A Biophysical Perspective of IPCC Integrated Energy Modelling
Abstract
:1. Introduction
1.1. Scenario Modelling
1.2. Biophysical Economics
2. Integrated Assessment Models
3. Detailed Exploration of Assumptions
3.1. Total Factor Productivity and GDP Growth
3.2. Declining Energy Intensity
3.3. Life-Cycle Assessment Methodologies
3.4. Steel and Cement
3.5. Biofuels
3.6. EROI Constraints
3.7. Fossil Fuel Resource Availability
4. Discussion and Recommendations
4.1. A Proposed Net-Energy Feedback Model
4.2. Future Work
5. Conclusions
Acknowledgments
Conflicts of Interest
Abbreviations
AR5 | IPCC Fifth Assessment Report |
COeq | Carbon dioxide equivalent |
CSP | Concentrated solar thermal power |
DNE21+ | Dynamic New Earth 21 model |
EEIOA | Environmentally-extended input-output analysis |
EIOU | Energy industry own use |
EMF27 | Stanford Energy Modeling Forum Study 27 |
EROI | Energy return on investment |
EV | Electric vehicle |
GEA | Global Energy Assessment |
GDP | Gross domestic product |
IAM | Integrated Assessment Model |
IE | Industrial Ecology |
IEA | International Energy Agency |
IMAGE | Integrated Model to Assess the Global Environment |
IPCC | Intergovernmental Panel on Climate Change |
ISO | International Organization for Standardization |
LCA | Life-cycle assessment or analysis |
MACRO | IIASA macroeconomic model |
MESSAGE | Model for energy supply strategy alternatives and their general environmental impact |
MESSAGE-MACRO | Linked energy supply model (MESSAGE) and macroeconomic model (MACRO) |
OECD | Organisation for Economic Co-operation and Development |
OPEC | Organization of the Petroleum Exporting Countries |
POLES | Prospective outlook on long-term energy systems |
RCP | Representative Concentration Pathways |
RE | Renewable energy |
SRES | Special Report on Emissions Scenarios |
WEO | IEA World Energy Outlook |
WITCH | World induced technical change hybrid |
References
- Clarke, L.; Jiang, K.; Akimoto, K.; Babiker, M.; Blanford, G.; Fisher-Vanden, K.; Hourcade, J.; Krey, V.; Kriegler, E.; Loschel, A.; et al. Assessing Transformation Pathways. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Nakicenovic, N.; Alcamo, J.; Davis, G.; De Vries, B.; Fenhann, J.; Gaffin, S.; Gregory, K.; Griibler, A.; Jung, T.Y.; Kram, T. Special Report on Emissions Scenarios; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2000.
- Gupta, S.; Harnisch, J.; Barua, D.C.; Chingambo, L.; Frankel, P.; Jorge, R.; Vázquez, G.; Gomez Echeverri, L.; Haites, E.; Huang, Y. Cross-cutting investment and finance issues. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Krey, V.; Masera, O. Annex II: Metrics and Methodology. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Stern, N. The structure of economic modeling of the potential impacts of climate change: Grafting gross underestimation of risk onto already narrow science models. J. Econ. Lit. 2013, 51, 838–859. [Google Scholar] [CrossRef]
- Moyer, E.J.; Woolley, M.D.; Matteson, N.J.; Glotter, M.J.; Weisbach, D.A. Climate impacts on economic growth as drivers of uncertainty in the social cost of carbon. J. Legal Stud. 2014, 43, 401–425. [Google Scholar] [CrossRef]
- Smith, K. Discounting, Risk and Uncertainty in Economic Appraisals of Climate Change Policy: Comparing Nordhaus, Garnaut and Stern. Available online: http://www.garnautreview.org.au/update-2011/commissioned-work/smith-discounting-risk-uncertainty-comparing-nordhaus-garnaut-stern.pdf (accessed on 20 June 2017).
- Pindyck, R.S. The use and misuse of models for climate policy. Rev. Environ. Econ. Policy 2017, 11, 100–114. [Google Scholar] [CrossRef]
- Chevallerau, F.X. What Is Biophysical Economics? Available online: https://biophyseco.org (accessed on 20 November 2017).
