Review of Reactors with Potential Use in Thermochemical Energy Storage in Concentrated Solar Power Plants
Abstract
:1. Introduction
2. Materials Used in Thermochemical Reactions
3. Classification of Reactors
3.1. Classification Based in the Reactor
3.2. Classification Based in the System
3.3. Classification Based in the Process Limiting Step
4. Reactors Used in Solar Plants
- All of the available and described reactor types are presented: entrained, stacked, and fluidized.
- The main available reactors that have been tested at the lab scale are stacked/fixed bed, 50%.
- Fluidized beds are the second most reported option, with around 21%.
- Stacked/rotary reactors are in third position, with 15% of the implementation within this group.
- Cyclone reactors have been implemented in all of the possible system configurations: direct/open, direct/closed, and indirect. The most available ones are in active/direct/closed system configuration.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Price, H.; Lüpfert, E.; Kearney, D.; Zarza, E.; Cohen, G.; Gee, R.; Mahoney, R. Advances in parabolic trough solar power technology. J. Sol. Energy Eng. 2002, 124, 109–125. [Google Scholar] [CrossRef]
- del Rio, P.; Peñasco, C.; Mir-Artiques, P. An overview of drivers and barriers to concentrated solar power in the European Union. Renew. Sustain. Energy Rev. 2018, 81, 1019–1029. [Google Scholar] [CrossRef]
- REN21. Renewables 2017 Global Status Report; REN21: Paris, French, 2017. [Google Scholar]
- IRENA. Renewable Energy Technologies: Cost Analysis Series-Concentrating Solar Power; IRENA: Abu Dhabi, United Arab Emirates, 2012; Available online: https://www.irena.org/documentdownloads/publications/re_technologies_cost_analysis-csp.pdf (accessed on 4 September 2018).
- REmap 2030. A Renewable Energy Roadmap; IRENA: Abu Dhabi, United Arab Emirates, 2014. [Google Scholar]
- IRENA. REmap: Roadmap for A Renewable Energy Future, 2016th ed.; International Renewable Energy Agency (IRENA): Abu Dhabi, United Arab Emirates, 2016. [Google Scholar]
- IEA. World Energy Outlook; IEA publications: París, France, 2012; Available online: https://webstore.iea.org/world-energy-outlook-2012-2 (accessed on 4 September 2018).
- IEA. Energy Technology Perspectives; IEA publications: París, France, 2014; Available online: https://webstore.iea.org/energy-technology-perspectives-2014 (accessed on 4 September 2018).
- IEA. STE Technology Roadmap; IEA publications: París, France, 2014. [Google Scholar]
- ESTELA. Everything You Always Wanted to Know about Solar Thermal Electricity (STE/CSP) but just never Asked; ESTELA: Brussels, Belgium, 2014. [Google Scholar]
- Müller-Steinhagen, H.; Trieb, F. Concentrating solar power: A review of the technology. Ingenia Inf. QR Acad. Eng. 2004, 18, 43–50. [Google Scholar]
- Romero, M.; González-Aguilar, J. Solar thermal CSP technology. Wiley Interdiscip. Energy Environ. 2014, 3, 42–59. [Google Scholar] [CrossRef]
- Kuravi, S.; Trahan, J.; Goswami, D.Y.; Rahman, M.M.; Stefanakos, E.K. Thermal energy storage technologies and systems for concentrating solar power plants. Prog. Energy Combust. Sci. 2013, 39, 285–319. [Google Scholar] [CrossRef]
- Pelay, U.; Luo, L.; Fan, Y.; Stitou, D.; Rood, M. Thermal energy storage for concentrated solar power plants. Renew. Sustain. Energy Rev. 2017, 79, 82–100. [Google Scholar] [CrossRef]
- Prieto, C.; Cooper, P.; Fernandez, A.I.; Cabeza, L.F. Review of technology: Thermochemical energy storage for concentrated solar power plants. Renew. Sustain. Energy Rev. 2016, 60, 909–929. [Google Scholar] [CrossRef]
- Gil, A.; Medrano, M.; Martorell, I.; Lázaro, A.; Dolado, P.; Zalba, B.; Cabeza, L.F. State of the art on high temperature thermal energy storage for power generation. Part 1—concepts, materials and modellization. Renew. Sustain. Energy Rev. 2010, 14, 31–55. [Google Scholar] [CrossRef]
- Medrano, M.; Gil, A.; Martorell, I.; Potau, X.; Cabeza, L.F. State of the art on high-temperature thermal energy storage for power generation. Part 2-Case studies. Renew. Sustain. Energy Rev. 2010, 14, 56–72. [Google Scholar] [CrossRef]
- Liu, M.; Tay, N.H.S.; Bell, S.; Belusko, M.; Jacob, R.; Will, G.; Saman, W.; Bruno, F. Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies. Renew. Sustain. Energy Rev. 2016, 53, 1311–1432. [Google Scholar] [CrossRef]
- González-Roubaud, E.; Pérez-Osorio, D.; Prieto, C. Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts. Renew. Sustain. Energy Rev. 2017, 80, 133–148. [Google Scholar] [CrossRef]
