A Biophysical Perspective of IPCC Integrated Energy Modelling
Abstract
1. Introduction
1.1. Scenario Modelling
1.2. Biophysical Economics
2. Integrated Assessment Models
3. Detailed Exploration of Assumptions
3.1. Total Factor Productivity and GDP Growth
3.2. Declining Energy Intensity
3.3. Life-Cycle Assessment Methodologies
3.4. Steel and Cement
3.5. Biofuels
3.6. EROI Constraints
3.7. Fossil Fuel Resource Availability
4. Discussion and Recommendations
4.1. A Proposed Net-Energy Feedback Model
4.2. Future Work
5. Conclusions
Acknowledgments
Conflicts of Interest
Abbreviations
AR5 | IPCC Fifth Assessment Report |
COeq | Carbon dioxide equivalent |
CSP | Concentrated solar thermal power |
DNE21+ | Dynamic New Earth 21 model |
EEIOA | Environmentally-extended input-output analysis |
EIOU | Energy industry own use |
EMF27 | Stanford Energy Modeling Forum Study 27 |
EROI | Energy return on investment |
EV | Electric vehicle |
GEA | Global Energy Assessment |
GDP | Gross domestic product |
IAM | Integrated Assessment Model |
IE | Industrial Ecology |
IEA | International Energy Agency |
IMAGE | Integrated Model to Assess the Global Environment |
IPCC | Intergovernmental Panel on Climate Change |
ISO | International Organization for Standardization |
LCA | Life-cycle assessment or analysis |
MACRO | IIASA macroeconomic model |
MESSAGE | Model for energy supply strategy alternatives and their general environmental impact |
MESSAGE-MACRO | Linked energy supply model (MESSAGE) and macroeconomic model (MACRO) |
OECD | Organisation for Economic Co-operation and Development |
OPEC | Organization of the Petroleum Exporting Countries |
POLES | Prospective outlook on long-term energy systems |
RCP | Representative Concentration Pathways |
RE | Renewable energy |
SRES | Special Report on Emissions Scenarios |
WEO | IEA World Energy Outlook |
WITCH | World induced technical change hybrid |
References
- Clarke, L.; Jiang, K.; Akimoto, K.; Babiker, M.; Blanford, G.; Fisher-Vanden, K.; Hourcade, J.; Krey, V.; Kriegler, E.; Loschel, A.; et al. Assessing Transformation Pathways. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Nakicenovic, N.; Alcamo, J.; Davis, G.; De Vries, B.; Fenhann, J.; Gaffin, S.; Gregory, K.; Griibler, A.; Jung, T.Y.; Kram, T. Special Report on Emissions Scenarios; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2000.
- Gupta, S.; Harnisch, J.; Barua, D.C.; Chingambo, L.; Frankel, P.; Jorge, R.; Vázquez, G.; Gomez Echeverri, L.; Haites, E.; Huang, Y. Cross-cutting investment and finance issues. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Krey, V.; Masera, O. Annex II: Metrics and Methodology. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Stern, N. The structure of economic modeling of the potential impacts of climate change: Grafting gross underestimation of risk onto already narrow science models. J. Econ. Lit. 2013, 51, 838–859. [Google Scholar] [CrossRef]
- Moyer, E.J.; Woolley, M.D.; Matteson, N.J.; Glotter, M.J.; Weisbach, D.A. Climate impacts on economic growth as drivers of uncertainty in the social cost of carbon. J. Legal Stud. 2014, 43, 401–425. [Google Scholar] [CrossRef]
- Smith, K. Discounting, Risk and Uncertainty in Economic Appraisals of Climate Change Policy: Comparing Nordhaus, Garnaut and Stern. Available online: http://www.garnautreview.org.au/update-2011/commissioned-work/smith-discounting-risk-uncertainty-comparing-nordhaus-garnaut-stern.pdf (accessed on 20 June 2017).
- Pindyck, R.S. The use and misuse of models for climate policy. Rev. Environ. Econ. Policy 2017, 11, 100–114. [Google Scholar] [CrossRef]
- Chevallerau, F.X. What Is Biophysical Economics? Available online: https://biophyseco.org (accessed on 20 November 2017).