- Hall, C.A.; Klitgaard, K.A. Energy and the Wealth of Nations: Understanding the Biophysical Economy; Springer Science & Business Media: New York, NY, USA, 2011. [Google Scholar]
- Hall, C.A. Energy Return on Investment: A Unifying Principle for Biology, Economics, and Sustainability; Springer: Berlin, Germany, 2016. [Google Scholar]
- Lambert, J.G.; Hall, C.A.; Balogh, S.; Gupta, A.; Arnold, M. Energy, EROI and quality of life. Energy Policy 2014, 64, 153–167. [Google Scholar] [CrossRef]
- King, C.W. Comparing world economic and net energy metrics, Part 3: Macroeconomic Historical and Future Perspectives. Energies 2015, 8, 12997–13020. [Google Scholar] [CrossRef]
- Brandt, A.R.; Dale, M. A general mathematical framework for calculating systems-scale efficiency of energy extraction and conversion: Energy return on investment (EROI) and other energy return ratios. Energies 2011, 4, 1211–1245. [Google Scholar] [CrossRef]
- Murphy, D.J.; Hall, C.A. Energy return on investment, peak oil, and the end of economic growth. Ann. N. Y. Acad. Sci. 2011, 1219, 52–72. [Google Scholar] [CrossRef] [PubMed]
- Murphy, D.J.; Hall, C.A.; Dale, M.; Cleveland, C. Order from chaos: A preliminary protocol for determining the EROI of fuels. Sustainability 2011, 3, 1888–1907. [Google Scholar] [CrossRef]
- King, C.W.; Maxwell, J.P.; Donovan, A. Comparing World Economic and Net Energy Metrics, Part 1: Single Technology and Commodity Perspective. Energies 2015, 8, 12949–12974. [Google Scholar] [CrossRef]
- King, C.W.; Hall, C.A. Relating financial and energy return on investment. Sustainability 2011, 3, 1810–1832. [Google Scholar] [CrossRef]
- Heun, M.K.; de Wit, M. Energy return on (energy) invested (EROI), oil prices, and energy transitions. Energy Policy 2012, 40, 147–158. [Google Scholar] [CrossRef]
- Jacks, D.S. From Boom to Bust: A Typology of Real Commodity Prices in the Long Run; Working Paper No. 18874; The National Bureau of Economic Research (NBER): Cambridge, MA, USA, 2013. [Google Scholar]
- Palmer, G.; Floyd, J. An Exploration of Divergence in EPBT and EROI for Solar Photovoltaics. BioPhys. Econ. Resour. Qual. 2017, 2, 15. [Google Scholar] [CrossRef]
- Von Hippel, F.; Bunn, M.; Diakov, A.; Ding, M.; Goldston, R.; Katsuta, T.; Ramana, M.; Suzuki, T.; Yu, S. Nuclear Energy. In Global Energy Assessment; Cambridge University Press: New York, NY, USA, 2012. [Google Scholar]
- Warner, E.S.; Heath, G.A. Life cycle greenhouse gas emissions of nuclear electricity generation. J. Ind. Ecol. 2012, 16, S73–S92. [Google Scholar] [CrossRef]
- Stocker, T.; Qin, D.; Plattner, G.K.; Alexander, L.; Allen, S.; Bindoff, N.; Bréon, F.M.; Church, J.; Cubasch, U.; Emori, S. Technical summary. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- International Institute for Applied Systems Analysis (IIASA). AR5 Scenario Database; IIASA: Laxenburg, Austria, 2014. [Google Scholar]
- Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y.; Farahani, E. Summary for Policymakers. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Tol, R.S. On the optimal control of carbon dioxide emissions: An application of FUND. Environ. Model. Assess. 1997, 2, 151–163. [Google Scholar] [CrossRef]
- Nordhaus, W.D.; Boyer, J. Warming the World: Economic Models of Global Warming; MIT Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Bruckner, T.; Bashmakov, I.; Mulugetta, Y.; Chum, H.; De la Vega Navarro, A.; Edmonds, J.; Faaij, A.; Fungtammasan, B.; Garg, A.; Hertwich, E. Energy systems. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Iyer, G.; Hultman, N.; Eom, J.; McJeon, H.; Patel, P.; Clarke, L. Diffusion of low-carbon technologies and the feasibility of long-term climate targets. Technol. Forecast. Soc. Chang. 2015, 90, 103–118. [Google Scholar] [CrossRef]
- Mankiw, N.G. Macroeconomics; Worth Publishers: New York, NY, USA, 2009. [Google Scholar]
- Solow, R.M. Technical change and the aggregate production function. Rev. Econ. Stat. 1957, 39, 312–320. [Google Scholar] [CrossRef]
