Economic Dispatch of the Low-Carbon Green Certificate with Wind Farms Based on Fuzzy Chance Constraints
Abstract
:1. Introduction
2. Fuzzy Chance-Constrained Programming
2.1. Clear Equivalence Forms of Fuzzy Chance Constraints
2.2. Membership Function of Fuzzy Parameters
3. Green Certificate Trading Cost Modeling
3.1. Indicator and Production of Green Certificate
3.2. Green Certificate Trading Cost Model
4. Carbon Trading Cost Modeling
4.1. Allocation of Carbon Emission Rights and Carbon Emissions
4.2. Carbon Trading Costs Model
5. Green Low-Carbon Economic Dispatch Model of the Power System with Wind Farms
5.1. Objective Function of Economic Costs
5.2. Objective Function of Pollutant Emissions
5.3. Unit Constraints
5.4. System Constraints
5.4.1. System Chance Constraints
5.4.2. Clear Equivalence Forms of System Chance Constraints
6. Model Solving
6.1. Pareto Optimal Solution
6.2. Improved Multi-Objective Standard Particle Swarm Optimization
7. Example Analysis
7.1. Basic Data and Parameters
7.2. Calculation Results and Analysis
8. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Huo, Y.; Jiang, P.; Zhu, Y.; Feng, S.; Wu, X. Optimal Real-Time Scheduling of Wind Integrated Power System Presented with Storage and Wind Forecast Uncertainties. Energies 2015, 8, 1080–1100. [Google Scholar] [CrossRef]
- D’Amico, G.; Petroni, F.; Prattico, F. Economic Performance Indicators of Wind Energy Based on Wind Speed Stochastic Modeling. Appl. Energy 2015, 154, 290–297. [Google Scholar] [CrossRef]
- Azizipanah-Abarghooee, R.; Golestaneh, F.; Gooi, H.B.; Lin, J.; Bavafa, F.; Terzija, V. Corrective Economic Dispatch and Operational Cycles for Probabilistic Unit Commitment with Demand Response and High Wind Power. Appl. Energy 2016, 182, 634–651. [Google Scholar] [CrossRef]
- Misraji, J.; Conejo, A.J.; Morales, J.M. Reserve-Constrained Economic Dispatch: Cost and Payment Allocations. Electr. Power Syst. Res. 2008, 78, 919–925. [Google Scholar] [CrossRef]
- Park, J.B.; Lee, K.S.; Shin, J.R.; Lee, K.S. A Particle Swarm Optimization for Economic Dispatch with Nonsmooth Cost Functions. IEEE Trans. Power Syst. 2005, 20, 34–42. [Google Scholar] [CrossRef]
- Tian, K.; Qiu, L.; Zeng, M. Method of Grid Planning Based on Dynamic Carbon Emission Price. Proc. CSEE 2012, 32, 57–64. [Google Scholar]
- Wang, L.; Singh, C. Balancing Risk and Cost in Fuzzy Economic Dispatch Including Wind Power Penetration Based on Particle Swarm Optimization. Electr. Power Syst. Res. 2008, 78, 1361–1368. [Google Scholar] [CrossRef]
- Cui, M.; Zhang, J.; Wu, H.; Hodge, B.M. Wind-friendly Flexible Ramping Product Design in Multi-Timescale Power System Operations. IEEE Trans. Sustain. Energy 2017, 8, 1064–1075. [Google Scholar] [CrossRef]
- Gómez-Lázaro, E.; Bueso, M.C.; Kessler, M.; Martín-Martínez, S.; Zhang, J.; Hodge, B.M.; Molina-García, A. Probability Density Function Characterization for Aggregated Large-Scale Wind Power Based on Weibull Mixtures. Energies 2016, 9, 91. [Google Scholar] [CrossRef]
- Hetzer, J.; Yu, D.C.; Bhattarai, K. An Economic Dispatch Model Incorporating Wind Power. IEEE Trans. Energy Convers. 2008, 23, 603–611. [Google Scholar] [CrossRef]
