Parameter Estimation of Electromechanical Oscillation Based on a Constrained EKF with C&I-PSO
Abstract
:1. Introduction
2. State-Space Model of the Ringdown Signal
3. Extended Kalman Filter with Inequality Constraints
3.1. Traditional Extended Kalman Filter
3.2. The Projection Method
4. The C&I Particle Swarm Optimization
4.1. The Penalty Function Approach
4.2. The C&I-PSO Algorithm
Algorithm 1: Constrained EKF with C&I-PSO |
1: Initialization: Set appropriate values for , , , , , ; |
2: for to do |
3: Calculate the value of state prediction and prediction error covariance : |
4: , ; |
5: Compute the Kalman gain matrix at time instant : |
6: ; |
7: Update the state estimation and estimation error covariance: |
8: , ; |
9: if then |
10: , s.t. ; |
11: while do |
12: , ; |
13: for to do |
14: Update , and calculate particle new velocity and position: |
15: , |
16: , |
17: ; |
18: end for |
19: ; |
20: end while |
21: ; |
22: end if |
23: ; |
24: end for |
5. Simulation Results and Discussions
5.1. Test System 1: Ringdown Signal Composed of One EDS Signal
5.2. Test System 2: Ringdown Signal Composed of Two EDS Signals
5.3. Test System 3: WSCC Model
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alizadeh, M.; Kojori, S.; Ganjefar, S. A modular neural block to enhance power system stability. IEEE Trans. Power Syst. 2013, 28, 4849–4856. [Google Scholar] [CrossRef]
- Sidorov, D.; Panasetsky, D.; Šmádl, V. Non-Stationary Autoregressive Model for On-Line Detection of Inter-Area Oscillations in Power Systems. In Proceedings of the IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe), Gothenberg, Sweden, 11–13 October 2010. [Google Scholar]
- Yazdanian, M.; Mehrizi-Sani, A.; Mojiri, M. Estimation of electromechanical oscillation parameters using an extended Kalman filter. IEEE Trans. Power Syst. 2015, 30, 2994–3002. [Google Scholar] [CrossRef]
- Jiang, T.; Yuan, H.; Jia, H.; Zhou, N.; Li, F. Stochastic subspace identification-based approach for tracking inter-area oscillatory modes in bulk power system utilizing synchrophasor measurements. IET Gener. Transm. Distrib. 2015, 9, 2409–2418. [Google Scholar] [CrossRef]
- Wu, F.; Ju, P.; Zhang, X.-P.; Qin, C.; Peng, G.J.; Huang, H.; Fang, J. Modeling, control strategy, and power conditioning for direct-drive wave energy conversion to operate with power grid. Proc. IEEE 2013, 101, 925–941. [Google Scholar] [CrossRef]
- Jiang, T.; Bai, L.; Li, F.; Jia, H.; Hu, Q.; Jin, X. Synchrophasor measurement-based correlation approach for dominant mode identification in bulk power systems. IET Gener. Transm. Distrib. 2016, 10, 2710–2719. [Google Scholar] [CrossRef]
- Yazdanian, M.; Mehrizi-Sani, A.; Mojiri, M. A Novel Approach for Ringdown Detection Using Extended Kalman Filter. In Proceedings of the IECON 2013—39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November 2013. [Google Scholar]
- Ju, P.; Handschin, E.; Karlsson, D. Nonlinear dynamic load modelling: Model and parameter estimation. IEEE Trans. Power Syst. 1996, 11, 1689–1697. [Google Scholar] [CrossRef]
- Peng, J.; Nair, N. Enhancing Kalman filter for tracking ringdown electromechanical oscillation. IEEE Trans. Power Syst. 2012, 27, 1042–1050. [Google Scholar] [CrossRef]
- Pierre, J.; Trudnowski, D.; Donnely, M. Initial results in electromechanical mode identification from ambient data. IEEE Trans. Power Syst. 1997, 12, 1245–1251. [Google Scholar] [CrossRef]
- Mojiri, M.; Bakhshai, A. An adaptive notch filter for frequency estimation of a periodic signal. IEEE Trans. Auto. Cont. 2004, 49, 314–318. [Google Scholar] [CrossRef]