- Ayres, R.U.; Warr, B. The Economic Growth Engine: How Energy and Work Drive Material Prosperity; Edward Elgar Publishing Limited: Cheltenham, UK, 2010. [Google Scholar]
- Humphrey, T.M. Algebraic production functions and their uses before Cobb-Douglas. FRB Richmond Econ. Q. 1997, 83, 51–83. [Google Scholar]
- Grubb, M. Planetary Economics: Energy, Climate Change and the Three Domains of Sustainable Development; Routledge: London, UK, 2014. [Google Scholar]
- Krugman, P.R. The Age of Diminished Expectations: US Economic Policy in the 1990s; MIT Press: Cambridge, MA, USA, 1997. [Google Scholar]
- Romer, P. Endogenous Technological Change; University of Chicago: Chicago, IL, USA, 1990. [Google Scholar]
- Buonanno, P.; Carraro, C.; Galeotti, M. Endogenous induced technical change and the costs of Kyoto. Resour. Energy Econ. 2003, 25, 11–34. [Google Scholar] [CrossRef]
- Gillingham, K.; Newell, R.G.; Pizer, W.A. Modeling endogenous technological change for climate policy analysis. Energy Econ. 2008, 30, 2734–2753. [Google Scholar] [CrossRef]
- Azar, C.; Dowlatabadi, H. A review of technical change in assessment of climate policy. Annu. Rev. Energy Environ. 1999, 24, 513–544. [Google Scholar] [CrossRef]
- Organization for Economic Cooperation and Development (OECD). OECD Compendium of Productivity Indicators 2017; Report; OECD: Paris, France, 2017. [Google Scholar]
- Gordon, R.J. The Rise and Fall of American Growth: The US Standard of Living Since the Civil War; Princeton University Press: Princeton, NJ, USA, 2016. [Google Scholar]
- Cowen, T. The Great Stagnation: How America Ate All the Low-Hanging Fruit of Modern History, Got Sick, and Will (Eventually) Feel Better: A Penguin eSpecial from Dutton; Penguin: New York, NY, USA, 2011. [Google Scholar]
- Summers, L.H. US economic prospects: Secular stagnation, hysteresis, and the zero lower bound. Bus. Econ. 2014, 49, 65–73. [Google Scholar] [CrossRef]
- Edenhofer, O.; Lessmann, K.; Bauer, N. Mitigation strategies and costs of climate protection: The effects of ETC in the hybrid model MIND. Energy J. 2006, 27, 207–222. [Google Scholar] [CrossRef]
- Rao, S.; Keppo, I.; Riahi, K. Importance of technological change and spillovers in long-term climate policy. Energy J. 2006, 27, 123–139. [Google Scholar]
- Sano, F.; Akimoto, K.; Homma, T.; Tomoda, T. Analysis of Technological Portfolios for CO2 Stabilizations and Effects of Technological Changes. Energy J. 2006, 27, 141–161. [Google Scholar] [CrossRef]
- Löschel, A. Technological change in economic models of environmental policy: A survey. Ecol. Econ. 2002, 43, 105–126. [Google Scholar] [CrossRef]
- Ayres, R. Energy, Complexity and Wealth Maximization; Springer: Berlin, Germany, 2016. [Google Scholar]
- Garrett, T.J. Long-run evolution of the global economy: 1. Physical basis. Earth’s Future 2014, 2, 127–151. [Google Scholar] [CrossRef]
- Lindenberger, D.; Kümmel, R. Energy and the state of nations. Energy 2011, 36, 6010–6018. [Google Scholar] [CrossRef]
- Kumhof, M.; Muir, D. Oil and the world economy: Some possible futures. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 2014, 372. [Google Scholar] [CrossRef]
- Kümmel, R.; Lindenberger, D.; Weiser, F. The economic power of energy and the need to integrate it with energy policy. Energy Policy 2015, 86, 833–843. [Google Scholar] [CrossRef]
- Kümmel, R. Why energy’s economic weight is much larger than its cost share. Environ. Innov. Soc. Transit. 2013, 9, 33–37. [Google Scholar] [CrossRef]
- Giraud, G.; Kahraman, Z. How Dependent Is Growth from Primary Energy? The Dependency Ratio of Energy in 33 Countries (1970–2011); Documents de Travail du Centre d’Economie de la Sorbonne; Maison des Sciences Économiques: Paris, France, 2014. [Google Scholar]
- Keen, S.; Ayres, R. A Note on the Role of Energy in Production. Ecol. Econ. 2017. submitted. [Google Scholar]
- Barnett, W. Dimensions and economics: some problems. Q. J. Aust. Econ. 2004, 7, 95–104. [Google Scholar] [CrossRef]
- US Energy Information Adminstration (EIA). Global Energy Intensity Continues to Decline; EIA: Washington, DC, USA, 2016.