- Hall, C.A.; Klitgaard, K.A. Energy and the Wealth of Nations: Understanding the Biophysical Economy; Springer Science & Business Media: New York, NY, USA, 2011. [Google Scholar]
- Hall, C.A. Energy Return on Investment: A Unifying Principle for Biology, Economics, and Sustainability; Springer: Berlin, Germany, 2016. [Google Scholar]
- Lambert, J.G.; Hall, C.A.; Balogh, S.; Gupta, A.; Arnold, M. Energy, EROI and quality of life. Energy Policy 2014, 64, 153–167. [Google Scholar] [CrossRef]
- King, C.W. Comparing world economic and net energy metrics, Part 3: Macroeconomic Historical and Future Perspectives. Energies 2015, 8, 12997–13020. [Google Scholar] [CrossRef]
- Brandt, A.R.; Dale, M. A general mathematical framework for calculating systems-scale efficiency of energy extraction and conversion: Energy return on investment (EROI) and other energy return ratios. Energies 2011, 4, 1211–1245. [Google Scholar] [CrossRef]
- Murphy, D.J.; Hall, C.A. Energy return on investment, peak oil, and the end of economic growth. Ann. N. Y. Acad. Sci. 2011, 1219, 52–72. [Google Scholar] [CrossRef] [PubMed]
- Murphy, D.J.; Hall, C.A.; Dale, M.; Cleveland, C. Order from chaos: A preliminary protocol for determining the EROI of fuels. Sustainability 2011, 3, 1888–1907. [Google Scholar] [CrossRef]
- King, C.W.; Maxwell, J.P.; Donovan, A. Comparing World Economic and Net Energy Metrics, Part 1: Single Technology and Commodity Perspective. Energies 2015, 8, 12949–12974. [Google Scholar] [CrossRef]
- King, C.W.; Hall, C.A. Relating financial and energy return on investment. Sustainability 2011, 3, 1810–1832. [Google Scholar] [CrossRef]
- Heun, M.K.; de Wit, M. Energy return on (energy) invested (EROI), oil prices, and energy transitions. Energy Policy 2012, 40, 147–158. [Google Scholar] [CrossRef]
- Jacks, D.S. From Boom to Bust: A Typology of Real Commodity Prices in the Long Run; Working Paper No. 18874; The National Bureau of Economic Research (NBER): Cambridge, MA, USA, 2013. [Google Scholar]
- Palmer, G.; Floyd, J. An Exploration of Divergence in EPBT and EROI for Solar Photovoltaics. BioPhys. Econ. Resour. Qual. 2017, 2, 15. [Google Scholar] [CrossRef][Green Version]
- Von Hippel, F.; Bunn, M.; Diakov, A.; Ding, M.; Goldston, R.; Katsuta, T.; Ramana, M.; Suzuki, T.; Yu, S. Nuclear Energy. In Global Energy Assessment; Cambridge University Press: New York, NY, USA, 2012. [Google Scholar]
- Warner, E.S.; Heath, G.A. Life cycle greenhouse gas emissions of nuclear electricity generation. J. Ind. Ecol. 2012, 16, S73–S92. [Google Scholar] [CrossRef]
- Stocker, T.; Qin, D.; Plattner, G.K.; Alexander, L.; Allen, S.; Bindoff, N.; Bréon, F.M.; Church, J.; Cubasch, U.; Emori, S. Technical summary. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- International Institute for Applied Systems Analysis (IIASA). AR5 Scenario Database; IIASA: Laxenburg, Austria, 2014. [Google Scholar]
- Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y.; Farahani, E. Summary for Policymakers. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Tol, R.S. On the optimal control of carbon dioxide emissions: An application of FUND. Environ. Model. Assess. 1997, 2, 151–163. [Google Scholar] [CrossRef]
- Nordhaus, W.D.; Boyer, J. Warming the World: Economic Models of Global Warming; MIT Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Bruckner, T.; Bashmakov, I.; Mulugetta, Y.; Chum, H.; De la Vega Navarro, A.; Edmonds, J.; Faaij, A.; Fungtammasan, B.; Garg, A.; Hertwich, E. Energy systems. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Iyer, G.; Hultman, N.; Eom, J.; McJeon, H.; Patel, P.; Clarke, L. Diffusion of low-carbon technologies and the feasibility of long-term climate targets. Technol. Forecast. Soc. Chang. 2015, 90, 103–118. [Google Scholar] [CrossRef]
- Mankiw, N.G. Macroeconomics; Worth Publishers: New York, NY, USA, 2009. [Google Scholar]
- Solow, R.M. Technical change and the aggregate production function. Rev. Econ. Stat. 1957, 39, 312–320. [Google Scholar] [CrossRef]
