Heat Transfer Coefficient Identification in Mini-Channel Flow Boiling with the Hybrid Picard–Trefftz Method
Abstract
:1. Introduction
2. Experiment
2.1. Experimental Stand
- NI cDAQ-9178: main module,
- NI 9211: temperature measurement (Czaki TP-201 type K thermocouples, Czaki Thermo-Product, Pruszków, Poland),
- NI 9239: voltage measurement (Kobold pressure gauges, 0–2.5 bar measurement range),
- NI 9203: current measurement (Kobold pressure drop gauge, 0–2.5 bar),
- NI 9263: adjustment of voltage to control the pumps,
- NI 9403: digital input/output to control mini-channel lighting and to trigger the thermal imaging camera.
2.2. Experimental Results
3. Mathematical Model and Methods
- A steady-state and laminar (Re < 2000) fluid flow in the mini-channel, with a constant volumetric flow rate;
- For 0 ≤ x ≤ LI, the liquid temperature in contact with the heater is equal to the saturation temperature, i.e., Tf = Tsat where the Tsat was determined by analogy to Reference [21];
- For the considered flow structures, i.e., the bubbly and bubbly-slug flow, the heat flux is transferred from the heater to the liquid phase in the proportion relative to the void fraction
- One non-zero component of the liquid velocity u(y) is parallel to the flow direction and satisfies the following condition
- The liquid temperature at the inlet of the mini-channel, Tin, is known and for x = LI, it satisfies the condition
3.1. Hybrid Picard–Trefftz Method
- In the first step, for k = 1:
- In subsequent steps, for k > 1:
3.2. One-Dimensional Approach
4. Results and Discussion
- The uncertainty of thermal conductivity: ∆λH = 0.1 Wm−1 K−1 (specified by the manufacturer);
- The accuracy of the foil temperature approximation: and = 10−4 m [25], and the uncertainty of temperature measurement is equal to = 0.55 K (specified by the manufacturer);
- The accuracy of the derivative of the approximate foil temperature with respect to y: ;
- The accuracy of the reference fluid temperature determination:
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
| a | approximation coefficient |
| B | boundary operator |
| cp | specific heat, J kg−1 K−1 |
| g | function |
| k | iteration number |
| L | length, m |
| M | number of Trefftz functions |
| MRD | maximum relative differences |
| N | differential operator |
| T | temperature, K |
| p | pressure, Pa |
| qw | heat flux, W m−2 |
| qV | volumetric heat flux, W m−3 |
| Re | Reynolds number |
| u | velocity, m s−1 |
| w | Trefftz function |
| x | coordinate, m |
| y | coordinate, m |
| L2-norm | |
| Greek symbols | |
| α | heat transfer coefficient, W/(m2 K) |
| Δ | Laplacian in Cartesian coordinates |
| Δ−1 | inverse Laplacian operator |
| δ | thickness; depth, m |
| ε | mean relative error |
| φ | void fraction |
| λ | thermal conductivity, W/(m K) |
| μ | dynamic viscosity, Pa s |
| ρ | density, kg m−3 |
| Ω | domain, m2 |
| ∂Ω | domain boundary, m |
| Subscripts | |
| approx | approximation |
| ave | average |
| data | measurement data |
| F | foil |
| f | fluid |
| H | heater |
| I, II, III | domain number |
| loss | heat loss |
| M | mini-channel |
| sat | saturation |
| sol | particular solution |
| 1D | one-dimensional approach |
| 2D | two-dimensional approach |
References