- Lightfoot, H.D. Understand the three different scales for measuring primary energy and avoid errors. Energy 2007, 32, 1478–1483. [Google Scholar] [CrossRef]
- US Energy Information Adminstration (EIA). International Energy Outlook; Report; US Energy Information Adminstration: Washington, DC, USA, 2016.
- Loftus, P.J.; Cohen, A.M.; Long, J.; Jenkins, J.D. A critical review of global decarbonization scenarios: What do they tell us about feasibility? Wiley Interdiscip. Rev. Clim. Chang. 2015, 6, 93–112. [Google Scholar] [CrossRef]
- Teske, S. Energy [R]evolution: A Sustainable World Energy Outlook, 3rd ed.; Greenpeace International, European Renewable Energy Council: Amsterdam, The Netherlands; Brussels, Belgium, 2010. [Google Scholar]
- Jacobson, M.Z.; Delucchi, M.A. Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy 2011, 39, 1154–1169. [Google Scholar] [CrossRef]
- Hertwich, E.G.; Peters, G.P. Carbon footprint of nations: A global, trade-linked analysis. Environ. Sci. Technol. 2009, 43, 6414–6420. [Google Scholar] [CrossRef] [PubMed]
- Crawford, R. Life Cycle Assessment in the Built Environment; Spon Press: Oxfordshire, UK, 2011. [Google Scholar]
- Hawkins, T.R.; Singh, B.; Majeau-Bettez, G.; Strømman, A.H. Comparative environmental life cycle assessment of conventional and electric vehicles. J. Ind. Ecol. 2013, 17, 53–64. [Google Scholar] [CrossRef]
- Crawford, R.; Stephan, A. The Significance of Embodied Energy in Certified Passive Houses. World Acad. Sci. Eng. Technol. 2013, 78, 589–595. [Google Scholar]
- Alcott, B. Jevons’ paradox. Ecol. Econ. 2005, 54, 9–21. [Google Scholar] [CrossRef]
- Greening, L.A.; Greene, D.L.; Difiglio, C. Energy efficiency and consumption—The rebound effect—A survey. Energy Policy 2000, 28, 389–401. [Google Scholar] [CrossRef]
- Brockway, P.E.; Saunders, H.; Heun, M.K.; Foxon, T.J.; Steinberger, J.K.; Barrett, J.R.; Sorrell, S. Energy rebound as a potential threat to a low-carbon future: Findings from a new exergy-based national-level rebound approach. Energies 2017, 10, 51. [Google Scholar] [CrossRef]
- Cullen, J.M.; Allwood, J.M. The efficient use of energy: Tracing the global flow of energy from fuel to service. Energy Policy 2010, 38, 75–81. [Google Scholar] [CrossRef]
- Sorrell, S. Reducing energy demand: A review of issues, challenges and approaches. Renew. Sustain. Energy Rev. 2015, 47, 74–82. [Google Scholar] [CrossRef]
- Kolstad, C.; Urama, K.; Broome, J.; Bruvoll, A.; Olvera, M.; Fullerton, D.; Gollier, C.; Hanemann, W.; Hassan, R.; Jotzo, F.; et al. Social, Economic, and Ethical Concepts and Methods. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Blanco, G.; Gerlagh, R.; Suh, S.; Barrett, J.; de Coninck, H.; Morejon, C.; Mathur, R.; Nakicenovic, N.; Ahenkorah, A.; Pan, J.; et al. Drivers, Trends and Mitigation. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Sathaye, J.; Lucon, O.; Rahman, A.; Christensen, J.; Denton, F.; Fujino, J.; Heath, G.; Mirza, M.; Rudnick, H.; Schlaepfer, A. Renewable eNergy in the Context of Sustainable Development; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2012.
