Techno-Economic Analysis of a 600 MW Oxy-Enrich Pulverized Coal-Fired Boiler
Abstract
:1. Introduction
2. Technical Description
2.1. Oxy-Fuel Combustion Technology
2.2. Oxy-Enrich Technology
2.3. The PSA Cycle
3. Calculation Base
4. Results and Discussion
4.1. Combustion Parameters
4.2. Dry and Wet Flue Gas Circulation
5. Economic Evaluation
5.1. Economic Evaluation Model
5.1.1. The Total Annual Cost (CT) of a Power Plant
5.1.2. The Cost of Electricity
5.1.3. The CO2 Avoidance Cost (CAC)
5.2. Results and Discussion
6. Conclusions
- (1)
- The demand of oxy-enrich combustion for pure oxygen was less than that of oxy-fuel combustion, which leads to fewer capital and operating costs for the ASU. The air entering the furnace of oxy-enrich combustion played a role in adjusting furnace temperature; therefore, the recycled flue gas was less than that of oxy-fuel combustion, which leads to lower operating costs of the recycle fan.
- (2)
- When the ratio of air and oxygen was 1 during oxy-enrich combustion, the service power rate, the unit power supply and CO2 emissions costs were higher than those during oxy-fuel combustion. However, when the volume ratio was 2–3, the economy of oxy-enrich combustion with PSA was more advantageous.
- (3)
- The volume of flue gas in the furnace per unit time of oxy-fuel combustion and oxy-enrich combustion were less than that of air combustion and the characteristics of radiation and convective heat transfer could be changed, which could lead to some changes in the boiler structure.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dmitrienko, M.A.; Strizhak, P.A.; Tsygankova, Y.S. Technoeconomic Analysis of Prospects of Use of Organic Coal-Water Fuels of Various Component Compositions. Chem. Petrol. Eng. 2017, 53, 195–202. [Google Scholar] [CrossRef]
- Dmitrienko, M.A.; Strizhak Pavel, A. Coal-water slurries containing petrochemicals to solve problems of air pollution by coal thermal power stations and boiler plants: An introductory review. Sci. Total Environ. 2018, 613–614, 1117–1129. [Google Scholar] [CrossRef] [PubMed]
- Dmitrienko, M.A.; Strizhak Pavel, A. Environmentally and economically efficient utilization of coal processing waste. Sci. Total Environ. 2017, 598, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yong, S.Z.; Ghoniem, A.F. Oxy-fuel combustion of pulverized coal: Characterization, fundamentals, stabilization and CFD modeling. Prog. Energy Combust. Sci. 2012, 38, 156–214. [Google Scholar] [CrossRef]
- Xu, G.; Liang, F.F.; Yang, Y.P.; Hu, Y.; Zhang, K.; Liu, W.Y. An improved CO2 separation and purification system based on cryogenic separation and distillation theory. Energies 2014, 7, 3484–3502. [Google Scholar] [CrossRef]
- Gou, X.; Wu, C.F.; Zhang, K.; Xu, G.Y.; Si, M.; Wang, Y.T.; Wang, E.Y.; Liu, L.S.; Wu, J.X. Low temperature performance of selective catalytic reduction of NO with NH3 under a concentrated CO2 atmosphere. Energies 2015, 8, 12331–12341. [Google Scholar] [CrossRef]
- Lei, K.; Ye, B.Q.; Cao, J.; Zhang, R.; Liu, D. Combustion characteristics of single particles from bituminous coal and pine sawdust in O2/N2, O2/CO2 and O2/H2O atmospheres. Energies 2017, 10, 1695. [Google Scholar] [CrossRef]
- The future of coal. Massachusetts Institute of Technologyl. Available online: http://web.mit.edu/coal/ (accessed on 14 March 2007).