- Ayres, R.U.; Warr, B. The Economic Growth Engine: How Energy and Work Drive Material Prosperity; Edward Elgar Publishing Limited: Cheltenham, UK, 2010. [Google Scholar]
- Humphrey, T.M. Algebraic production functions and their uses before Cobb-Douglas. FRB Richmond Econ. Q. 1997, 83, 51–83. [Google Scholar]
- Grubb, M. Planetary Economics: Energy, Climate Change and the Three Domains of Sustainable Development; Routledge: London, UK, 2014. [Google Scholar]
- Krugman, P.R. The Age of Diminished Expectations: US Economic Policy in the 1990s; MIT Press: Cambridge, MA, USA, 1997. [Google Scholar]
- Romer, P. Endogenous Technological Change; University of Chicago: Chicago, IL, USA, 1990. [Google Scholar]
- Buonanno, P.; Carraro, C.; Galeotti, M. Endogenous induced technical change and the costs of Kyoto. Resour. Energy Econ. 2003, 25, 11–34. [Google Scholar] [CrossRef]
- Gillingham, K.; Newell, R.G.; Pizer, W.A. Modeling endogenous technological change for climate policy analysis. Energy Econ. 2008, 30, 2734–2753. [Google Scholar] [CrossRef]
- Azar, C.; Dowlatabadi, H. A review of technical change in assessment of climate policy. Annu. Rev. Energy Environ. 1999, 24, 513–544. [Google Scholar] [CrossRef]
- Organization for Economic Cooperation and Development (OECD). OECD Compendium of Productivity Indicators 2017; Report; OECD: Paris, France, 2017. [Google Scholar]
- Gordon, R.J. The Rise and Fall of American Growth: The US Standard of Living Since the Civil War; Princeton University Press: Princeton, NJ, USA, 2016. [Google Scholar]
- Cowen, T. The Great Stagnation: How America Ate All the Low-Hanging Fruit of Modern History, Got Sick, and Will (Eventually) Feel Better: A Penguin eSpecial from Dutton; Penguin: New York, NY, USA, 2011. [Google Scholar]
- Summers, L.H. US economic prospects: Secular stagnation, hysteresis, and the zero lower bound. Bus. Econ. 2014, 49, 65–73. [Google Scholar] [CrossRef]
- Edenhofer, O.; Lessmann, K.; Bauer, N. Mitigation strategies and costs of climate protection: The effects of ETC in the hybrid model MIND. Energy J. 2006, 27, 207–222. [Google Scholar] [CrossRef]
- Rao, S.; Keppo, I.; Riahi, K. Importance of technological change and spillovers in long-term climate policy. Energy J. 2006, 27, 123–139. [Google Scholar]
- Sano, F.; Akimoto, K.; Homma, T.; Tomoda, T. Analysis of Technological Portfolios for CO2 Stabilizations and Effects of Technological Changes. Energy J. 2006, 27, 141–161. [Google Scholar] [CrossRef]
- Löschel, A. Technological change in economic models of environmental policy: A survey. Ecol. Econ. 2002, 43, 105–126. [Google Scholar] [CrossRef]
- Ayres, R. Energy, Complexity and Wealth Maximization; Springer: Berlin, Germany, 2016. [Google Scholar]
- Garrett, T.J. Long-run evolution of the global economy: 1. Physical basis. Earth’s Future 2014, 2, 127–151. [Google Scholar] [CrossRef]
- Lindenberger, D.; Kümmel, R. Energy and the state of nations. Energy 2011, 36, 6010–6018. [Google Scholar] [CrossRef]
- Kumhof, M.; Muir, D. Oil and the world economy: Some possible futures. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 2014, 372. [Google Scholar] [CrossRef]
- Kümmel, R.; Lindenberger, D.; Weiser, F. The economic power of energy and the need to integrate it with energy policy. Energy Policy 2015, 86, 833–843. [Google Scholar] [CrossRef]
- Kümmel, R. Why energy’s economic weight is much larger than its cost share. Environ. Innov. Soc. Transit. 2013, 9, 33–37. [Google Scholar] [CrossRef]
- Giraud, G.; Kahraman, Z. How Dependent Is Growth from Primary Energy? The Dependency Ratio of Energy in 33 Countries (1970–2011); Documents de Travail du Centre d’Economie de la Sorbonne; Maison des Sciences Économiques: Paris, France, 2014. [Google Scholar]
- Keen, S.; Ayres, R. A Note on the Role of Energy in Production. Ecol. Econ. 2017. submitted. [Google Scholar]
- Barnett, W. Dimensions and economics: some problems. Q. J. Aust. Econ. 2004, 7, 95–104. [Google Scholar] [CrossRef]
- US Energy Information Adminstration (EIA). Global Energy Intensity Continues to Decline; EIA: Washington, DC, USA, 2016.
