An Experimental Study of the Solar Collection Performance of Liquid-Type Solar Collectors under Various Weather Conditions
Abstract
:1. Introduction
2. Methodology
2.1. Measurement Conditions
2.2. Solar Collectors
2.3. Calculation of Amount and Efficiency of Solar Collection
3. Experimental Results for Solar Collection Efficiency
4. Conclusions
Conflicts of Interest
References
- Matsumoto, K.; Shiraki, H. Energy security performance in Japan under different socioeconomic and energy conditions. Renew. Sustain. Energy Rev. 2018, 90, 391–401. [Google Scholar] [CrossRef]
- Chapman, A.J.; Itaoka, K. Energy transition to a future low-carbon energy society in Japan’s liberalizing electricity market: Precedents, policies and factors of successful transition. Renew. Sustain. Energy Rev. 2018, 81, 2019–2027. [Google Scholar] [CrossRef]
- Kabir, E.; Kumar, P.; Kumar, S.; Adelodun, A.A.; Kim, K.H. Solar energy: Potential and future prospects. Renew. Sustain. Energy Rev. 2018, 82, 894–900. [Google Scholar] [CrossRef]
- González, D.F.; Ruiz-Bustinza, I.; Piñuela, J.; Verdeja, L.F.; Fernández-González, D.; Ruiz-Bustinza, Í.; González-Gasca, C.; Noval, J.P.; Mochón-Castaños, J.; Sancho-Gorostiaga, J. Ferromanganese alloy production improvement: Conversion of high manganese residues into new secondary raw materials for the steelmaking and ferroalloy industry. View project Investigation and evaluation of solar energy as energy source in the treatment of metallurgical by-products (P1701250238). View project Concentrated solar energy applications in materials science and metallurgy. Sol. Energy 2018, 170, 520–540. [Google Scholar] [CrossRef]
- Ge, T.S.; Wang, R.Z.; Xu, Z.Y.; Pan, Q.W.; Du, S.; Chen, X.M.; Ma, T.; Wu, X.N.; Sun, X.L.; Chen, J.F. Solar heating and cooling: Present and future development. Renew. Energy 2017, 126, 1126–1140. [Google Scholar] [CrossRef]
- Settino, J.; Sant, T.; Micallef, C.; Farrugia, M.; Spiteri Staines, C.; Licari, J.; Micallef, A. Overview of solar technologies for electricity, heating and cooling production. Renew. Sustain. Energy Rev. 2018, 90, 892–909. [Google Scholar] [CrossRef]
- Shams, S.M.N.; Mc Keever, M.; Mc Cormack, S.; Norton, B. Design and experiment of a new solar air heating collector. Energy 2016, 100, 374–383. [Google Scholar] [CrossRef]
- Zhou, F.; Ji, J.; Cai, J.; Yu, B. Experimental and numerical study of the freezing process of flat-plate solar collector. Appl. Therm. Eng. 2017, 118, 773–784. [Google Scholar] [CrossRef]
- Amer, E.H.; Nayak, J.K.; Sharma, G.K. Transient method for testing flat-plate solar collectors. Energy Convers. Manag. 1998, 39, 549–558. [Google Scholar] [CrossRef]
- Kanayama, K.; Baba, H. Analysis and experiment of the performance of a flat-plate solar collector considering the wavelength dependence. Sol. Wind Technol. 1989, 6, 51–58. [Google Scholar] [CrossRef]
- Michaelides, I.M.; Eleftheriou, P.C. An experimental investigation of the performance boundaries of a solar water heating system. Exp. Therm. Fluid Sci. 2011, 35, 1002–1009. [Google Scholar] [CrossRef]
- Zhang, D.; Li, J.; Gao, Z.; Wang, L.; Nan, J. Thermal performance investigation of modified flat plate solar collector with dual-function. Appl. Therm. Eng. 2016, 108, 1126–1135. [Google Scholar] [CrossRef]
- Huang, B.J.; Du, S.C. A Performance Test Method of Solar Thermosyphon Systems. J. Sol. Energy Eng. Trans. ASME 1991, 113, 172. [Google Scholar] [CrossRef]
- Nie, X.; Zhao, L.; Deng, S.; Lin, X. Experimental study on thermal performance of U-type evacuated glass tubular solar collector with low inlet temperature. Sol. Energy 2017, 150, 192–201. [Google Scholar] [CrossRef]
- Wei, L.; Yuan, D.; Tang, D.; Wu, B. A study on a flat-plate type of solar heat collector with an integrated heat pipe. Sol. Energy 2013, 97, 19–25. [Google Scholar] [CrossRef]
- Zukowski, M.; Woroniak, G. Experimental testing of ceramic solar collectors. Sol. Energy 2017, 146, 532–542. [Google Scholar] [CrossRef]
- Chen, G.; Doroshenko, A.; Koltun, P.; Shestopalov, K. Comparative field experimental investigations of different flat plate solar collectors. Sol. Energy 2015, 115, 577–588. [Google Scholar] [CrossRef]