- Zanganeh, K.E.; Shafeen, A. A novel process integration, optimization and design approach for large-scale implementation of oxy-fired coal power plants with CO2 capture. Int. J. Greenh. Gas Control 2007, 1, 47–54. [Google Scholar] [CrossRef]
- Doukelis, A.; Vorrias, I.; Grammelis, P.; Kakaras, E.; Whitehouse, M.; Riley, G. Partial O2-fired coal power plant with post-combustion CO2 capture: A retrofitting option for CO2 capture ready plants. Fuel 2009, 88, 2428–2436. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, M.; Stephenson, P.; Rezvani, S.; McIlveen-Wright, D.; Minchener, A.; Hewitt, N.; Dave, A.; Fleche, A. Hybrid coal-fired power plants with CO2 capture: A technical and economic evaluation based on computational simulations. Fuel 2011, 101, 244–253. [Google Scholar] [CrossRef]
- Meratla, Z. Combining cryogenic flue gas emission remediation with a CO2/O2 combustion cycle. Energy Convers. Manag. 1997, 38, S147–S152. [Google Scholar] [CrossRef]
- Wang, C.B.; Lei, M.; Liu, H.M.; Lu, H.Y. Combustion characteristics and nitric oxide release of the pulverized coals under oxy-enrich conditions. Ind. Eng. Chem. Res. 2012, 51, 14355–14360. [Google Scholar] [CrossRef]
- Yong, Z.; Mata, V.; Rodrigues, A.E. Adsorption of carbon dioxide at high temperature-a review. Sep. Purif. Technol. 2002, 26, 195–205. [Google Scholar] [CrossRef]
- Alpay, E.; Chatsiriwech, D.; Kershenbaum, L.S.; Hull, C.P.; Kirkby, N.F. Combined reaction and separation in pressure swing processes. Chem. Eng. Sci. 1994, 49, 5845–5864. [Google Scholar] [CrossRef]
- Chou, C.T.; Wu, C.L.; Chiang, A.S.T. A complementary pressure swing adsorption process configuration for air separation. Sep. Technol. 1994, 4, 93–103. [Google Scholar] [CrossRef]
- Feron, P.H.M.; Hendriks, C.A. CO2 Capture Process Principles and Costs. Oli Gas Sci. Technol. 2005, 60, 451–459. [Google Scholar] [CrossRef]
- Sekkappan, G.; Melling, P.J.; Anheden, M.; Lindgren, G.; Kluger, F.; Molinero, I.S.; Maggauer, C.; Doukelis, A. Oxy-fuel technology for CO2 capture from advanced supercritical pulverized fuel plants. In Proceedings of the 8th International Conference on Greenhouse Gas Control Technologies, Trondheim, Norway, 19–22 June 2006. [Google Scholar]
- Gomes, V.G.; Yee, K.W.K. Pressure swing adsorption for carbon dioxide sequestration from exhaust gases. Sep. Purif. Technol. 2002, 28, 161–171. [Google Scholar] [CrossRef]
- Chue, K.T.; Kim, J.N.; Yoo, Y.J.; Cho, S.H.; Yang, R.T. Comparison of activated carbon and zeolite 13X for CO2 recovery from flue gas by pressure swing adsorption. Ind. Eng. Chem. Res. 1995, 34, 591–598. [Google Scholar] [CrossRef]
- Plaza, M.G.; Pevida, C.; Arias, B.; Fermoso, J.; Casal, M.D.; Martín, C.F.; Rubiera, F.; Pis, J.J. Development of low-cost biomass-based adsorbents for post-combustion CO2 capture. Fuel 2009, 88, 2442–2447. [Google Scholar] [CrossRef]
- Reynolds, S.P.; Mehrotra, A.; Ebner, D.A.; Ritter, J.A. Heavy reflux PSA cycles for CO2 recovery from flue gas: Part I. Performance evaluation. Adsorption 2008, 14, 399–413. [Google Scholar] [CrossRef]
- Valero, A.; Lozano, M.A.; Serra, L.; Tsatsaronis, G.; Pisa, J.; Frangopoulos, C.; Spakovsky, M.R. CGAM problem: Definition and conventional solution. Energy 1994, 19, 279–286. [Google Scholar] [CrossRef]
- Xiong, J.; Zhao, H.B.; Zheng, C.G.; Liu, Z.H.; Zeng, L.D.; Liu, H.; Qiu, J.R. An economic feasibility study of O2/CO2 recycle combustion technology based on existing coal-fired power plants in China. Fuel 2009, 88, 1135–1142. [Google Scholar] [CrossRef]
- Silveira, J.L.; Tuna, C.E. Thermoeconomic analysis method for optimization of combined heat and power systems. Part I. Prog. Energy Combust. Sci. 2003, 29, 479–485. [Google Scholar] [CrossRef]