- Meibom, P.; Barth, R.; Hasche, B.; Brand, H.; Weber, C.; O’Malley, M. Stochastic Optimization Model to Study The Operational Impacts of High Wind Penetrations in Ireland. IEEE Trans. Power Syst. 2011, 26, 1367–1379. [Google Scholar] [CrossRef]
- Azizipanah-Abarghooee, R.; Niknam, T.; Bina, M.A.; Zare, M. Coordination of Combined Heat and Power-Thermal-Wind-Photovoltaic Units in Economic Load Dispatch Using Chance-Constrained and Jointly Distributed Random Variables Methods. Energy 2014, 79, 50–67. [Google Scholar] [CrossRef]
- Kiviluoma, J.; Holttinen, H.; Weir, D.; Scharff, R.; Söder, L.; Menemenlis, N.; Cutululis, N.A.; Lopez, I.D.; Lannoye, E.; Estanqueiro, A.; et al. Variability in Large-Scale Wind Power Generation. Wind Energy 2016, 19, 1649–1665. [Google Scholar] [CrossRef]
- Holttinen, H.; Kiviluoma, J.; Estanqueiro, A.; Gómez-Lázaro, E.; Rawn, B.; Dobschinski, J.; Meibom, P.; Lannoye, E.; Aigner, T.; Wang, Y.H.; et al. Variability of Load and Net Load in Case of Large Scale Distributed Wind Power. IEEE Trans. Sustain. Energy 2010, 3, 853–861. [Google Scholar]
- Hodge, B.M.; Holttinen, H.; Sillanpää, S.; Gómez-Lázaro, E.; Scharff, R.; Larsen, X.G.; Giebel, G.; Flynn, D.; Lew, D.; Milligan, M. Wind Power Forecasting Error Distributions: An International Comparison. In Proceedings of the International Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Farms, Lisbon, Portugal, 13–15 November 2012; Energynautics GmbH: Darmstadt, Germany, 2012; pp. 1–7. [Google Scholar]
- Gautam, D.; Goel, L.; Ayyanar, R.; Vittal, V.; Harbour, T. Control Strategy to Mitigate the Impact of Reduced Inertia Due to Doubly Fed Induction Generators on Large Power Systems. IEEE Trans. Power Syst. 2011, 26, 214–224. [Google Scholar] [CrossRef]
- Tewari, S.; Geyer, C.J.; Mohan, N. A Statistical Model for Wind Power Forecast Error and Its Application to the Estimation of Penalties in Liberalized Markets. IEEE Trans. Power Syst. 2011, 26, 2031–2039. [Google Scholar] [CrossRef]
- Pinson, P.; Kariniotakis, G. Conditional Prediction Intervals of Wind Power Generation. IEEE Trans. Power Syst. 2010, 25, 1845–1856. [Google Scholar] [CrossRef] [Green Version]
- Soroudi, A.; Rabiee, A.; Keane, A. Information Gap Decision Theory Approach to Deal with Wind Power Uncertainty in Unit Commitment. Electr. Power Syst. Res. 2017, 145, 137–148. [Google Scholar] [CrossRef]
- Sharifzadeh, H.; Amjady, N.; Zareipour, H. Multi-Period Stochastic Security-Constrained OPF Considering the Uncertainty Sources of Wind Power, Load Demand and Equipment Unavailability. Electr. Power Syst. Res. 2017, 146, 33–42. [Google Scholar] [CrossRef]
- Ummels, B.; Gibescu, C.M.; Pelgrum, E.; Kling, W.L.; Brand, A.J. Impacts of Wind Power on Thermal Generation Unit Commitment and Dispatch. IEEE Trans. Energy Convers. 2007, 22, 44–51. [Google Scholar] [CrossRef]
- Jiang, S.; Ji, Z.; Wang, Y. A Novel Gravitational Acceleration Enhanced Particle Swarm Optimization Algorithm for Wind–Thermal Economic Emission Dispatch Problem Considering Wind Power Availability. Int. J. Electr. Power Energy Syst. 2015, 73, 1035–1050. [Google Scholar] [CrossRef]