- Dowling, A.W.; Zheng, T.; Zavala, V.M. Economic assessment of concentrated solar power technologies: A review. Renew. Sustain. Energy Rev. 2017, 72, 1019–1032. [Google Scholar] [CrossRef]
- Gasia, J.; Miró, L.; Cabeza, L.F. Review on system and materials requirements for high temperature thermal energy storage. Part 1: General requirements. Renew. Sustain. Energy Rev. 2017, 75, 1320–1338. [Google Scholar] [CrossRef]
- Liu, M.; Saman, W.; Bruno, F. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renew. Sustain. Energy Rev. 2012, 16, 2118–2132. [Google Scholar] [CrossRef]
- Cárdenas, B.; León, N. High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques. Renew. Sustain. Energy Rev. 2013, 27, 724–737. [Google Scholar] [CrossRef]
- Jacob, R.; Bruno, F. Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage. Renew. Sustain. Energy Rev. 2015, 48, 79–87. [Google Scholar] [CrossRef]
- Xu, B.; Li, P.; Chan, C. Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments. Appl. Energy 2015, 160, 286–307. [Google Scholar] [CrossRef][Green Version]
- Felderhoff, M.; Urbanczyk, R.; Peil, S. Thermochemical heat storage for high temperature applications—A review. Green 2013, 3, 113–123. [Google Scholar] [CrossRef]
- Pardo, P.; Deydier, D.; Anzionnaz-Minvielle, Z.; Rouge, S.; Cabassud, M.; Cognet, P. A review on high temperature thermochemical heat energy storage. Renew. Sustain. Energy Rev. 2014, 32, 591–610. [Google Scholar] [CrossRef][Green Version]
- Alonso, E.; Romero, M. Review of experimental investigation on directly irradiated particles solar reactors. Renew. Sustain. Energy Rev. 2015, 41, 53–67. [Google Scholar] [CrossRef]
- Puig-Arnavat, M.; Tora, E.A.; Bruno, J.C.; Coronas, A. State of the art on reactor designs for solar gasification of carbonaceous feedstock. Sol. Energy 2013, 97, 67–84. [Google Scholar] [CrossRef]
- Romero, M.; Steinfeld, A. Concentrating solar thermal power and thermochemical fuels. Energy Environ. Sci. 2012, 5, 9234. [Google Scholar] [CrossRef]
- Agrafiotis, C.; Roeb, M.; Sattler, C. A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles. Renew. Sustain. Energy Rev. 2015, 42, 254–285. [Google Scholar] [CrossRef]
- Agrafiotis, C.; von Storch, H.; Roeb, M.; Sattler, C. Solar thermal reforming of methane feedstocks for hydrogen and syngas production—A review. Renew. Sustain. Energy Rev. 2014, 29, 656–682. [Google Scholar] [CrossRef]
- Scheffe, J.R.; Steinfeld, A. Oxygen exchange materials for solar thermochemical splitting of H2O and CO2: A review. Mater. Today 2014, 17, 341–348. [Google Scholar] [CrossRef]
- Steinfeld, A.; Palumbo, R. Solar Thermochemical Process Technology. Encycl. Phys. Sci. Technol. 2001, 15, 237–256. [Google Scholar]
- Abanades, S.; Charvin, P.; Flamant, G.; Neveu, P. Screening of water-splitting thermochemical cycles potentially attractive for hydrogen production by concentrated solar energy. Energy 2006, 31, 2805–2822. [Google Scholar] [CrossRef]
- Graves, C.; Ebbesen, S.D.; Mogensen, M.; Lackner, K.S. Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy. Renew. Sustain. Energy Rev. 2011, 15, 1–23. [Google Scholar] [CrossRef]
- Neises, M.; Tescari, S.; de Oliveira, L.; Roeb, M.; Sattler, C.; Wong, B. Solar-heated rotary kiln for thermochemical energy storage. Sol. Energy 2012, 86, 3040–3048. [Google Scholar] [CrossRef]
- Villermaux, J. Les reacteurs chimiques solaires. Entropie Paris 1979, 15, 25–31. [Google Scholar]
- Trambouze, P.; van Landeghem, H.; Wauquier, J.P. Chemical Reactors: Design, Engineering, Operation; Gulf Publishing Company: Paris, French, 1988. [Google Scholar]
- Coulson, J.M.; Richardson, J.F. Chemical Engineering; Butterworth-Heinemann: Oxford, UK, 1994. [Google Scholar]
- Solé, A.; Martorell, I.; Cabeza, L.F. State of the art on gas–solid thermochemical energy storage systems and reactors for building applications. Renew. Sustain. Energy Rev. 2015, 47, 386–398. [Google Scholar] [CrossRef][Green Version]
- Ho, C.K. Advances in central receivers for concentrating solar applications. Sol. Energy 2017, 152, 38–56. [Google Scholar] [CrossRef]
- Koepf, E.; Alxneit, I.; Wieckert, C.; Meier, A. A review of high temperature solar driven reactor technology: 25 years of experience in research and development at the Paul Scherrer Institute. Appl. Energy 2017, 188, 620–651. [Google Scholar] [CrossRef]
- Tescari, S.; Agrafiotis, C.; Breuer, S.; de Oliveira, L.; Puttkamer, M.N.; Roeb, M.; Sattler, C. Thermochemical Solar Energy Storage Via Redox Oxides: Materials and Reactor/Heat Exchanger Concepts. Energy Procedia 2014, 49, 1034–1043. [Google Scholar] [CrossRef][Green Version]
