Spatially Resolved Electrical Load Model. Energies 2017, 10, 361. [Google Scholar] [CrossRef]
- Andrews, R.W.; Stein, J.S.; Hansen, C.; Riley, D. Introduction to the open source PV LIB for python Photovoltaic system modelling package. In Proceedings of the IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO, USA, 8–13 June 2014; pp. 170–174. [Google Scholar]
Reference | Time Series Aggregation | 2-Level Approach | |
---|---|---|---|
1st Level | MILP | MILP | MILP |
Full-Time Series | Typical Periods | Typical Periods | |
2nd Level | - | - | LP |
- | - | Full-Time Series |
Technologies | CAPEXCap | CAPEXFix | OPEX | Lifetime | Efficiency | Based on Literature |
---|---|---|---|---|---|---|
PV | 1400 €/kWp | 1000 € | 1% of CAPEX | 25 | - | [45,46] |
Condensing Boiler | 100 €/kWth | 2800 € | 1.5% of CAPEX | 20 | 90% | [47,48,49] |
Heat Pump | 600 €/kWth | 5000 € | 1% of CAPEX | 20 | COP = 2 | [45,47,48] |
ICE-CHP | 1000 €/kWel | 15,000 € | 3% of CAPEX | 20 | 25%el/60%th | [48,50] |
Heat Storage | 34 €/kWhth | 23 € | - | 25 | 0,1%/h | [48,51] |
Battery Storage | 700 €/kWhel | 2000 € | - | 15 | 0,01%/h | [52,53,54] |
Interest Rate | 4% | [55] |
Household Electricity Price | 0.2986 €/kWh | [56] |
Household Natural Gas Price | 0.0615 €/kWh | [56] |
PV Feed-In Tariff | 0.1245 €/kWh | [57] |
CHP Premium | 0.08 €/kWh | [58] |
CHP Index | 0.0342 €/kWh | [59] |
CHP Fix Location | ||||||
---|---|---|---|---|---|---|
Deviation TAC in % | Bd1 | Bd2 | Bd3 | Bd4 | Bd5 | Bd6 |
5 Typical Days | 0.013 | 0.092 | 0.075 | 0.121 | 0.083 | 0.059 |
10 Typical Days | 0.072 | 0.151 | 0.053 | 0.099 | 0.142 | 0.041 |
20 Typical Days | 0.013 | 0.092 | 0.053 | 0.099 | 0.083 | 0.041 |
40 Typical Days | 0.013 | 0.091 | 0.053 | 0.099 | 0.083 | 0.041 |
CAPEXCap [€/kWp] | CAPEXFix [€] | OPEXCap [€/kWp] | OPEXFix [€] | OPEXVar [€/kWh] | Efficiency [%] | Charge Efficiency [%] | Discharge Efficiency [%] | Self-Discharge [%/h] | Lifetime [a] | |
---|---|---|---|---|---|---|---|---|---|---|
Photovoltaic | 800 | 1000 | 8 | 100 | 0 | 20 | ||||
Wind Energy | 1000 | 100,000 | 20 | 2000 | 0 | 20 | ||||
Backup Plant | 1000 | 0 | 30 | 0 | 0.2 | 25 | ||||
Electrolyzer | 500 | 100,000 | 15 | 3000 | 0 | 70 | 15 | |||
Fuel Cell | 1100 | 100,000 | 33 | 3000 | 0 | 50 | 15 | |||
Battery | 300 | 0 | 3 | 0 | 0 | 96 | 96 | 0.05 | 15 | |
Hydrogen Storage | 15 | 0 | 0 | 0 | 0 | 90 | 1 | 0 | 25 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kannengießer, T.; Hoffmann, M.; Kotzur, L.; Stenzel, P.; Schuetz, F.; Peters, K.; Nykamp, S.; Stolten, D.; Robinius, M. Reducing Computational Load for Mixed Integer Linear Programming: An Example for a District and an Island Energy System. Energies 2019, 12, 2825. https://doi.org/10.3390/en12142825
Kannengießer T, Hoffmann M, Kotzur L, Stenzel P, Schuetz F, Peters K, Nykamp S, Stolten D, Robinius M. Reducing Computational Load for Mixed Integer Linear Programming: An Example for a District and an Island Energy System. Energies. 2019; 12(14):2825. https://doi.org/10.3390/en12142825
Chicago/Turabian StyleKannengießer, Timo, Maximilian Hoffmann, Leander Kotzur, Peter Stenzel, Fabian Schuetz, Klaus Peters, Stefan Nykamp, Detlef Stolten, and Martin Robinius. 2019. "Reducing Computational Load for Mixed Integer Linear Programming: An Example for a District and an Island Energy System" Energies 12, no. 14: 2825. https://doi.org/10.3390/en12142825
APA StyleKannengießer, T., Hoffmann, M., Kotzur, L., Stenzel, P., Schuetz, F., Peters, K., Nykamp, S., Stolten, D., & Robinius, M. (2019). Reducing Computational Load for Mixed Integer Linear Programming: An Example for a District and an Island Energy System. Energies, 12(14), 2825. https://doi.org/10.3390/en12142825