- Mojiri, M.; Karimi-Ghartemani, M.; Bakhshai, A. Processing of harmonics and interharmonics using an adaptive notch filter. IEEE Trans. Power Deliv. 2010, 25, 534–542. [Google Scholar] [CrossRef]
- Jain, V. Filter analysis by use of pencil of functions: Part I. IEEE Trans. Circuits Syst. 1974, 21, 574–579. [Google Scholar] [CrossRef]
- Kung, S.Y.; Arun, K.S.; Rao, B. State-space and singular-value decomposition-based approximation methods for the harmonic retrieval problem. J. Opt. Soc. Amer. 1983, 73, 1799–1811. [Google Scholar] [CrossRef]
- Roy, R.; Paulraj, A.; Kailath, T. ESPRIT—A subspace rotation approach to estimation of parameters of cisoids in noise. IEEE Trans. Acoust. Speech Signal Process. 1986, 34, 1340–1342. [Google Scholar] [CrossRef]
- Kumaresan, R.; Tufts, D. Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise. IEEE Trans. Acoust. Speech Signal Process. 1982, 30, 833–840. [Google Scholar] [CrossRef]
- Hildebrand, F.B. Introduction to Numerical Analysis, ser. Dover Books on Advanced Mathematics, 2nd ed.; McGraw-Hill: New York, NY, USA, 1956. [Google Scholar]
- Wang, D.; Bao, Y.; Shi, J. Online lithium-ion battery internal resistance measurement application in state-of-charge estimation using the extended Kalman filter. Energies 2017, 10, 1284. [Google Scholar] [CrossRef]
- Xia, B.; Wang, H.; Wang, M.; Sun, W.; Xu, Z.; Lai, Y. A new method for state of charge estimation of lithium-ion battery based on strong tracking cubature Kalman filter. Energies 2015, 8, 13458–13472. [Google Scholar] [CrossRef]
- He, H.; Qin, H.; Sun, X.; Shui, Y. Comparison study on the battery SoC estimation with EKF and UKF algorithms. Energies 2013, 6, 5088–5100. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, J.; Zhang, W.; Sharkh, S.M. Estimation of state of charge of lithium-ion batteries used in HEV using robust extended Kalman filtering. Energies 2012, 5, 1098–1115. [Google Scholar] [CrossRef]
- Xia, B.; Wang, H.; Tian, Y.; Wang, M.; Sun, W.; Xu, Z. State of charge estimation of lithium-ion batteries using an adaptive cubature Kalman filter. Energies 2015, 8, 5916–5936. [Google Scholar] [CrossRef]
- Li, W.; Wei, G.; Liu, Y. Weighted average consensus-based unscented Kalman filtering. IEEE Trans. Cybern. 2016, 46, 558–567. [Google Scholar] [CrossRef] [PubMed]
- Simon, D.; Chia, T. Kalman filtering with state constraints: A survey of linear and nonlinear algorithms. IET Control Theory Appl. 2010, 4, 1303–1318. [Google Scholar] [CrossRef]
- Simon, D.; Chia, T. Kalman filtering with state equality constraints. IEEE Trans. Aerosp. Electron. Syst. 2002, 38, 128–136. [Google Scholar] [CrossRef] [Green Version]
- Julier, S.; Alveolar, J. On Kalman filtering with nonlinear equality constraints. IEEE Trans. Signal Process. 2007, 55, 2774–2784. [Google Scholar] [CrossRef]
- Massicotte, D.; Morawski, R.; Barwicz, A. Incorporation of a positivity constraint into a Kalman filter based algorithm for correction of spectrometric data. IEEE Trans. Instrum. Meas. 1995, 44, 2–7. [Google Scholar] [CrossRef]
- Li, W.; Jia, Y.; Du, J. Variance-constrained state estimation for nonlinearity coupled complex networks. IEEE Trans. Cybern. 2018, 48, 818–824. [Google Scholar] [CrossRef] [PubMed]
- Mendes, R.; Kennedy, J.; Neves, J. The fully informed particle swarm: Simpler, maybe better. IEEE Trans. Evol. Comput. 2004, 8, 204–210. [Google Scholar] [CrossRef]
- Zhang, Y.; Chiang, H. A novel consensus-based particle swarm optimization-assisted trust-tech methodology for large-scale global optimization. IEEE Trans. Cybern. 2017, 47, 2717–2729. [Google Scholar] [CrossRef] [PubMed]