- Ribatski, G.; Wojtan, L.; Thome, J.R. An analysis of experimental data and prediction methods for two-phase frictional pressure drop and flow boiling heat transfer in micro-scale channels. Exp. Therm. Fluid Sci. 2006, 1, 1–19. [Google Scholar] [CrossRef]
- Karayiannis, T.G.; Mahmoud, M.M. Flow boiling in microchannels: fundamentals and applications. Appl. Them. Eng. 2017, 115, 1372–1397. [Google Scholar] [CrossRef]
- Kim, S.M.; Mudawar, I. Review of databases and predictive methods for heat transfer in condensing and boiling mini/micro-channel flows. Int. J. Heat Mass Transf. 2014, 77, 627–652. [Google Scholar] [CrossRef]
- Lee, H.; Park, I.; Mudawar, I.; Hasan, M.M. Micro-channel evaporator for space applications—2. Assessment of predictive tools. Int. J. Heat Mass Transf. 2014, 77, 1231–1249. [Google Scholar] [CrossRef]
- Kadam, S.T.; Kumar, R. Twenty First century cooling solution: Microchannel heat sinks. Int. J. Therm. Sci. 2014, 85, 73–92. [Google Scholar] [CrossRef]
- Asadi, M.; Xie, G.; Sunden, B. A review of heat transfer and pressure drop characteristics of single and two-phase microchannels. Int. J. Heat Mass Transf. 2014, 79, 34–53. [Google Scholar] [CrossRef]
- Guo, Z.; Haynes, B.S.; Fletcher, D.F. Numerical simulation of annular flow boiling in microchannels. J. Comput. Multiph. Flows 2016, 8, 61–82. [Google Scholar] [CrossRef]
- Yao, J.; Patel, M.K.; Yao, Y.; Mason, P.J. Numerical simulation of heat transfer in rectangular microchannel. Adv. Appl. Math. Mech. 2009, 1, 231–241. [Google Scholar]
- Trefftz, T. Ein Gegenstäuk zum Ritz‘schen Verfahren. In Proceedings of the 2nd International Congress of Applied Mechanics, Zurich, Switzerland, 12–17 September 1926. [Google Scholar]
- Jirousek, J. Basis for development of large finite elements locally satisfying all field equations. Comput. Methods Appl. Mech. Eng. 1978, 14, 65–92. [Google Scholar] [CrossRef]
- Herrera, I. Boundary Methods: An Algebraic Theory; Pitman Advanced Publishing Program: Boston, MA, USA, 1984. [Google Scholar]
- Zienkiewicz, O.C.; Kelly, D.W.; Bettes, P. The coupling of the finite element method and boundary solution procedures. Int. J. Numer. Methods Eng. 1977, 11, 355–375. [Google Scholar] [CrossRef]
- Kita, E.; Kamiya, N. Trefftz method: An overview. Adv. Eng. Softw. 1995, 24, 3–12. [Google Scholar] [CrossRef]
- Li, Z.C.; Lu, T.T.; Hu, H.Y.; Cheng, A.H.D. Trefftz and Collocation Methods; WIT Press: Boston, MA, USA, 2008; ISBN 978-1-84564-153-5. [Google Scholar]
- Piasecka, M.; Strąk, K.; Maciejewska, B. Calculations of flow boiling heat transfer in a minichannel based on liquid crystal and infrared thermography data. Heat Transf. Eng. 2016, 38, 332–346. [Google Scholar] [CrossRef]
- Hożejowska, S. Homotopy perturbation method combined with Trefftz method in numerical identification of temperature fields in flow boiling. J. Theor. Appl. Mech. 2015, 53, 969–980. [Google Scholar] [CrossRef]
- Maciejewska, B. The application of Beck’s method combined with the FEM and Trefftz functions to determine the heat transfer coefficient in minichannel. J. Theor. Appl. Mech. 2017, 55, 103–116. [Google Scholar] [CrossRef]
- Cao, L.; Qin, Q.H.; Zhao, N. A new RBF-Trefftz meshless method for partial differential equations. IOP Conf. Ser. Mater. Sci. Eng. 2010, 10. [Google Scholar] [CrossRef]