- Lightfoot, H.D. Understand the three different scales for measuring primary energy and avoid errors. Energy 2007, 32, 1478–1483. [Google Scholar] [CrossRef]
- US Energy Information Adminstration (EIA). International Energy Outlook; Report; US Energy Information Adminstration: Washington, DC, USA, 2016.
- Loftus, P.J.; Cohen, A.M.; Long, J.; Jenkins, J.D. A critical review of global decarbonization scenarios: What do they tell us about feasibility? Wiley Interdiscip. Rev. Clim. Chang. 2015, 6, 93–112. [Google Scholar] [CrossRef]
- Teske, S. Energy [R]evolution: A Sustainable World Energy Outlook, 3rd ed.; Greenpeace International, European Renewable Energy Council: Amsterdam, The Netherlands; Brussels, Belgium, 2010. [Google Scholar]
- Jacobson, M.Z.; Delucchi, M.A. Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy 2011, 39, 1154–1169. [Google Scholar] [CrossRef]
- Hertwich, E.G.; Peters, G.P. Carbon footprint of nations: A global, trade-linked analysis. Environ. Sci. Technol. 2009, 43, 6414–6420. [Google Scholar] [CrossRef] [PubMed]
- Crawford, R. Life Cycle Assessment in the Built Environment; Spon Press: Oxfordshire, UK, 2011. [Google Scholar]
- Hawkins, T.R.; Singh, B.; Majeau-Bettez, G.; Strømman, A.H. Comparative environmental life cycle assessment of conventional and electric vehicles. J. Ind. Ecol. 2013, 17, 53–64. [Google Scholar] [CrossRef]
- Crawford, R.; Stephan, A. The Significance of Embodied Energy in Certified Passive Houses. World Acad. Sci. Eng. Technol. 2013, 78, 589–595. [Google Scholar]
- Alcott, B. Jevons’ paradox. Ecol. Econ. 2005, 54, 9–21. [Google Scholar] [CrossRef]
- Greening, L.A.; Greene, D.L.; Difiglio, C. Energy efficiency and consumption—The rebound effect—A survey. Energy Policy 2000, 28, 389–401. [Google Scholar] [CrossRef]
- Brockway, P.E.; Saunders, H.; Heun, M.K.; Foxon, T.J.; Steinberger, J.K.; Barrett, J.R.; Sorrell, S. Energy rebound as a potential threat to a low-carbon future: Findings from a new exergy-based national-level rebound approach. Energies 2017, 10, 51. [Google Scholar] [CrossRef]
- Cullen, J.M.; Allwood, J.M. The efficient use of energy: Tracing the global flow of energy from fuel to service. Energy Policy 2010, 38, 75–81. [Google Scholar] [CrossRef]
- Sorrell, S. Reducing energy demand: A review of issues, challenges and approaches. Renew. Sustain. Energy Rev. 2015, 47, 74–82. [Google Scholar] [CrossRef]
- Kolstad, C.; Urama, K.; Broome, J.; Bruvoll, A.; Olvera, M.; Fullerton, D.; Gollier, C.; Hanemann, W.; Hassan, R.; Jotzo, F.; et al. Social, Economic, and Ethical Concepts and Methods. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Blanco, G.; Gerlagh, R.; Suh, S.; Barrett, J.; de Coninck, H.; Morejon, C.; Mathur, R.; Nakicenovic, N.; Ahenkorah, A.; Pan, J.; et al. Drivers, Trends and Mitigation. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Sathaye, J.; Lucon, O.; Rahman, A.; Christensen, J.; Denton, F.; Fujino, J.; Heath, G.; Mirza, M.; Rudnick, H.; Schlaepfer, A. Renewable eNergy in the Context of Sustainable Development; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2012.