- Hooshmand, R.A.; Parastegari, M.; Morshed, M.J. Emission, Reserve and Economic Load Dispatch Problem with Non-Smooth and Non-Convex Cost Functions Using The Hybrid Bacterial Foraging-Nelder–Mead Algorithm. Appl. Energy 2012, 89, 443–453. [Google Scholar] [CrossRef]
- Azizipanah-Abarghooee, R.; Niknam, T.; Roosta, A.; Malekpour, A.R.; Zare, M. Probabilistic Multiobjective Wind-Thermal Economic Emission Dispatch Based on Point Estimated Method. Energy 2012, 37, 322–335. [Google Scholar] [CrossRef]
- Morshed, M.J.; Hmida, J.B.; Fekih, A. A Probabilistic Multi-Objective Approach for Power Flow Optimization in Hybrid Wind-PV-PEV Systems. Appl. Energy 2018, 211, 1136–1149. [Google Scholar] [CrossRef]
- Azizipanah-Abarghooee, R.; Dehghanian, P.; Terzija, V. Practical Multi-Area Bi-Objective Environmental Economic Dispatch Equipped with A Hybrid Gradient Search Method and Improved Jaya Algorithm. IET Gener. Transm. Distrib. 2016, 10, 3580–3596. [Google Scholar] [CrossRef]
- Morshed, M.J.; Asgharpour, A. Hybrid Imperialist Competitive-Sequential Quadratic Programming (HIC-SQP) Algorithm for Solving Economic Load Dispatch with Incorporating Stochastic Wind Power: A Comparative Study on Heuristic Optimization Techniques. Energy Convers. Manag. 2014, 84, 30–40. [Google Scholar] [CrossRef]
- Alham, M.H.; Elshahed, M.; Ibrahim, D.K.; Zahab, E.E.D.A.E. A Dynamic Economic Emission Dispatch Considering Wind Power Uncertainty Incorporating Energy Storage System and Demand Side Management. Renew. Energy 2016, 96, 800–811. [Google Scholar] [CrossRef]
- Morthorst, P.E. The Development of a Green Certificate Market. Energy Policy 2000, 28, 1085–1094. [Google Scholar] [CrossRef]
- Amundsen, E.S.; Mortensen, J.B. The Danish Green Certificate System: Some Simple Analytical Results. Energy Econ. 2001, 23, 489–509. [Google Scholar] [CrossRef]
- Department of Climate Change, People’s Republic of China National Development and Reform Commission. Public Announcement of Public Opinion on “Emission Factor of China’s Regional Power Grid Baseline in 2016 (Draft for Advice)”. Available online: http://qhs.ndrc.gov.cn/gzdt/201704/t20170414_844347.html (accessed on 14 April 2017).
- Abido, M.A. Multiobjective Evolutionary Algorithms for Electric Power Dispatch Problem. IEEE Trans. Evolut. Comput. 2006, 10, 315–329. [Google Scholar] [CrossRef]
(a) | ||||||||||
Unit | Rui/MW/h | Rdi/MW/h | δi | Pmax/MW | Pmin/MW | ai/$/(MW2∙h) | bi/$/(MW∙h) | ci/$/h | ei/$/h | fi/rad/MW |
1 | 130 | 130 | 0.97 | 455 | 150 | 0.00048 | 16.19 | 1000 | 450 | 0.041 |
2 | 130 | 130 | 0.98 | 455 | 150 | 0.00031 | 17.26 | 970 | 600 | 0.036 |
3 | 60 | 60 | 0.98 | 130 | 20 | 0.00200 | 16.60 | 700 | 300 | 0.086 |
4 | 90 | 90 | 1.25 | 130 | 20 | 0.00211 | 16.50 | 680 | 340 | 0.082 |
5 | 40 | 40 | 1.13 | 162 | 25 | 0.00398 | 19.70 | 450 | 310 | 0.048 |
6 | 40 | 40 | 1.22 | 80 | 20 | 0.00712 | 22.26 | 370 | 270 | 0.098 |
7 | 40 | 40 | 0.85 | 85 | 25 | 0.00079 | 27.74 | 480 | 300 | 0.092 |
8 | 40 | 40 | 0.74 | 55 | 10 | 0.00413 | 25.92 | 660 | 380 | 0.094 |
9 | 40 | 40 | 0.74 | 55 | 10 | 0.00222 | 27.27 | 665 | 300 | 0.085 |