- Tamvakidis, S.; Firfiris, V.K.; Martzopoulou, A.; Fragos, V.P.; Kotsopoulos, T.A. Performance evaluation of a hybrid solar heating system for farrowing houses. Energy Build. 2015, 97, 162–174. [Google Scholar] [CrossRef]
- Gao, Y.; Fan, R.; Zhang, X.Y.; An, Y.J.; Wang, M.X.; Gao, Y.K.; Yu, Y. Thermal performance and parameter analysis of a U-pipe evacuated solar tube collector. Sol. Energy 2014, 107, 714–727. [Google Scholar] [CrossRef]
- Deng, J.; Yang, X.; Wang, P. Study on the second-order transfer function models for dynamic tests of flat-plate solar collectors Part I: A proposed new model and a fitting methodology. Sol. Energy 2015, 114, 418–426. [Google Scholar] [CrossRef]
- Deng, J.; Yang, X.; Wang, P. ScienceDirect Study on the second-order transfer function models for dynamic tests of flat-plate solar collectors Part II : Experimental validation. Sol. Energy 2017, 141, 334–346. [Google Scholar] [CrossRef]
- Deng, J.; Ma, R.; Yuan, G.; Chang, C.; Yang, X. Dynamic thermal performance prediction model for the flat-plate solar collectors based on the two-node lumped heat capacitance method. Sol. Energy 2016, 135, 769–779. [Google Scholar] [CrossRef]
- Deng, J.; Yang, M.; Ma, R.; Zhu, X.; Fan, J.; Yuan, G.; Wang, Z. Validation of a simple dynamic thermal performance characterization model based on the piston flow concept for flat-plate solar collectors. Sol. Energy 2016, 139, 171–178. [Google Scholar] [CrossRef]
- Sowmy, D.S.; Schiavon Ara, P.J.; Prado, R.T.A. Uncertainties associated with solar collector efficiency test using an artificial solar simulator. Renew. Energy 2017, 108, 644–651. [Google Scholar] [CrossRef]
- Azad, E. Experimental analysis of thermal performance of solar collectors with different numbers of heat pipes versus a flow-through solar collector. Renew. Sustain. Energy Rev. 2018, 82, 4320–4325. [Google Scholar] [CrossRef]
- Fan, M.; Liang, H.; You, S.; Zhang, H.; Yin, B.; Wu, X. Applicability analysis of the solar heating system with parabolic trough solar collectors in different regions of China. Appl. Energy 2018, 221, 100–111. [Google Scholar] [CrossRef]
- Zheng, W.; Zhang, H.; You, S.; Fu, Y.; Zheng, X. Thermal performance analysis of a metal corrugated packing solar air collector in cold regions. Appl. Energy 2017, 203, 938–947. [Google Scholar] [CrossRef]
- International Organization for Standardization. Test Methods for Solar Collectors—Part 1: Thermal Performance of Glazed Liquid Heating Collectors Including Pressure Drop; ISO9806-1; International Organization for Standardization: Geneva, Switzerland, 1994. [Google Scholar]
- American Society of Heating, Refrigerating and Air-Conditioning Engineers. Thermal Environmental Conditions for Human Occupancy; ANSI/ASHRAE 55:2004; American Society of Heating, Refrigerating and Air-Conditioning Engineers: New York, NY, USA, 2004. [Google Scholar]
- American Society of Heating, Refrigerating and Air-Conditioning Engineers. Methods of Testing to Determine the Thermal Performance of Solar Collectors; ANSI/ASHRAE 93-1986 (RA 91); American Society of Heating, Refrigerating and Air-Conditioning Engineers: New York, NY, USA, 1991. [Google Scholar]
- Akasaka, H. Expanded AMeDAS weather data 1981-2000; Architectural Institute of Japan: Tokyo, Japan, 2005. [Google Scholar]
- Udagawa, M.; Kimura, K. The estimation of direct solar radiation from global radiation. Archit. Inst. Japan 1978, 267, 83–90. [Google Scholar] [CrossRef]
Item | Measurement Target | Equipment Used | Range | Accuracy |
---|---|---|---|---|
O1 | Outside temperature (°C) | Composite meteorological equipment | −50–60 °C | ±1.0% |
Outside humidity (%) | Composite meteorological equipment | 0–100%RH | ±1.0% | |
O2 | Wind direction (°) | Anemometer | 0–360° | ±5.0° |
Wind velocity (m/s) | Anemometer | 0–40 m/s | ±0.3 m/s | |
O3 | Direct solar radiation (W/m2) | Direct solar radiation meter | 0–4000 W/m2 | ±0.2% |
O4 | Inclined solar radiation (W/m2) | Solar radiation meter | 0–4000 W/m² | ±0.5% |