- Imhof, A. The cyclone reactor—an atmospheric open solar reactor. Sol. Energy Mater. 1991, 24, 733–741. [Google Scholar] [CrossRef]
- Meier, A.; Bonaldi, E.; Cella, G.M.; Lipinski, W.; Wuillemin, D.; Palumbo, R. Design and experimental investigation of a horizontal rotary reactor for the solar thermal production of lime. Energy 2004, 29, 811–821. [Google Scholar] [CrossRef]
- Kogan, M. Production of hydrogen and carbon by solar thermal methane splitting. I. The unseeded reactor. Int. J. Hydrog. Energy 2008, 28, 1187–1198. [Google Scholar] [CrossRef]
- Kogan, A. Production of hydrogen and carbon by solar thermal methane splitting. II. Room temperature simulation tests of seeded solar reactor. Int. J. Hydrog. Energy 2004, 29, 1227–1236. [Google Scholar] [CrossRef]
- Hirsch, D. Solar hydrogen production by thermal decomposition of natural gas using a vortex-flow reactor. Int. J. Hydrog. Energy 2004, 29, 47–55. [Google Scholar] [CrossRef]
- Frey, T.; Guesdon, C.; Sturzenegger, M. Kinetics on a second scale at temperatures up to 2300 K—The reduction of manganese oxide in a solar furnace. J. Am. Ceram. Soc. 2005, 88, 3249–3252. [Google Scholar] [CrossRef]
- de Miguel, S.Á.; Gonzalez-Aguilar, J.; Romero, M. 100-Wh multi-purpuse particle reactor for thermochemical heat storage in concentrating solar power plants. Energy Procedia 2014, 49, 676–683. [Google Scholar] [CrossRef]
- Möller, S.; Palumbo, R. Solar thermal decomposition kinetics of ZnO in the temperature range 1950–2450 K. Chem. Eng. Sci. 2001, 56, 4505–4515. [Google Scholar] [CrossRef]
- Keunecke, M.; Meier, A.; Palumbo, R. Solar thermal decomposition of zinc oxide: An initial investigation of the recombination reaction in the temperature range 1100–1250 K. Chem. Eng. Sci. 2004, 59, 2695–2704. [Google Scholar] [CrossRef]
- Abanades, S.; Flamant, G. Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxides. Sol. Energy 2006, 80, 1611–1623. [Google Scholar] [CrossRef]
- Binotti, M.; di Marcoberardino, G.; Biassoni, M.; Manzolini, G. Solar hydrogen production with cerium oxides thermochemical cycle. AIP Conf. Proc. 2017, 1850, 100002. [Google Scholar][Green Version]
- Chambon, M.; Abanades, S.; Flamant, G. Thermal dissociation of compressed ZnO and SnO2 powders in a moving-front solar thermochemical reactor. AIChE J. 2011, 57, 2264–2273. [Google Scholar] [CrossRef]
- Bellouard, Q.; Abanades, S.; Rodat, S.; Dupassieux, N. A high temperature drop-tube and packed-bed solar reactor for continuous biomass gasification. AIP Conf. Proc. 2017, 1850, 100001. [Google Scholar]
- Koepf, E.; Advani, S.G.; Steinfeld, A.; Prasad, A.K. A novel beam-down, gravity-fed, solar thermochemical receiver/reactor for direct solid particle decomposition: Design, modeling, and experimentation. Int. J. Hydrog. Energy 2012, 37, 16871–16887. [Google Scholar] [CrossRef]
- Haueter, P.; Moeller, S.; Palumbo, R.; Steinfeld, A. The production of zinc by thermal dissociation of zinc oxide - Solar chemical reactor design. Sol. Energy 1999, 67, 161–167. [Google Scholar] [CrossRef]
- Müller, R.; Haeberling, P.; Palumbo, R.D. Further advances toward the development of a direct heating solar thermal chemical reactor for the thermal dissociation of ZnO(s). Sol. Energy 2006, 80, 500–511. [Google Scholar] [CrossRef]
- Müller, R.; Steinfeld, A. Band-approximated radiative heat transfer analysis of a solar chemical reactor for the thermal dissociation of zinc oxide. Sol. Energy 2007, 81, 1285–1294. [Google Scholar] [CrossRef]
- Schunk, L.O.; Lipiński, W.; Steinfeld, A. Heat transfer model of a solar receiver-reactor for the thermal dissociation of ZnO-Experimental validation at 10 kW and scale-up to 1 MW. Chem. Eng. J. 2009, 150, 502–508. [Google Scholar] [CrossRef]
- Koepf, E.; Villasmil, W.; Meier, A. High temperature flow visualization and aerodynamic window protection of a 100-kWth solar thermochemical receiver-reactor for ZnO dissociation. Energy Procedia 2015, 69, 1780–1789. [Google Scholar] [CrossRef]
- Koepf, E.; Villasmil, W.; Meier, A. Pilot-scale solar reactor operation and characterization for fuel production via the Zn/ZnO thermochemical cycle. Appli. Energy 2016, 165, 1004–1023. [Google Scholar] [CrossRef]
- Meier, A.; Bonaldi, E.; Cella, G.M.; Lipinski, W.; Wuillemin, D. Solar chemical reactor technology for industrial production of lime. Sol. Energy 2006, 80, 1355–1362. [Google Scholar] [CrossRef]
- Bellouard, Q.; Abanades, S.; Rodat, S.; Dupassieux, N. Solar thermochemical gasification of wood biomass for syngas production in a high-temperature continuously-fed tubular reactor. Int. J. Hydrog. Energy 2017, 42, 13486–13497. [Google Scholar] [CrossRef]