10 | 40 | 40 | 0.69 | 55 | 10 | 0.00173 | 27.79 | 670 | 290 | 0.078 |
(b) | ||||||||||
Unit | aiSO2/kg/(MW2∙h) | biSO2/kg/(MW∙h) | ciSO2/kg/h | aiNOx/kg/(MW2∙h) | biNOx/kg/(MW∙h) | ciNOx/kg/h | ψi/$/h | σi/$/h | τi/h | |
1 | 0.00019 | 2.06 | 198.33 | 0.022 | −2.86 | 130.00 | 5500 | 5500 | 5 | |
2 | 0.00018 | 2.09 | 195.34 | 0.020 | −2.72 | 132.00 | 5500 | 5500 | 5 | |
3 | 0.00220 | 2.14 | 155.15 | 0.044 | −2.94 | 137.70 | 550 | 550 | 2 | |
4 | 0.00220 | 2.25 | 152.26 | 0.058 | −2.35 | 130.00 | 550 | 550 | 2 | |
5 | 0.00210 | 2.11 | 152.26 | 0.065 | −2.36 | 125.00 | 700 | 700 | 2 | |
6 | 0.00250 | 3.45 | 101.43 | 0.080 | −2.28 | 110.00 | 170 | 170 | 2 | |
7 | 0.00220 | 2.62 | 111.87 | 0.075 | −2.36 | 135.00 | 200 | 200 | 2 | |
8 | 0.00420 | 5.18 | 126.62 | 0.082 | −1.29 | 157.00 | 30 | 30 | 1 | |
9 | 0.00540 | 5.38 | 134.15 | 0.090 | −1.14 | 160.00 | 30 | 30 | 1 | |
10 | 0.00550 | 5.40 | 142.26 | 0.084 | −2.14 | 137.70 | 30 | 30 | 1 |
Hour | Load/MW | Hour | Load/MW | Hour | Load/MW |
---|---|---|---|---|---|
1 | 700 | 9 | 1300 | 17 | 1000 |
2 | 750 | 10 | 1400 | 18 | 1100 |
3 | 850 | 11 | 1450 | 19 | 1200 |
4 | 950 | 12 | 1500 | 20 | 1400 |
5 | 1000 | 13 | 1400 | 21 | 1300 |
6 | 1100 | 14 | 1300 | 22 | 1100 |
7 | 1150 | 15 | 1200 | 23 | 900 |
8 | 1200 | 16 | 1050 | 24 | 800 |
Hour | Wind Farm 1/MW | Wind Farm 2/MW | Hour | Wind Farm 1/MW | Wind Farm 2/MW |
---|---|---|---|---|---|
1 | 190 | 165 | 13 | 390 | 50 |
2 | 300 | 145 | 14 | 340 | 115 |
3 | 330 | 120 | 15 | 320 | 125 |
4 | 360 | 160 | 16 | 120 | 170 |
5 | 350 | 140 | 17 | 10 | 150 |
6 | 370 | 120 | 18 | 40 | 195 |
7 | 440 | 130 | 19 | 50 | 140 |
8 | 460 | 80 | 20 | 20 | 240 |
9 | 350 | 35 | 21 | 5 | 140 |
10 | 250 | 10 | 22 | 250 | 70 |
11 | 420 | 75 | 23 | 350 | 10 |
12 | 380 | 85 | 24 | 240 | 80 |
Fuzzy Parameter | Wind Power Output | Load |
---|---|---|
ω1 | 0.6 | 0.9 |
ω2 | 0.9 | 0.95 |
ω3 | 1.1 | 1.05 |
ω4 | 1.4 | 1.1 |
SPSO | Improved SPSO | |
---|---|---|
economic costs F1/k$ | 626.381 | 626.194 |
pollutant emissions F2/t | 170.105 | 170.037 |
Model | Economic Costs of the System F1/k$ | Pollutant Emissions of the System F2/t |
---|---|---|
1 | 632.528 | 170.367 |
2 | 614.296 | 193.727 |
3 | 648.105 | 163.448 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wang, J.; Tian, B.; Cui, Y.; Zhao, Y. Economic Dispatch of the Low-Carbon Green Certificate with Wind Farms Based on Fuzzy Chance Constraints. Energies 2018, 11, 943. https://doi.org/10.3390/en11040943
Wang X, Wang J, Tian B, Cui Y, Zhao Y. Economic Dispatch of the Low-Carbon Green Certificate with Wind Farms Based on Fuzzy Chance Constraints. Energies. 2018; 11(4):943. https://doi.org/10.3390/en11040943
Chicago/Turabian StyleWang, Xiuyun, Jian Wang, Biyuan Tian, Yang Cui, and Yu Zhao. 2018. "Economic Dispatch of the Low-Carbon Green Certificate with Wind Farms Based on Fuzzy Chance Constraints" Energies 11, no. 4: 943. https://doi.org/10.3390/en11040943
APA StyleWang, X., Wang, J., Tian, B., Cui, Y., & Zhao, Y. (2018). Economic Dispatch of the Low-Carbon Green Certificate with Wind Farms Based on Fuzzy Chance Constraints. Energies, 11(4), 943. https://doi.org/10.3390/en11040943