- Chou, S.; Huang, S. Stochastic set-based particle swarm optimization based on local exploration for solving the carpool service problem. IEEE Trans. Cybern. 2016, 46, 1771–1783. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Hsin, W. Weighted fuzzy interpolative reasoning based on the slopes of fuzzy sets and particle swarm optimization techniques. IEEE Trans. Cybern. 2015, 45, 1250–1261. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, J.; Song, J.; Kim, Y.; Jung, S. A novel memetic algorithm using modified particle swarm optimization and mesh adaptive direct search for PMSM design. IEEE Trans. Magn. 2016, 52, 1–4. [Google Scholar] [CrossRef]
- Abdelhafiz, A.; Behjat, L.; Ghannouchi, F. Generalized memory polynomial model dimension selection using particle swarm optimization. IEEE Microw. Compon. Lett. 2018, 52, 96–98. [Google Scholar] [CrossRef]
- Ratnaweera, A.; Halgamuge, S.; Watson, H. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput. 2004, 8, 240–255. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Wang, Z.; Fang, J. Parameters identification of unknown delayed genetic regulatory networks by a switching particle swarm optimization algorithm. Expert Syst. Appl. 2011, 38, 2523–2535. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Singh, B. Optimized passive filter design using modified particle swarm optimization algorithm for a 12-pulse converter-fed LCI synchronous motor drive. IEEE Trans. Ind. Appl. 2014, 50, 2681–2689. [Google Scholar] [CrossRef]
- Ting, T.; Rao, M.; Loo, C. A novel approach for unit commitment problem via an effective hybrid particle swarm optimization. IEEE Trans. Power Syst. 2006, 21, 411–418. [Google Scholar] [CrossRef]
- Pehlivanoglu, Y. A new particle swarm optimization method enhanced with a periodic mutation strategy and neural networks. IEEE Trans. Evol. Comput. 2013, 17, 436–452. [Google Scholar] [CrossRef]
- Selvakumar, A.; Thanushkodi, K. A new particle swarm optimization solution to nonconvex economic dispatch problems. IEEE Trans. Power Syst. 2007, 22, 42–51. [Google Scholar] [CrossRef]
- Park, J.B.; Jeong, Y.W.; Shin, J.R.; Lee, K.Y. An improved particle swarm optimization for nonconvex economic dispatch problems. IEEE Trans. Power Syst. 2010, 25, 156–166. [Google Scholar] [CrossRef]
- Anderson, P.M.; Fouad, A.A. Power System Control and Stability, 2nd ed.; IEEE Press: New York, NY, USA, 2003. [Google Scholar]
- Wang, Y.; Sun, Y.; Wei, Z.; Sun, G. Parameters estimation of electromechanical oscillation with incomplete measurement information. IEEE Trans. Power Syst. 2018. [Google Scholar] [CrossRef]
Method | ||
---|---|---|
Matrix Pencil [13] | 0.0093 | 1.0104 |
Prony [17] | 0.0087 | 1.0223 |
EKF [3] | 0.0091 | 1.0109 |
Proposed Method | 0.0099 | 1.0001 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Wang, Y.; Bai, L.; Hu, Y.; Sidorov, D.; Panasetsky, D. Parameter Estimation of Electromechanical Oscillation Based on a Constrained EKF with C&I-PSO. Energies 2018, 11, 2059. https://doi.org/10.3390/en11082059
Sun Y, Wang Y, Bai L, Hu Y, Sidorov D, Panasetsky D. Parameter Estimation of Electromechanical Oscillation Based on a Constrained EKF with C&I-PSO. Energies. 2018; 11(8):2059. https://doi.org/10.3390/en11082059
Chicago/Turabian StyleSun, Yonghui, Yi Wang, Linquan Bai, Yinlong Hu, Denis Sidorov, and Daniil Panasetsky. 2018. "Parameter Estimation of Electromechanical Oscillation Based on a Constrained EKF with C&I-PSO" Energies 11, no. 8: 2059. https://doi.org/10.3390/en11082059
APA StyleSun, Y., Wang, Y., Bai, L., Hu, Y., Sidorov, D., & Panasetsky, D. (2018). Parameter Estimation of Electromechanical Oscillation Based on a Constrained EKF with C&I-PSO. Energies, 11(8), 2059. https://doi.org/10.3390/en11082059