- Daly, H.E.; Scott, K.; Strachan, N.; Barrett, J. Indirect CO2 emission implications of energy system pathways: Linking IO and TIMES models for the UK. Environm. Sci. Technol. 2015, 49, 10701–10709. [Google Scholar] [CrossRef] [PubMed]
- Lenzen, M. Errors in conventional and Input Output based Life Cycle inventories. J. Ind. Ecol. 2000, 4, 127–148. [Google Scholar] [CrossRef]
- ISO. ISO 14041—Environmental Management—Life Cycle Assessment—Goal and Scope Definition and Inventory Analysis; Report; International Organization for Standardization: Geneva, Switzerland, 1998. [Google Scholar]
- ISO. ISO 14040—Environmental Management—Life Cycle Assessment—Principles and Framework; Report; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- Jones, C.; Gilbert, P.; Raugei, M.; Mander, S.; Leccisi, E. An approach to prospective consequential life cycle assessment and net energy analysis of distributed electricity generation. Energy Policy 2016, 100, 350–358. [Google Scholar] [CrossRef]
- Sullivan, P.; Krey, V.; Riahi, K. Impacts of considering electric sector variability and reliability in the MESSAGE model. Energy Strategy Rev. 2013, 1, 157–163. [Google Scholar] [CrossRef]
- Sonnemann, G.; Vigon, B.; Rack, M.; Valdivia, S. Global guidance principles for life cycle assessment databases: Development of training material and other implementation activities on the publication. Int. J. Life Cycle Assess. 2013, 18, 1169–1172. [Google Scholar] [CrossRef]
- Pauliuk, S.; Arvesen, A.; Stadler, K.; Hertwich, E.G. Industrial ecology in integrated assessment models. Nat. Clim. Chang. 2017, 7, 13–20. [Google Scholar] [CrossRef]
- IEA. Energy Technology Perspectives; Report; International Energy Agency: Paris, France, 2017.
- Van Ruijven, B.J.; Van Vuuren, D.P.; Boskaljon, W.; Neelis, M.L.; Saygin, D.; Patel, M.K. Long-term model-based projections of energy use and CO2 emissions from the global steel and cement industries. Resour. Conserv. Recycl. 2016, 112, 15–36. [Google Scholar] [CrossRef]
- Hertwich, E.G.; Gibon, T.; Bouman, E.A.; Arvesen, A.; Suh, S.; Heath, G.A.; Bergesen, J.D.; Ramirez, A.; Vega, M.I.; Shi, L. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies. Proc. Natl. Acad. Sci. USA 2015, 112, 6277–6282. [Google Scholar] [CrossRef] [PubMed]
- Hall, C.A.; Lambert, J.G.; Balogh, S.B. EROI of different fuels and the implications for society. Energy Policy 2014, 64, 141–152. [Google Scholar] [CrossRef]
- Smith, P.; Bustamante, M.; Ahammad, H.; Clark, H.; Dong, H.; Elsiddig, E.; Haberl, H.; Harper, R.; House, J.; Jafari, M.; et al. Agriculture, forestry and other land use (AFOLU). In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Hall, C.A.; Dale, B.E.; Pimentel, D. Seeking to understand the reasons for different energy return on investment (EROI) estimates for biofuels. Sustainability 2011, 3, 2413–2432. [Google Scholar] [CrossRef]
- DeCicco, J.M.; Liu, D.Y.; Heo, J.; Krishnan, R.; Kurthen, A.; Wang, L. Carbon balance effects of US biofuel production and use. Clim. Chang. 2016, 138, 667–680. [Google Scholar] [CrossRef]
- Ketzer, F.; Skarka, J.; Rösch, C. Critical Review of Microalgae LCA Studies for Bioenergy Production. BioEnergy Res. 2017, 11, 95–105. [Google Scholar] [CrossRef]