O5 | x-axis wind speed (m/s) | Ultrasonic anemometer | 0–40 m/s | ±1.0% |
O6 | y-axis wind speed (m/s) | Ultrasonic anemometer | 0–40 m/s | ±1.0% |
O7 | z-axis wind speed (m/s) | Ultrasonic anemometer | 0–40 m/s | ±1.0% |
T1 | Solar collector A inlet heating medium temperature (°C) | Pt100 | −200–500 °C | ±0.15 °C |
T2 | Solar collector A outlet heating medium temperature (°C) | Pt100 | −200–500 °C | ±0.15 °C |
T3 | Solar collector B inlet heating medium temperature (°C) | Pt100 | −200–500 °C | ±0.15 °C |
T4 | Solar collector B heating medium outlet temperature (°C) | Pt100 | −200–500 °C | ±0.15 °C |
T5 | Cooling solar exchanger inlet temperature (°C) | T-type thermocouple | −40–133 °C | ±1.0 °C |
T6 | Cooling solar exchanger outlet temperature (°C) | T-type thermocouple | −40–133 °C | ±1.0 °C |
T7 | Heating solar exchanger inlet temperature (°C) | T-type thermocouple | −40–133 °C | ±1.0 °C |
T8 | Heating solar exchanger outlet temperature (°C) | T-type thermocouple | −40–133 °C | ±1.0 °C |
F1 | Solar collector A flow rate (L/min) | Impeller-type flow sensor | 1.5–20 L/min | ±5.0% |
F2 | Solar collector B flow rate (L/min) | Impeller-type flow sensor | 1.5–20 L/min | ±5.0% |
F3 | Solar collector A flow rate (L/min) | Electromagnetic flow sensor | 0.25–5 L/min | ±1.0% |
F4 | Solar collector B flow rate (L/min) | Electromagnetic flow sensor | 0.25–5 L/min | ±1.0% |
Measurement | |
---|---|
Measurement 1 | Inlet temperature: 40 °C; flow rate: 0.01 kg/s∙m2 |
Measurement 2 | Inlet temperature: 40 °C; flow rate: 0.02 kg/s∙m2 |
Measurement 3 | Inlet temperature: 60 °C; flow rate: 0.01 kg/s∙m2 |
Measurement 4 | Inlet temperature: 60 °C; flow rate: 0.02 kg/s∙m2 |
Case | Type | Dimensions (mm) Test Period | Weight (kg) | Appearance | Remark |
---|---|---|---|---|---|
Base | Flat plate | 2002 × 1002 × 60 (2.01 m2) 14 September 2012–3 February 2013 | 37 | | - |
1 | Evacuated tube | 1980 × 980 × 140 (1.94 m2) 14 September 2012–30 October 2012 | 53 | | 12 55-mm pieces of thin vacuum tube |
2 | Evacuated tube | 2825 × 866 × 179 (2.45 m2) 1 November 2012–2 December 2012 | 60 | | 6 115-mm pieces of thick vacuum tube |
3 | Evacuated tube | 2130 × 856 × 116 (1.82 m2) 4 December 2012–6 January 2013 | 30 | | Inlet/outlet located on the lower 10 pieces of vacuum tube |
4 | Evacuated tube (compound parabolic concentrator (CPC) reflector) | 1390 × 1640 × 120 (2.28 m2) 8 January 2013–3 February 2013 | 37 | | Condensing plate behind vacuum tube |
5 | Flat-plate | 2070 × 1145 × 90 (2.37 m2) 5 February 2013–14 March 2013 | 46 | | Argon gas inclusion between glazing and collector |
6 | Flat-plate | 2151 × 1215 × 110 (2.61 m2) 16 March 2013–10 May 2013 | 48 | | AR coating ⟶ transmittance 96% |
|
Cases | b0 | b1 | RMSE | |||
---|---|---|---|---|---|---|
Measurement 1 | Measurement 2 | Measurement 3 | Measurement 4 | |||
Base case | 0.59 | −3.43 | 0.023 | - | 0.016 | - |
Case 1 | 0.46 | −0.43 | 0.023 | 0.016 | 0.022 | - |
Case 2 | 0.54 | −0.71 | 0.021 | 0.020 | - | 0.020 |
Case 3 | 0.44 | −1.74 | 0.014 | - | - | 0.014 |
Case 4 | 0.46 | −0.13 | - | 0.024 | 0.012 | 0.021 |
Case 5 | 0.66 | −4.06 | 0.018 | 0.017 | - | 0.009 |
Case 6 | 0.66 | −2.55 | 0.024 | 0.028 | - | 0.019 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, Y. An Experimental Study of the Solar Collection Performance of Liquid-Type Solar Collectors under Various Weather Conditions. Energies 2018, 11, 1626. https://doi.org/10.3390/en11071626
Choi Y. An Experimental Study of the Solar Collection Performance of Liquid-Type Solar Collectors under Various Weather Conditions. Energies. 2018; 11(7):1626. https://doi.org/10.3390/en11071626
Chicago/Turabian StyleChoi, Youngjin. 2018. "An Experimental Study of the Solar Collection Performance of Liquid-Type Solar Collectors under Various Weather Conditions" Energies 11, no. 7: 1626. https://doi.org/10.3390/en11071626
APA StyleChoi, Y. (2018). An Experimental Study of the Solar Collection Performance of Liquid-Type Solar Collectors under Various Weather Conditions. Energies, 11(7), 1626. https://doi.org/10.3390/en11071626