- Singh, D.; Croiset, E.; Douglas, P.L.; Douglas, M.A. Techno-economic study of CO2 capture from an existing coal-fired power plant: MEA scrubbing vs O2/CO2 recycle combustion. Energy Convers. Manag. 2003, 44, 3073–3091. [Google Scholar] [CrossRef]
- Buhre, B.J.P.; Elliott, L.K.; Sheng, C.D.; Gupta, R.P.; Wall, T.F. Oxy-fuel combustion technology for coal-fired power generation. Prog. Energy Combust. Sci. 2005, 31, 283–307. [Google Scholar] [CrossRef]
- Andersson, K.; Johnsson, F. Process evaluation of an 865 MWe lignite fired O2/CO2 power plant. Energy Convers. Manag. 2006, 47, 3487–3498. [Google Scholar] [CrossRef]
- Simbeck, D.R. CO2 mitigation economics for existing coal-fired power plants. In Proceedings of the 1st National Conference on Carbon Sequestration, Washington, DC, USA, 14–17 May 2001. [Google Scholar]
Aar/% | Mar/% | Car/% | Har/% | Oar/% | Nar/% | Sar/% | LHV/kJ·kg−1 |
---|---|---|---|---|---|---|---|
15.18 | 7.40 | 65.2 | 4.21 | 6.43 | 0.88 | 0.70 | 25,080 |
Parameter | Unit | Data |
---|---|---|
Superheated steam flow | t/h | 2060 |
Superheated steam pressure | Mpa (a) | 17.6 |
Superheated steam temperature | °C | 541 |
Reheat steam flow | t/h | 1678 |
Reheat steam inlet and outlet pressures | Mpa (a) | 3.97/3.79 |
Reheat steam inlet and outlet temperatures | °C | 324.7/541 |
Economizer inlet temperature of water | °C | 282.1 |
Economizer inlet pressure of water | Mpa (a) | 19.49 |
Case | Case 0 | Case 1 | Case 2 | Case 3 | ||||
---|---|---|---|---|---|---|---|---|
WFGR | DFGR | WFGR | DFGR | WFGR | DFGR | WFGR | DFGR | |
Oxygen concentration in mixture/(%) | 29.00 | 30.00 | 25.5 | 25.4 | 24.4 | 24.2 | 23.7 | 23.5 |
VREY/VLY/(%) | 65.41 | 64.32 | 51.74 | 51.92 | 43.65 | 43.97 | 37.64 | 38.12 |
Component of flue gas/(%) | - | - | - | - | - | - | - | - |
N2 | 3.86 | 5.03 | 39.96 | 44.71 | 50.51 | 54.60 | 56.11 | 59.58 |
CO2 | 60.60 | 78.91 | 37.74 | 42.24 | 30.93 | 33.44 | 27.31 | 28.99 |
H2O | 31.97 | 11.41 | 18.65 | 8.97 | 15.57 | 8.72 | 13.94 | 8.62 |
O2 | 3.33 | 4.33 | 3.50 | 3.92 | 2.87 | 3.10 | 2.53 | 2.69 |
SO2 | 0.24 | 0.32 | 0.15 | 0.17 | 0.12 | 0.13 | 0.11 | 0.12 |
Case | Air Combustion | Case 0 | Case 1 | Case 2 | Case 3 |
---|---|---|---|---|---|
Total investment cost (M$) | 449.14 | 550.65 | 568.03 | 564.56 | 561.05 |
Amortization cost (M$/y) | 57.69 | 70.73 | 72.96 | 72.52 | 72.07 |
Cost of O&M (M$/y) | 17.97 | 22.03 | 22.72 | 22.58 | 22.44 |
Annual cost of fuel (M$/y) | 147.05 | 142.21 | 142.82 | 143.52 | 144.23 |
Revenue from CO2 sale (M$/y) | 0 | 105.44 | 107.63 | 106.41 | 106.93 |
Net electricity output (MW) | 564.85 | 393.21 | 394.68 | 407.54 | 417.70 |
Annual CO2 missions (Mt/y) | 3.8764 | 0.3372 | 0.3444 | 0.3405 | 0.3422 |
Not considering the revenue from CO2 sale, the cost of electricity ($/MWh) | 54.77 | 83.00 | 83.92 | 81.33 | 79.39 |
Considering the revenue from CO2 sale, the cost of electricity ($/MWh) | 54.77 | 45.75 | 46.05 | 45.06 | 43.83 |
CO2 avoidance cost ($/t) | - | 33.85 | 35.06 | 31.73 | 29.33 |
Coal-consuming rate (g/(KWh)) | 309.01 | 428.79 | 429.68 | 417.90 | 409.71 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, M.; Sun, C.; Wang, C. Techno-Economic Analysis of a 600 MW Oxy-Enrich Pulverized Coal-Fired Boiler. Energies 2018, 11, 768. https://doi.org/10.3390/en11040768
Lei M, Sun C, Wang C. Techno-Economic Analysis of a 600 MW Oxy-Enrich Pulverized Coal-Fired Boiler. Energies. 2018; 11(4):768. https://doi.org/10.3390/en11040768
Chicago/Turabian StyleLei, Ming, Cen Sun, and Chunbo Wang. 2018. "Techno-Economic Analysis of a 600 MW Oxy-Enrich Pulverized Coal-Fired Boiler" Energies 11, no. 4: 768. https://doi.org/10.3390/en11040768
APA StyleLei, M., Sun, C., & Wang, C. (2018). Techno-Economic Analysis of a 600 MW Oxy-Enrich Pulverized Coal-Fired Boiler. Energies, 11(4), 768. https://doi.org/10.3390/en11040768