- Steinfeld, A.; Brack, M.; Meier, A.; Weidenkaff, A.; Wuillemin, D. A solar chemical reactor for co-production of zinc and synthesis gas. Energy 1998, 23, 803–814. [Google Scholar] [CrossRef][Green Version]
- Zgraggen, A.; Haueter, P.; Trommer, D.; Romero, M.; Dejesus, J.; Steinfeld, A. Hydrogen production by steam-gasification of petroleum coke using concentrated solar power-II Reactor design, testing, and modeling. Int. J. Hydrog. Energy 2006, 31, 797–811. [Google Scholar] [CrossRef]
- Steinfeld, A.; Frei, A.; Kuhn, P.; Wuillemin, D. Solar thermal production of zinc and syngas via combined ZnO-reduction and CH4-reforming processes. Int. J. Hydrog. Energy 1995, 20, 793–804. [Google Scholar] [CrossRef]
- Nikulshina, V.; Gebald, C.; Steinfeld, A. CO2 capture from atmospheric air via consecutive CaO-carbonation and CaCO3-calcination cycles in a fluidized-bed solar reactor. Chem. Eng. J. 2009, 146, 244–248. [Google Scholar] [CrossRef]
- Gokon, N.; Takahashi, S.; Yamamoto, H.; Kodama, T. Thermochemical two-step water-splitting reactor with internally circulating fluidized bed for thermal reduction of ferrite particles. Int. J. Hydrog. Energy 2008, 33, 2189–2199. [Google Scholar] [CrossRef]
- Gokon, N.; Mataga, T.; Kondo, N.; Kodama, T. Thermochemical two-step water splitting by internally circulating fluidized bed of NiFe2O4 particles: Successive reaction of thermal-reduction and water-decomposition steps. Int. J. Hydrog. Energy 2011, 36, 4757–4767. [Google Scholar] [CrossRef]
- Kodama, T.; Gokon, N.; Yamamoto, R. Thermochemical two-step water splitting by ZrO2-supported NixFe3−xO4 for solar hydrogen production. Sol. Energy 2008, 82, 73–79. [Google Scholar] [CrossRef]
- Taylor, R.W.; Berjoan, R.; Coutures, J.P. Solar gasification of carbonaceous materials. Sol. Energy 1983, 30, 513–525. [Google Scholar] [CrossRef]
- Flamant, G.; Hernandez, D.; Bonet, C.; Traverse, J.-P. Experimental aspects of the thermochemical conversion of solar energy; Decarbonation of CaCO3. Sol. Energy 1980, 24, 385–395. [Google Scholar] [CrossRef]
- Murray, J. Reaction of steam with cellulose in a fluidized bed using concentrated sunlight. Energy 1994, 19, 1083–1098. [Google Scholar] [CrossRef]
- Etori, T.; Gokon, N.; Takeuchi, A.; Miki, T.; Yokota, M.; Kodama, T. Flowability control of bed materials in a fluidized bed reactor for solar thermochemical process. Energy Procedia 2015, 69, 1741–1749. [Google Scholar] [CrossRef]
- Furler, P.; Marxer, D.; Scheffe, J.; Reinalda, D.; Geerlings, H.; Falter, C.; Batteiger, V.; Sizmann, A.; Steinfeld, A. Solar kerosene from H2O and CO2. AIP Conf. Proc. 2017, 1850, 100006. [Google Scholar]
- Gokon, N.; Izawa, T.; Kodama, T. Steam gasification of coal cokes by internally circulating fluidized-bed reactor by concentrated Xe-light radiation for solar syngas production. Energy 2015, 79, 264–272. [Google Scholar] [CrossRef]
- Imponenti, L.; Albrecht, K.J.; Wands, J.W.; Sanders, M.D.; Jackson, G.S. Thermochemical energy storage in strontium-doped calcium manganites for concentrating solar power applications. Sol. Energy 2017, 151, 1–13. [Google Scholar] [CrossRef]
- Kodama, T.; Gokon, N.; Cho, H.S.; Matsubara, K.; Etori, T.; Takeuchi, A.; Yokota, S.-N.; Ito, S. Particles fluidized bed receiver/reactor with a beam-down solar concentrating optics: 30-kWth performance test using a big sun-simulator. AIP Conf. Proc. 2016, 1734, 120004. [Google Scholar][Green Version]
- Ortiz, C.; Chacartegui, R.; Valverde, J.M.; Alovisio, A.; Becerra, J.A. Power cycles integration in concentrated solar power plants with energy storage based on calcium looping. Energy Convers. Manag. 2017, 149, 815–829. [Google Scholar] [CrossRef]
- Säck, J.P.; Breuer, S.; Cotelli, P.; Houaijia, A.; Lange, M.; Wullenkord, M.; Spenke, C.; Roeb, M.; Sattler, C. High temperature hydrogen production: Design of a 750 kW demonstration plant for a two step thermochemical cycle. Sol. Energy 2016, 135, 232–241. [Google Scholar] [CrossRef]
- Tregambi, C.; Montagnaro, F.; Salatino, P.; Solimene, R. Directly irradiated fluidized bed reactors for thermochemical processsing and energy storage: Application to calcium looping. AIP Conf. Proc. 2017, 1850, 090007. [Google Scholar]
- Chueh, W.C.; Falter, C.; Abbott, M.; Scipio, D.; Furler, P.; Haile, S.M.; Steinfeld, A. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science 2010, 33, 1797–1801. [Google Scholar] [CrossRef] [PubMed]
- Furler, P.; Scheffe, J.R.; Steinfeld, A. Syngas production by simultaneous splitting of H2O and CO2 via ceria redox reactions in a high-temperature solar reactor. Energy Envir. Sci. 2012, 5, 6098. [Google Scholar] [CrossRef]