- Carneiro, M.L.N.; Pradelle, F.; Braga, S.L.; Gomes, M.S.P.; Martins, A.R.F.; Turkovics, F.; Pradelle, R.N. Potential of biofuels from algae: Comparison with fossil fuels, ethanol and biodiesel in Europe and Brazil through life cycle assessment (LCA). Renew. Sustain. Energy Rev. 2017, 73, 632–653. [Google Scholar] [CrossRef]
- Agostinho, F.; Ortega, E. Energetic-environmental assessment of a scenario for Brazilian cellulosic ethanol. J. Clean. Prod. 2013, 47, 474–489. [Google Scholar] [CrossRef]
- Elliston, B.; Diesendorf, M.; MacGill, I. Simulations of scenarios with 100 percent renewable electricity in the Australian National Electricity Market. Energy Policy 2012, 45, 606–613. [Google Scholar] [CrossRef]
- ASEA Brown Boveri (ABB). Power Generation—Energy Efficient Design of Auxiliary Systems in Fossil-Fuel Power Plants; Report; ABB: Zurich, Switzerland, 2009. [Google Scholar]
- Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y.; Seyboth, K.; Matschoss, P.; Kadner, S.; Zwickel, T.; Eickemeier, P.; Hansen, G.; Schlömer, S.; et al. Summary for Policymakers. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation; Cambridge University Press: New York, NY, USA, 2011. [Google Scholar]
- Lu, X.; McElroy, M.B.; Kiviluoma, J. Global potential for wind-generated electricity. Proc. Natl. Acad. Sci. USA 2009, 106, 10933–10938. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.M.; Brunsell, N.A.; Mechem, D.B.; Gans, F.; Monaghan, A.J.; Vautard, R.; Keith, D.W.; Kleidon, A. Two methods for estimating limits to large-scale wind power generation. Proc. Natl. Acad. Sci. USA 2015, 112, 11169–11174. [Google Scholar] [CrossRef] [PubMed]
- BP. Statistical Review of World Energy 2017; Report; BP: London, UK, 2017. [Google Scholar]
- Moriarty, P.; Honnery, D. Can renewable energy power the future? Energy Policy 2016, 93, 3–7. [Google Scholar] [CrossRef]
- Dupont, E.; Koppelaar, R.; Jeanmart, H. Global available wind energy with physical and energy return on investment constraints. Appl. Energy 2017, 209, 322–338. [Google Scholar] [CrossRef]
- Kubiszewski, I.; Cleveland, C.J.; Endres, P.K. Meta-analysis of net energy return for wind power systems. Renew. Energy 2010, 35, 218–225. [Google Scholar] [CrossRef]
- Palmer, G. A Framework for Incorporating EROI into Electrical Storage. BioPhys. Econ. Resour. Qual. 2017, 2. [Google Scholar] [CrossRef]
- Rogner, H.H.; Aguilera, R.F.; Bertani, R.; Bhattacharya, S.C.; Dusseault, M.B.; Gagnon, L.; Haberl, H.; Hoogwijk, M.; Johnson, A.; Rogner, M.L.; et al. Energy Resources and Potentials. In Global Energy Assessment—Toward a Sustainable Future; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012. [Google Scholar]
- McCollum, D.; Bauer, N.; Calvin, K.; Kitous, A.; Riahi, K. Fossil resource and energy security dynamics in conventional and carbon-constrained worlds. Clim. Chang. 2014, 123, 413–426. [Google Scholar] [CrossRef]
- Rogner, H.H. An assessment of world hydrocarbon resources. Annu. Rev. Energy Environ. 1997, 22, 217–262. [Google Scholar] [CrossRef]
- Ritchie, J.; Dowlatabadi, H. Why do climate change scenarios return to coal? Energy 2017, 140, 1276–1291. [Google Scholar] [CrossRef]
- Mohr, S.; Wang, J.; Ellem, G.; Ward, J.; Giurco, D. Projection of world fossil fuels by country. Fuel 2015, 141, 120–135. [Google Scholar] [CrossRef]