- Daly, H.E.; Scott, K.; Strachan, N.; Barrett, J. Indirect CO2 emission implications of energy system pathways: Linking IO and TIMES models for the UK. Environm. Sci. Technol. 2015, 49, 10701–10709. [Google Scholar] [CrossRef] [PubMed]
- Lenzen, M. Errors in conventional and Input Output based Life Cycle inventories. J. Ind. Ecol. 2000, 4, 127–148. [Google Scholar] [CrossRef]
- ISO. ISO 14041—Environmental Management—Life Cycle Assessment—Goal and Scope Definition and Inventory Analysis; Report; International Organization for Standardization: Geneva, Switzerland, 1998. [Google Scholar]
- ISO. ISO 14040—Environmental Management—Life Cycle Assessment—Principles and Framework; Report; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- Jones, C.; Gilbert, P.; Raugei, M.; Mander, S.; Leccisi, E. An approach to prospective consequential life cycle assessment and net energy analysis of distributed electricity generation. Energy Policy 2016, 100, 350–358. [Google Scholar] [CrossRef]
- Sullivan, P.; Krey, V.; Riahi, K. Impacts of considering electric sector variability and reliability in the MESSAGE model. Energy Strategy Rev. 2013, 1, 157–163. [Google Scholar] [CrossRef]
- Sonnemann, G.; Vigon, B.; Rack, M.; Valdivia, S. Global guidance principles for life cycle assessment databases: Development of training material and other implementation activities on the publication. Int. J. Life Cycle Assess. 2013, 18, 1169–1172. [Google Scholar] [CrossRef]
- Pauliuk, S.; Arvesen, A.; Stadler, K.; Hertwich, E.G. Industrial ecology in integrated assessment models. Nat. Clim. Chang. 2017, 7, 13–20. [Google Scholar] [CrossRef]
- IEA. Energy Technology Perspectives; Report; International Energy Agency: Paris, France, 2017.
- Van Ruijven, B.J.; Van Vuuren, D.P.; Boskaljon, W.; Neelis, M.L.; Saygin, D.; Patel, M.K. Long-term model-based projections of energy use and CO2 emissions from the global steel and cement industries. Resour. Conserv. Recycl. 2016, 112, 15–36. [Google Scholar] [CrossRef]
- Hertwich, E.G.; Gibon, T.; Bouman, E.A.; Arvesen, A.; Suh, S.; Heath, G.A.; Bergesen, J.D.; Ramirez, A.; Vega, M.I.; Shi, L. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies. Proc. Natl. Acad. Sci. USA 2015, 112, 6277–6282. [Google Scholar] [CrossRef] [PubMed]
- Hall, C.A.; Lambert, J.G.; Balogh, S.B. EROI of different fuels and the implications for society. Energy Policy 2014, 64, 141–152. [Google Scholar] [CrossRef]
- Smith, P.; Bustamante, M.; Ahammad, H.; Clark, H.; Dong, H.; Elsiddig, E.; Haberl, H.; Harper, R.; House, J.; Jafari, M.; et al. Agriculture, forestry and other land use (AFOLU). In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Hall, C.A.; Dale, B.E.; Pimentel, D. Seeking to understand the reasons for different energy return on investment (EROI) estimates for biofuels. Sustainability 2011, 3, 2413–2432. [Google Scholar] [CrossRef]
- DeCicco, J.M.; Liu, D.Y.; Heo, J.; Krishnan, R.; Kurthen, A.; Wang, L. Carbon balance effects of US biofuel production and use. Clim. Chang. 2016, 138, 667–680. [Google Scholar] [CrossRef]
- Ketzer, F.; Skarka, J.; Rösch, C. Critical Review of Microalgae LCA Studies for Bioenergy Production. BioEnergy Res. 2017, 11, 95–105. [Google Scholar] [CrossRef]