- Furler, P.; Scheffe, J.; Gorbar, M.; Moes, L.; Vogt, U.; Steinfeld, A. Solar Thermochemical CO2 Splitting Utilizing a Reticulated Porous Ceria Redox System. Energy Fuels 2012, 26, 121024073702001. [Google Scholar] [CrossRef]
- Roeb, M.; Säck, J.-P.; Rietbrock, P.; Prahl, C.; Schreiber, H.; Neises, M.; de Oliveira, L.; Graf, D.; Ebert, M.; Reinalter, W.; et al. Test operation of a 100 kW pilot plant for solar hydrogen production from water on a solar tower. Sol. Energy 2011, 85, 634–644. [Google Scholar] [CrossRef]
- Roeb, M.; Neises, M.; Säck, J.-P.; Rietbrock, P.; Monnerie, N.; Dersch, J.; Schmitz, M.; Sattler, C. Operational strategy of a two-step thermochemical process for solar hydrogen production. Int. J. Hydrog. Energy 2009, 34, 4537–4545. [Google Scholar] [CrossRef]
- Buck, R.; Muir, J.F.; Hogan, R.E. Carbon dioxide reforming of methane in a solar volumetric receiver/reactor: The CAESAR project. Sol. Energy Mater. 1991, 24, 449–463. [Google Scholar] [CrossRef]
- Gokon, N.; Kodama, T.; Imaizumi, N.; Umeda, J.; Seo, T. Ferrite/zirconia-coated foam device prepared by spin coating for solar demonstration of thermochemical water-splitting. Int. J. Hydrog. Energy 2011, 36, 2014–2028. [Google Scholar] [CrossRef]
- Hathaway, B.J.; Chandran, R.B.; Gladen, A.C.; Chase, T.R.; Davidson, J.H. Demonstration of a solar reactor for carbon dioxide splitting via the isothermal ceria redox cycle and practical implications. Energy Fuels 2016, 30, 6654–6661. [Google Scholar] [CrossRef]
- Marxer, D.; Furler, P.; Scheffe, J.; Geerlings, H.; Falter, C.; Batteiger, V.; Sizmann, A.; Steinfeld, A. Demonstration of the entire production chain to renewable kerosene via solar thermochemical splitting of H2O and CO2. Energy Fuels 2015, 20, 3241–3250. [Google Scholar] [CrossRef]
- Karagiannakis, G.; Pagkoura, C.; Konstandopoulos, A.G.; Tescari, S.; Singh, A.; Roeb, M.; Lange, M.; Marcher, J.; Jové, A.; Prieto, C.; et al. Thermochemical storage for CSP via redox structured reactors/heat exchangers: The RESTRUCTURE project. AIP Conf. Proc. 2017, 1850, 090004. [Google Scholar]
- Rosskopf, C.; Afflerbach, S.; Schmidt, M.; Görtz, B.; Kowald, T.; Linder, M.; Trettin, R. Investigations of nano coated calcium hydroxide cycled in a thermochemical heat storage. Energy Convers. Manag. 2015, 97, 94–102. [Google Scholar] [CrossRef]
- Rougé, S.; Criado, Y.A.; Huille, A.; Abanades, J.C. Proof of concept of the CaO/Ca(OH)2 reaction in a continuous heat-exchanger BFB reactor for thermochemical heat storage in CSP plants. AIP Conf. Proc. 2017, 1850, 090005. [Google Scholar]
- Chen, C.; Aryafar, H.; Warrier, G.; Lovegrove, K.M.; Lavine, A.S. Ammonia synthesis for producing supercritical steam in the context of solar thermochemical energy storage. AIP Conf. Proc. 2016, 1734, 050010. [Google Scholar][Green Version]
- Lu, J.; Chen, Y.; Ding, J.; Wang, W. High temperature energy storage performances of methane reforming with carbon dioxide in a tubular packed reactor. Appl. Energy 2016, 162, 1473–1482. [Google Scholar] [CrossRef]
- Yu, T.; Yuan, Q.; Lu, J.; Ding, J.; Lu, Y. Thermochemical storage performances of methane reforming with carbon dioxide in tubular and semi-cavity reactors heated by a solar dish system. Appl. Energy 2017, 185, 1994–2004. [Google Scholar] [CrossRef]
- Villafán-Vidales, H.I.; Abanades, S.; Montiel-González, M.; Romero-Paredes-Rubio, H. Carbo-and methanothermal reduction of tungsten trioxide into metallic tungsten for thermochemical production of solar fuels. Energy Technol. 2017, 5, 692–702. [Google Scholar] [CrossRef]
- Gonzalez-Pardo, A.; Denk, T.; Vidal, A. Thermal tests of a multi-tubular reactor for hydrogen production by using mixed ferrites thermochemical cycle. AIP Conf. Proc. 2017, 1850, 100009. [Google Scholar][Green Version]
- Nair, M.M.; Abanades, S. Tailoring hybrid nonstoichiometric ceria redox cycle for combined solar methane reforming and thermochemical conversoin of H2O/CO2. Energy Fuels 2016, 30, 6050–6058. [Google Scholar] [CrossRef]
- Wokon, M.; Kohzer, A.; Linder, M. Investigations on thermochemical energy storage based on technical grade manganese-iron oxide in a lab-scale packed bed reactor. Sol. Energy 2017, 153, 200–214. [Google Scholar] [CrossRef]
- Tescari, S.; Neises, M.; de Oliveira, L.; Roeb, M.; Sattler, C.; Neveu, P. Thermal model for the optimization of a solar rotary kiln to be used as high temperature thermochemical reactor. Sol. Energy 2013, 95, 279–289. [Google Scholar] [CrossRef]