- Rutledge, D. Estimating long-term world coal production with logit and probit transforms. Int. J. Coal Geol. 2011, 85, 23–33. [Google Scholar] [CrossRef]
- Capellán-Pérez, I.N.; Arto, I.N.; Polanco-Martínez, J.M.; González-Eguino, M.; Neumann, M.B. Likelihood of climate change pathways under uncertainty on fossil fuel resource availability. Energy Environ. Sci. 2016, 9, 2482–2496. [Google Scholar] [CrossRef]
- Mohr, S.H.; Evans, G.M. Forecasting coal production until 2100. Fuel 2009, 88, 2059–2067. [Google Scholar] [CrossRef]
- Murray, J.W. Limitations of Oil Production to the IPCC Scenarios: The New Realities of US and Global Oil Production. BioPhys. Econ. Resour. Qual. 2016, 1, 13. [Google Scholar] [CrossRef]
- Turner, G.M. A comparison of the Limits to Growth with 30 years of reality. Glob. Environ. Chang. 2008, 18, 397–411. [Google Scholar] [CrossRef]
- Brand-Correa, L.; Brockway, P.; Carter, C.; Foxon, T.; Owen, A.; Taylor, P. Developing an Input-Output based method to estimate a national-level EROI (energy return on investment). Energies 2017, 10, 534. [Google Scholar] [CrossRef]
- King, C.W.; Maxwell, J.P.; Donovan, A. Comparing World Economic and Net Energy Metrics, Part 2: Total Economy Expenditure Perspective. Energies 2015, 8, 12975–12996. [Google Scholar] [CrossRef]
- Palmer, G. An input-output based net-energy assessment of an electricity supply industry. Energy 2017, 141, 1504–1516. [Google Scholar] [CrossRef]
- IEA. Key World Energy Statistics—2017; Report; International Energy Agency: Paris, France, 2017.
- Bashmakov, I. Three laws of energy transitions. Energy Policy 2007, 35, 3583–3594. [Google Scholar] [CrossRef]
- Fizaine, F.; Court, V. Energy expenditure, economic growth, and the minimum EROI of society. Energy Policy 2016, 95, 172–186. [Google Scholar] [CrossRef]
- Heun, M.K.; Santos, J.; Brockway, P.E.; Pruim, R.; Domingos, T.; Sakai, M. From theory to econometrics to energy policy: Cautionary tales for policymaking using aggregate production functions. Energies 2017, 10, 203. [Google Scholar] [CrossRef]
- Kümmel, R.; Ayres, R.U.; Lindenberger, D. Thermodynamic laws, economic methods and the productive power of energy. J. Non-Equilib. Thermodyn. 2010, 35, 145–179. [Google Scholar] [CrossRef]
- Messner, S.; Schrattenholzer, L. MESSAGE–MACRO: Linking an energy supply model with a macroeconomic module and solving it iteratively. Energy 2000, 25, 267–282. [Google Scholar] [CrossRef]
- Lenzen, M.; Geschke, A.; Wiedmann, T.; Lane, J.; Anderson, N.; Baynes, T.; Boland, J.; Daniels, P.; Dey, C.; Fry, J. Compiling and using input–output frameworks through collabourative virtual labouratories. Sci. Total Environ. 2014, 485, 241–251. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palmer, G. A Biophysical Perspective of IPCC Integrated Energy Modelling. Energies 2018, 11, 839. https://doi.org/10.3390/en11040839
Palmer G. A Biophysical Perspective of IPCC Integrated Energy Modelling. Energies. 2018; 11(4):839. https://doi.org/10.3390/en11040839
Chicago/Turabian StylePalmer, Graham. 2018. "A Biophysical Perspective of IPCC Integrated Energy Modelling" Energies 11, no. 4: 839. https://doi.org/10.3390/en11040839
APA StylePalmer, G. (2018). A Biophysical Perspective of IPCC Integrated Energy Modelling. Energies, 11(4), 839. https://doi.org/10.3390/en11040839