- Hożejowska, S.; Grabowski, M. A Combined experimental-numerical approach for two-phase flow boiling in a minichannel. EPJ Web Conf. 2016, 114, 1–8. [Google Scholar] [CrossRef]
- Płaczkowski, K.; Poniewski, M.; Grabowski, M.; Alabrudziński, S. Photographic technique application to the determination of void fraction in two-phase flow boiling in mini-channels. Appl. Mech. Mater. 2015, 797, 299–306. [Google Scholar] [CrossRef]
- Hożejowska, S.; Kaniowski, R.; Poniewski, M.E. Experimental investigations and numerical modeling of 2D temperature fields in flow boiling in minichannels. Exp. Therm. Fluid Sci. 2016, 78, 18–29. [Google Scholar] [CrossRef]
- Hożejowska, S.; Piasecka, M.; Poniewski, M.E. Boiling heat transfer in vertical minichannels. Liquid crystal experiments and numerical Investigations. Int. J. Therm. Sci. 2009, 48, 1049–1059. [Google Scholar]
- Grysa, K.; Maciąg, A.; Pawińska, A. Solving nonlinear direct and inverse problems of stationary heat transfer by using Trefftz functions. Int. J. Heat Mass Transf. 2012, 55, 7336–7340. [Google Scholar] [CrossRef]
- Grysa, K.; Maciąg, A.; Adamczyk-Krasa, J. Trefftz functions applied to direct and inverse non-Fourier heat conduction problems. J. Heat Transf. Trans. ASME 2014, 139, 1–9. [Google Scholar] [CrossRef]
- Maciejewska, B.; Piasecka, M. Trefftz function-based thermal solution of inverse problem in unsteady-state flow boiling heat transfer in a minichannel. Int. J. Heat Mass Transf. 2017, 107, 925–933. [Google Scholar] [CrossRef]

: the hub;
: the heater;
: the insulating foil;
: the mini-channel with flowing liquid;
: the glass lid covered the mini-channel; ⑨: an infrared camera; ⑩: a high-speed camera; ⑪: the LED lights. (b) The view of the mini-channel.
: the hub;
: the heater;
: the insulating foil;
: the mini-channel with flowing liquid;
: the glass lid covered the mini-channel; ⑨: an infrared camera; ⑩: a high-speed camera; ⑪: the LED lights. (b) The view of the mini-channel.






| qw (kW m−2) | 99.8 | 103.0 | 125.2 | 153.3 | 153.8 |
| ε1D (%) | 1.83 | 2.36 | 1.40 | 1.26 | 1.24 |
| ε2D (%) | 3.03 | 4.54 | 2.11 | 1.92 | 1.84 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grabowski, M.; Hożejowska, S.; Pawińska, A.; Poniewski, M.E.; Wernik, J. Heat Transfer Coefficient Identification in Mini-Channel Flow Boiling with the Hybrid Picard–Trefftz Method. Energies 2018, 11, 2057. https://doi.org/10.3390/en11082057
Grabowski M, Hożejowska S, Pawińska A, Poniewski ME, Wernik J. Heat Transfer Coefficient Identification in Mini-Channel Flow Boiling with the Hybrid Picard–Trefftz Method. Energies. 2018; 11(8):2057. https://doi.org/10.3390/en11082057
Chicago/Turabian StyleGrabowski, Mirosław, Sylwia Hożejowska, Anna Pawińska, Mieczysław E. Poniewski, and Jacek Wernik. 2018. "Heat Transfer Coefficient Identification in Mini-Channel Flow Boiling with the Hybrid Picard–Trefftz Method" Energies 11, no. 8: 2057. https://doi.org/10.3390/en11082057
APA StyleGrabowski, M., Hożejowska, S., Pawińska, A., Poniewski, M. E., & Wernik, J. (2018). Heat Transfer Coefficient Identification in Mini-Channel Flow Boiling with the Hybrid Picard–Trefftz Method. Energies, 11(8), 2057. https://doi.org/10.3390/en11082057