- Alonso, E.; Pérez-Rábago, C.; Licurgo, J.; Fuentealba, E.; Estrada, C.A. First experimental studies of solar redox reactions of copper oxides for thermochemical energy storage. Sol. Energy 2015, 115, 297–305. [Google Scholar] [CrossRef]
- Arribas, L.; Miroslavov, V.; Bellan, S.; Romero, M.; Gonzalez-Aguilar, J. Development of a solarized rotary kiln for high-temperature chemical processes. In Proceedings of the Solar World Congress, Daegu, Korea, 8–12 November 2015. [Google Scholar]
- Michel, B.; Mazet, N.; Neveu, P. Experimental investigation of an open thermochemical process operating with a hydrate salt for thermal storage of solar energy: Local reactive bed evolution. Appl. Energy 2016, 180, 234–244. [Google Scholar] [CrossRef]
- Koepf, E.E.; Advani, S.G.; Prasad, A.K.; Steinfeld, A. Experimental investigation of the carbothermal reduction of ZnO using a beam-down, gravity-fed solar reactor. Ind. Eng. Chem. Res. 2015, 54, 8319–8332. [Google Scholar] [CrossRef]
- Lapp, J.; Lange, M.; Rieping, R.; de Oliveira, L.; Roeb, M.; Sattler, C. Fabrication and testing of CONTISOL: A new receiver-reactor for day and night solar thermochemistry. Appl. Therm. Eng. 2017, 127, 46–57. [Google Scholar] [CrossRef]
- Melchior, T.; Perkins, C.; Lichty, P.; Weimer, A.W.; Steinfeld, A. Solar-driven biochar gasification in a particle-flow reactor. Chem. Eng. Process. Process Intensif. 2009, 48, 1279–1287. [Google Scholar] [CrossRef]
- Melchior, T.; Perkins, C.; Weimer, A.W.; Steinfeld, A. A cavity-receiver containing a tubular absorber for high-temperature thermochemical processing using concentrated solar energy. Int. J. Therm. Sci. 2008, 47, 1496–1503. [Google Scholar] [CrossRef]
- Piatkowski, N.; Steinfeld, A. Solar-Driven Coal Gasification in a Thermally Irradiated Packed-Bed Reactor. Energy Fuels 2008, 22, 2043–2052. [Google Scholar] [CrossRef]
- Piatkowski, N.; Steinfeld, A. Reaction kinetics of the combined pyrolysis and steam-gasification of carbonaceous waste materials. Fuel 2010, 89, 1133–1140. [Google Scholar] [CrossRef]
- Piatkowski, N.; Steinfeld, A. Solar gasification of carbonaceous waste feedstocks in a packed-bed reactor-Dynamic modeling and experimental validation. AIChE J. 2011, 57, 3522–3533. [Google Scholar] [CrossRef]
- Schmidt, M.; Gollsch, M.; Giger, F.; Grün, M.; Linder, M. Development of a moving bed pilot plant for thermochemical energy storage with CaO/Ca(OH)2. AIP Conf. Proc. 2016, 1734, 050041. [Google Scholar]
- Alonso, E.; Romero, M. A directly irradiated solar reactor for kinetic analysis of non-volatile metal oxides reductions. Int. J. Energy Res. 2015, 39, 1217–1228. [Google Scholar] [CrossRef]
- Schmidt, M.; Gutierrez, A.; Linder, M. Thermochemical energy storage with CaO/Ca(OH)2–Experimental investigation of the thermal capability at low vapor pressures in a lab scale reactor. Appl. Energy 2017, 188, 672–681. [Google Scholar] [CrossRef]
- Yan, J.; Zhao, C.Y. Experimental study of CaO/Ca(OH)2 in a fixed-bed reactor for thermochemical heat storage. Appli. Energy 2016, 175, 277–284. [Google Scholar] [CrossRef]
- Wieckert, C.; Palumbo, R.; Frommherz, U. A two-cavity reactor for solar chemical processes: Heat transfer model and application to carbothermic reduction of ZnO. Energy 2004, 29, 771–787. [Google Scholar] [CrossRef]
- Schaffner, B.; Meier, A.; Wuillemin, D.; Hoffelner, W.; Steinfeld, A. Recycling of Hazardous Solid Waste Material Using High-Temperature Solar Process Heat. 2. Reactor Design and Experimentation. Environ. Technol. 2003, 37, 165–170. [Google Scholar] [CrossRef]
Reactor | Advantages | Disadvantages |
---|---|---|
Fixed/packed bed | Low cost Non-parasitic Easier for modeling | Low heat and mass transfer High-pressure drop Difficulties to be implemented in solar receiver cavities at continuous commercial process Stacked bed needed, with higher complexity in solar-focused strategies Non-uniform irradiance distributions on the particle volume |
Mobile/moving bed | Direct heat transfer between solids and the gas Increase of the heat transfer coefficient | Difficulties to be implemented in solar reactors Non-uniform irradiance distributions on the particle flow Need to control the residence time to increase the heat transference in particle receiver Complex hydrodynamics |
Rotary | High chemical conversion due to high heat and mass transfer Versatility Long life components | Difficulties of scalability to lager commercial solar systems Increase of parasitic energy consumption due to the movement of the reactor Higher risk of mechanical maintenance cost due to the use of a rotatory element at high temperature |