- Carneiro, M.L.N.; Pradelle, F.; Braga, S.L.; Gomes, M.S.P.; Martins, A.R.F.; Turkovics, F.; Pradelle, R.N. Potential of biofuels from algae: Comparison with fossil fuels, ethanol and biodiesel in Europe and Brazil through life cycle assessment (LCA). Renew. Sustain. Energy Rev. 2017, 73, 632–653. [Google Scholar] [CrossRef]
- Agostinho, F.; Ortega, E. Energetic-environmental assessment of a scenario for Brazilian cellulosic ethanol. J. Clean. Prod. 2013, 47, 474–489. [Google Scholar] [CrossRef]
- Elliston, B.; Diesendorf, M.; MacGill, I. Simulations of scenarios with 100 percent renewable electricity in the Australian National Electricity Market. Energy Policy 2012, 45, 606–613. [Google Scholar] [CrossRef]
- ASEA Brown Boveri (ABB). Power Generation—Energy Efficient Design of Auxiliary Systems in Fossil-Fuel Power Plants; Report; ABB: Zurich, Switzerland, 2009. [Google Scholar]
- Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y.; Seyboth, K.; Matschoss, P.; Kadner, S.; Zwickel, T.; Eickemeier, P.; Hansen, G.; Schlömer, S.; et al. Summary for Policymakers. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation; Cambridge University Press: New York, NY, USA, 2011. [Google Scholar]
- Lu, X.; McElroy, M.B.; Kiviluoma, J. Global potential for wind-generated electricity. Proc. Natl. Acad. Sci. USA 2009, 106, 10933–10938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, L.M.; Brunsell, N.A.; Mechem, D.B.; Gans, F.; Monaghan, A.J.; Vautard, R.; Keith, D.W.; Kleidon, A. Two methods for estimating limits to large-scale wind power generation. Proc. Natl. Acad. Sci. USA 2015, 112, 11169–11174. [Google Scholar] [CrossRef] [PubMed]
- BP. Statistical Review of World Energy 2017; Report; BP: London, UK, 2017. [Google Scholar]
- Moriarty, P.; Honnery, D. Can renewable energy power the future? Energy Policy 2016, 93, 3–7. [Google Scholar] [CrossRef]
- Dupont, E.; Koppelaar, R.; Jeanmart, H. Global available wind energy with physical and energy return on investment constraints. Appl. Energy 2017, 209, 322–338. [Google Scholar] [CrossRef]
- Kubiszewski, I.; Cleveland, C.J.; Endres, P.K. Meta-analysis of net energy return for wind power systems. Renew. Energy 2010, 35, 218–225. [Google Scholar] [CrossRef]
- Palmer, G. A Framework for Incorporating EROI into Electrical Storage. BioPhys. Econ. Resour. Qual. 2017, 2. [Google Scholar] [CrossRef]
- Rogner, H.H.; Aguilera, R.F.; Bertani, R.; Bhattacharya, S.C.; Dusseault, M.B.; Gagnon, L.; Haberl, H.; Hoogwijk, M.; Johnson, A.; Rogner, M.L.; et al. Energy Resources and Potentials. In Global Energy Assessment—Toward a Sustainable Future; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012. [Google Scholar]
- McCollum, D.; Bauer, N.; Calvin, K.; Kitous, A.; Riahi, K. Fossil resource and energy security dynamics in conventional and carbon-constrained worlds. Clim. Chang. 2014, 123, 413–426. [Google Scholar] [CrossRef]
- Rogner, H.H. An assessment of world hydrocarbon resources. Annu. Rev. Energy Environ. 1997, 22, 217–262. [Google Scholar] [CrossRef]
- Ritchie, J.; Dowlatabadi, H. Why do climate change scenarios return to coal? Energy 2017, 140, 1276–1291. [Google Scholar] [CrossRef]
- Mohr, S.; Wang, J.; Ellem, G.; Ward, J.; Giurco, D. Projection of world fossil fuels by country. Fuel 2015, 141, 120–135. [Google Scholar] [CrossRef]