Fluidized bed | Minimization of the risk of hotspots and thermal instability Heat transfer coefficients are high | Difficulties to be implemented in solar reactors Need of gas for fluidization Increase of parasitic energy consumption due to the need of fluidized gas Erosion of internal components Complex reactor hydrodynamics and modeling |
Process | Heated System | Reactor Type | Thermochemical Process | Tested in | Power [kW] | Tmax [K] | Solar Efficiency [%] | Chemical Efficiency [%] | Reference | |
---|---|---|---|---|---|---|---|---|---|---|
Thermal decomposition | Direct | Open | Entrained cyclone | Calcite decomposition | PSI furnace (Switzerland) | 18–28 | 1273 | 43 | 90 | [28,45,46] |
Stacked bed-Rotary kiln | Decomposition of limestone (CaCO3) | PSI furnace (Switzerland) | 10 | 1423 | 20 | 95 | [47] | |||
Closed | Entrained cyclone | Thermal splitting methane | Weizmann Institute (Israel) | n.a. | 1320 | n.a. | 28.1 | [48,49,50] | ||
Fluidized bed | Calcite decomposition | CNRS-PROMES solar furnace (France) | 2 | 1573 | 14 | n.a. | [28] | |||
Mn2O3 reduction | IMDEA (Spain) | 10−3 | 1020 | n.a. | n.a. | [51] | ||||
Stacked bed-Fixed bed | MnO2 reduction | IMDEA (Spain) | n.a. | 2100 | n.a. | 25 | [28,52] | |||
Mn3O4 reduction | IMDEA (Spain) | 1 | 1673 | n.a. | 60 | [28] | ||||
Mn2O3, Mn3O4, CeO reduction | IMDEA (Spain) | 2 | 1723 | 47 | 100 | [28] | ||||
ZnO thermal decomposition | PSI furnace (Switzerland) | 45 | 2400 | n.a. | n.a. | [30,53,54] | ||||
CeO2/Ce2O3 thermal reduction for H2 production | n.a. | 2 | 2273 | n.a. | 95 | [54] | ||||
CeO2/H2 | Dish/Starling | 10 kWe | 1773 | n.a. | 40 | [55] | ||||
ZnO, SnO2 thermal reduction cycle for H2 production | CNRS-PROMES solar furnace (France) | 1 | 1900 | n.a. | 48/72 | [28,31,56] | ||||
Fe3O4/FeO/CO2 splitting | CNRS-PROMES solar furnace (France) | 1.5 | 1873 | n.a. | 97 | [36,39] | ||||
Biomass gasification | CEA-LITHEN (France) | 1 | 1673 | n.a. | 28 | [57] | ||||
Stacked bed-Mobile bed | ZnO, thermal reduction cycle for H2 production | PSI furnace (Switzerland) | 10 | 1900 | n.a. | n.a. | [28,58] | |||
Stacked bed-Rotary kiln | ZnO thermal decomposition | PSI furnace (Switzerland) | 10 | 2000 | n.a. | 35 | [59,60] | |||
ZnO thermal decomposition | PSI furnace (Switzerland) | 10 | 1900 | 12 | 95 | [60,61] | ||||
ZnO thermal decomposition | PSI furnace (Switzerland) | 10 | 2136 | n.a. | 90 | [30,62] | ||||
ZnO thermal decomposition | PSI furnace (Switzerland) | 15 | 2023 | n.a. | 30 | [63] | ||||
ZnO thermal decomposition | PSI furnace (Switzerland) | 115 | 2000 | 0.88 | 3 | [64] | ||||
Indirect | Stacked bed-Fixed bed | CaCO3 lime decomposition | PSI furnace (Switzerland) | 10 | 1873 | 35 | 95 | [65] | ||
Wood | CNRS-PROMES solar furnace (France) | 1 | 1673 | 28 | 82 | [66] | ||||
Chemical reaction | Direct | Closed | Entrained bed cyclone | ZnO reduction with CH4 and syngas production | PSI furnace (Switzerland) | 5 | 1600 | n.a. | 90 | [67] |
Steam gasification of petcoke | PSI furnace (Switzerland) | 5 | 1818 | 9 | 87 | [67,68] | ||||
Fluidized bed | ZnO reduction with CH4 and syngas production | PSI furnace (Switzerland) | 2.9 | 1373 | n.a. | 43 | [69] | |||
CaO/CaCO3, atmospheric CO2 capture | PSI furnace (Switzerland) | n.a. | 1150 | n.a. | 71 | [70] | ||||
NiFe2O4/m-ZnO thermochemical cycle/H2 production | Niigata University solar simulator (Japan) | 2 | 1473 | n.a. | 45 | [71,72,73] | ||||
Steam gasification of charcoal | CNRS-PROMES solar furnace (France) | 2 | 1773 | 10 | 100 | [29,74,75] | ||||
Steam gasification of charcoal | University of Minnesota solar furnace (USA) | 6 | 1600 | n.a. | 100 | [29,76] | ||||
CeO2 water splitting | Center for Transdisciplinary research | 7 | 1173 | n.a. | n.a. | [77] | ||||
CeO2 water splitting | ETH Zurich (Switzerland) | 2.8–3.8 | 1873 | n.a. | n.a. | [78] | ||||
CO + H2O | Center for Transdisciplinary research (Japan) | 5 | 2073 | 15 | <10 | [79] | ||||
Sr-doped + CaMnO3 | Colorado School of Mines (USA) | n.a. | 1273 | n.a. | n.a. | [80] | ||||
Fe2O3 water splitting | Niigata University solar simulator (Japan) | 30 | 1473 | n.a. | n.a. | [81] | ||||
CaO/CaCO3 | University of Sevilla (Spain) | n.a. | 1100 | n.a. | 15 | [82] | ||||
Metal oxide reduction | DLR solar furnace (Germany) | n.a. | 1073 | n.a. | n.a. | [83] | ||||
Calcium looping | IRC (Italy) | 3 | 1023 | n.a. | n.a. | [84] | ||||
Stacked bed-Fixed bed | Fe2O3, Fe3O4, Mn3O4 reduction | PSI furnace (Switzerland) | n.a. | 2100 | n.a. | 85 | [28,50] | |||
CeO2 CO2–H2O splitting (foam) | PSI furnace (Switzerland) | 2 | 1913 | 0.7–0.8 | 2 | [28,30,31,85,86,87] | ||||