- Rutledge, D. Estimating long-term world coal production with logit and probit transforms. Int. J. Coal Geol. 2011, 85, 23–33. [Google Scholar] [CrossRef]
- Capellán-Pérez, I.N.; Arto, I.N.; Polanco-Martínez, J.M.; González-Eguino, M.; Neumann, M.B. Likelihood of climate change pathways under uncertainty on fossil fuel resource availability. Energy Environ. Sci. 2016, 9, 2482–2496. [Google Scholar] [CrossRef]
- Mohr, S.H.; Evans, G.M. Forecasting coal production until 2100. Fuel 2009, 88, 2059–2067. [Google Scholar] [CrossRef]
- Murray, J.W. Limitations of Oil Production to the IPCC Scenarios: The New Realities of US and Global Oil Production. BioPhys. Econ. Resour. Qual. 2016, 1, 13. [Google Scholar] [CrossRef]
- Turner, G.M. A comparison of the Limits to Growth with 30 years of reality. Glob. Environ. Chang. 2008, 18, 397–411. [Google Scholar] [CrossRef]
- Brand-Correa, L.; Brockway, P.; Carter, C.; Foxon, T.; Owen, A.; Taylor, P. Developing an Input-Output based method to estimate a national-level EROI (energy return on investment). Energies 2017, 10, 534. [Google Scholar] [CrossRef]
- King, C.W.; Maxwell, J.P.; Donovan, A. Comparing World Economic and Net Energy Metrics, Part 2: Total Economy Expenditure Perspective. Energies 2015, 8, 12975–12996. [Google Scholar] [CrossRef]
- Palmer, G. An input-output based net-energy assessment of an electricity supply industry. Energy 2017, 141, 1504–1516. [Google Scholar] [CrossRef]
- IEA. Key World Energy Statistics—2017; Report; International Energy Agency: Paris, France, 2017.
- Bashmakov, I. Three laws of energy transitions. Energy Policy 2007, 35, 3583–3594. [Google Scholar] [CrossRef]
- Fizaine, F.; Court, V. Energy expenditure, economic growth, and the minimum EROI of society. Energy Policy 2016, 95, 172–186. [Google Scholar] [CrossRef]
- Heun, M.K.; Santos, J.; Brockway, P.E.; Pruim, R.; Domingos, T.; Sakai, M. From theory to econometrics to energy policy: Cautionary tales for policymaking using aggregate production functions. Energies 2017, 10, 203. [Google Scholar] [CrossRef]
- Kümmel, R.; Ayres, R.U.; Lindenberger, D. Thermodynamic laws, economic methods and the productive power of energy. J. Non-Equilib. Thermodyn. 2010, 35, 145–179. [Google Scholar] [CrossRef] [Green Version]
- Messner, S.; Schrattenholzer, L. MESSAGE–MACRO: Linking an energy supply model with a macroeconomic module and solving it iteratively. Energy 2000, 25, 267–282. [Google Scholar] [CrossRef]
- Lenzen, M.; Geschke, A.; Wiedmann, T.; Lane, J.; Anderson, N.; Baynes, T.; Boland, J.; Daniels, P.; Dey, C.; Fry, J. Compiling and using input–output frameworks through collabourative virtual labouratories. Sci. Total Environ. 2014, 485, 241–251. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palmer, G. A Biophysical Perspective of IPCC Integrated Energy Modelling. Energies 2018, 11, 839. https://doi.org/10.3390/en11040839
Palmer G. A Biophysical Perspective of IPCC Integrated Energy Modelling. Energies. 2018; 11(4):839. https://doi.org/10.3390/en11040839
Chicago/Turabian StylePalmer, Graham. 2018. "A Biophysical Perspective of IPCC Integrated Energy Modelling" Energies 11, no. 4: 839. https://doi.org/10.3390/en11040839
APA StylePalmer, G. (2018). A Biophysical Perspective of IPCC Integrated Energy Modelling. Energies, 11(4), 839. https://doi.org/10.3390/en11040839