Ferrite for H2 production (honeycombs) | Plataforma Solar de Almeria (Spain) | 100 | 1473 | n.a. | 30 | [31,86,87,88,89] | ||||
Syngas production via CH4–CO2 (foam) | SANDIA (USA) | 97 | 1473 | n.a. | 54 | [31,90] | ||||
NiFe2O4/m-ZrO2-coated for H2 production (foam) | Niigata University solar simulator (Japan) | 0.7 (2) | 1773 | n.a. | 60 | [31,72,91] | ||||
CeO–CO2 splitting | University of Minnesota solar furnace (USA) | 4.4 | 1847 | n.a. | 72 | [92] | ||||
CO2 splitting redox | ETH Zurich (Switzerland) | 3.8 | 1873 | n.a. | < 15 | [93] | ||||
Co3O4/CoO | DLR solar furnace (Germany) | n.a. | 1273 | 65 | n.a. | [94] | ||||
CaO/Ca(OH)2 | DLR solar furnace (Germany) | n.a. | 773 | 94 | n.a. | [95] | ||||
CaO/Ca(OH)2 | CEA-LITHEN (France) | 5.5 | 773 | n.a. | n.a. | [96] | ||||
NH3/N2 | IT Power (Australia) | 5 | 948 | n.a. | n.a. | [97] | ||||
CH4 | Guangdong Yudean Xinhui Generation (China) | n.a. | 800 | 50 | 47.2 | [98] | ||||
CH4 | Sun Yat-Sen University (China) | n.a. | 563 | n.a. | n.a. | [99] | ||||
CH4 | n.a. | n.a. | 948 | 55 | 25 | [100] | ||||
CeO2 water splitting | CIEMAT (Spain) | 57.5 | 1473 | n.a. | n.a. | [101] | ||||
CeO2–CO2 splitting | CNRS-PROMES solar furnace (France) | n.a. | 1273 | n.a. | n.a. | [102] | ||||
n.a. | n.a. | n.a. | 1073 | 99 | n.a. | [103] | ||||
Rotary kiln | CoO/Co3O4 thermochemical heat storage | DLR solar furnace (Germany) | 10 | 1173 | n.a. | 70 | [37,104] | |||
CuO/CuO2 thermochemical reaction | IER-UNAM (Mexico) | 28.5 | n.a. | n.a. | 80 | [105] | ||||
CuO/CuO2 thermochemical reaction | University of Antofagasta (Chile) | n.a. | 1153 | n.a. | 80 | [106] | ||||
Mn2O3/Mn3O4 | IMDEA (Spain) | 10 | 1700 | 15 | 85 | [106] | ||||
SrBr2·H2O/SrBr6·6H2O | CNRS-PROMES solar furnace (France) | 300–600 | 353 | n.a. | n.a. | [107] | ||||
Stacked bed-Mobile bed | ZnO | ETH Zurich (Switzerland) | 10 | 1446 | 14 | <12.4 | [108] | |||
Direct/Indirect | CONTISOL configuration | CH4 | DLR solar furnace (Germany) | 6 | 1223 | n.a. | n.a. | [109] | ||
Indirect | Entrained bed cyclone | Steam gasification of charcoal | PSI solar furnace (Switzerland) | 3 | 1425 | 1.53 | 26 | [110,111] | ||
Stacked bed-Fixed bed | Steam gasification of charcoal | PSI solar furnace (Switzerland) | 5 | 1440 | 29 | n.a. | [29,112,113] | |||
Steam gasification of charcoal | PSI solar furnace (Switzerland) | 8 | 1490 | 28 | n.a. | [29,114] | ||||
CaO/Ca(OH)2 | DLR solar furnace (Germany) | 10 | 823 | 90 | n.a. | [115] | ||||
Mn2O3 and Al2O3 | IMDEA solar furnace (Spain) | 2.1 | 1673 | 25.4 | 41.6 | [116] | ||||
CaO/Ca(OH)2 | DLR solar furnace (Germany) | 2 | 873 | 95 | n.a. | [117] | ||||
CaO/Ca(OH)2 | IET (China) | 2 | 613 | n.a. | n.a. | [118] | ||||
Stacked bed-Mobile bed | ZnO reduction with carbon | PSI solar furnace (Switzerland) | 5 | 1500 | 15 | 25 | [119,120] |
Type of Reactor | Number of Reactors | Thermal Decomposition | Chemical Reaction | |||||
---|---|---|---|---|---|---|---|---|
Direct | Open | Entrained | Cyclone | 1 | 1 | [28] | 0 | --- |
Direct | Open | Stacked | Rotary | 1 | 1 | [46] | 0 | --- |
Direct | Closed | Entrained | Cyclone | 3 | 1 | [49] | 2 | [68] |
Direct | Closed | Fluidized | Fluidized | 15 | 1 | [28] | 14 | [69] |
Direct | Closed | Stacked | Rotary | 10 | 5 | [30,62] | 5 | [106] |
Direct | Closed | Stacked | Fixed | 26 | 9 | [28] | 17 | [31,73,91] |
Direct | Closed | Stacked | Mobile | 2 | 1 | [28,58] | 1 | [108] |
Indirect | Stacked | Fixed | 8 | 2 | [65] | 6 | [29,112,113] | |
Indirect | Stacked | Mobile | 1 | 0 | --- | 1 | [119,120] | |
Indirect | Entrained | Cyclone | 1 | 0 | --- | 1 | [110,111] | |
Direct/Indirect | CONTISOL configuration | 1 | 0 | --- | 1 | [111] | ||
TOTAL | 68 | 21 | --- | 47 | --- |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zsembinszki, G.; Solé, A.; Barreneche, C.; Prieto, C.; Fernández, A.I.; Cabeza, L.F. Review of Reactors with Potential Use in Thermochemical Energy Storage in Concentrated Solar Power Plants. Energies 2018, 11, 2358. https://doi.org/10.3390/en11092358
Zsembinszki G, Solé A, Barreneche C, Prieto C, Fernández AI, Cabeza LF. Review of Reactors with Potential Use in Thermochemical Energy Storage in Concentrated Solar Power Plants. Energies. 2018; 11(9):2358. https://doi.org/10.3390/en11092358
Chicago/Turabian StyleZsembinszki, Gabriel, Aran Solé, Camila Barreneche, Cristina Prieto, A. Inés Fernández, and Luisa F. Cabeza. 2018. "Review of Reactors with Potential Use in Thermochemical Energy Storage in Concentrated Solar Power Plants" Energies 11, no. 9: 2358. https://doi.org/10.3390/en11092358