Thermogravimetric, Devolatilization Rate, and Differential Scanning Calorimetry Analyses of Biomass of Tropical Plantation Species of Costa Rica Torrefied at Different Temperatures and Times
Abstract
1. Introduction
2. Material and Methods
2.1. Material Characteristics
2.2. Torrefaction Process
2.3. Thermogravimetric Analysis (TGA)
2.4. Devolatilization Variation
2.5. Statistical Analysis
3. Results
3.1. TGA-DTG Analysis
3.2. Devolatilization
3.3. Differential Scanning Calorimetry Analyses
3.4. Multivariate Analysis
4. Discussion
4.1. TGA-DTG Analysis
4.2. Devolatilization
4.3. Differential Scanning Calorimetry Analyses
4.4. Multivariate Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yue, Y.; Singh, H.; Singh, B.; Mani, S. Torrefaction of sorghum biomass to improve fuel properties. Bioresour. Technol. 2017, 232, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Puig-Arnavat, M.; Shang, L.; Sárossy, Z.; Ahrenfeldt, J.; Henriksen, U.B. From a single pellet press to a bench scale pellet mill—Pelletizing six different biomass feedstocks. Fuel Process. Technol. 2016, 142, 27–33. [Google Scholar] [CrossRef]
- Eseltine, D.; Thanapal, S.S.; Annamalai, K.; Ranjan, D. Torrefaction of woody biomass (Juniper and Mesquite) using inert and non-inert gases. Fuel 2013, 113, 379–388. [Google Scholar] [CrossRef]
- Ren, S.; Lei, H.; Wang, L.; Bu, Q.; Chen, S.; Wu, J. Thermal behaviour and kinetic study for woody biomass torrefaction and torrefied biomass pyrolysis by TGA. Biosyst. Eng. 2013, 116, 420–426. [Google Scholar] [CrossRef]
- Chen, W.H.; Peng, J.; Bi, X.T. A state-of-the-art review of biomass torrefaction, densification and applications. Renew. Sustain. Energy Rev. 2015, 44, 847–866. [Google Scholar] [CrossRef]
- Medic, D.; Darr, M.; Shah, A.; Potter, B.; Zimmerman, J. Effects of torrefaction process parameters on biomass feedstock upgrading. Fuel 2012, 91, 47–154. [Google Scholar] [CrossRef]
- Wang, G.; Luo, Y.; Deng, J.; Kuang, J.; Zhang, Y. Pretreatment of biomass by torrefaction. Chin. Sci. Bull. 2011, 56, 1442–1448. [Google Scholar] [CrossRef]
- Peng, J.H.; Bi, X.T.; Sokhansanj, S.; Lim, C.J. Torrefaction and densification of different species of softwood residues. Fuel 2013, 111, 411–421. [Google Scholar] [CrossRef]
- Van der Stelt, M.J.C.; Gerhauser, H.; Kiel, J.H.A.; Ptasinski, K.J. Biomass upgrading by torrefaction for the production of biofuels: A review. Biomass Bioenergy 2011, 35, 3748–3762. [Google Scholar] [CrossRef]
- Chew, J.J.; Doshi, V. Recent advances in biomass pretreatment–Torrefaction fundamentals and technology. Renew. Sustain. Energy Rev. 2011, 15, 4212–4222. [Google Scholar] [CrossRef]
- Ciolkosz, D.; Wallace, R. A review of torrefaction for bioenergy feedstock production. Biofuel Bioprod. Biorefin. 2011, 5, 317–329. [Google Scholar] [CrossRef]
- Gaitán-Álvarez, J.; Moya, R.; Rodríguez-Zúñiga, A.; Puente-Urbina, A. Characterization of torrefied biomass of five reforestation species (Cupressus lusitanica, Dipteryx panamensis, Gmelina arborea, Tectona grandis and Vochysia ferruginea) in Costa Rica. Bioresources 2017, 12, 7566–7589. [Google Scholar] [CrossRef]
- Da Silva, C.M.S.; Carneiro, A.D.; Pereira, B.L.C.; Vital, B.R.; Alves, I.C.N.; de Magalhaes, M.A. Stability to thermal degradation and chemical composition of woody biomass subjected to the torrefaction process. Eur. J. Wood Prod. 2016, 74, 845–850. [Google Scholar] [CrossRef]
- Korošec, R.C.; Lavrič, B.; Rep, G.; Pohleven, F.; Bukovec, P. Thermogravimetry as a possible tool for determining modification degree of thermally treated Norway spruce wood. J. Therm. Anal. Calorim. 2009, 98, 189. [Google Scholar] [CrossRef]
- Aydemir, D.; Gunduz, G.; Altuntas, E.; Ertas, M.; Sahin, H.T.; Alma, M.H. Investigating changes in the chemical constituents and dimensional stability of heat-treated hornbeam and uludag fir wood. BioResources 2011, 6, 1308–1321. [Google Scholar]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the chemical composition of biomass. Fuel 2010, 89, 913–933. [Google Scholar] [CrossRef]
- Poudel, J.; Ohm, T.I.; Oh, S.C. A study on torrefaction of food waste. Fuel 2015, 140, 275–281. [Google Scholar] [CrossRef]
- Moya, R.; Rodríguez-Zúñiga, A.; Puente-Urbina, A. Thermogravimetric and devolatilisation analysis for five plantation species: Effect of extractives, ash compositions, chemical compositions and energy parameters. Thermochim. Acta 2017, 647, 36–46. [Google Scholar] [CrossRef]
- Gaitán-Álvarez, J.; Moya, R. Characteristics and properties of pellet fabricated with torrefaccioned biomass of Gmelina arborea and Dipterix panamensis at different time. Revista Chapingo 2016, 23, 325–337. [Google Scholar]
- Tenorio, C.; Moya, R. Thermogravimetric characteristics, its relation with extractives and chemical properties and combustion characteristics of ten fast-growth species in Costa Rica. Thermochim. Acta 2013, 563, 12–21. [Google Scholar] [CrossRef]
- Gaitán-Álvarez, J.; Moya, R.; Puente-Urbina, A.; Rodríguez-Zúñiga, A. Physical and compression properties of pellets manufactured with the biomass of five woody tropical species of Costa Rica torrefied at different temperatures and times. Energies 2017, 10, 1205. [Google Scholar] [CrossRef]
- Aragón-Garita, S.; Moya, R.; Bond, B.; Valaert, J.; Tomazello Filho, M. Production and quality analysis of pellets manufactured from five potential energy crops in the Northern Region of Costa Rica. Biomass Bioenergy 2016, 87, 84–95. [Google Scholar] [CrossRef]
- Tenorio, C.; Moya, R.; Tomazello Filho, M.; Valaert, J. Application of the X-ray densitometry in the evaluation of the quality and mechanical properties of biomass pellets. Fuel Process. Technol. 2015, 132, 62–73. [Google Scholar] [CrossRef]
- Tenorio, C.; Moya, R.; Tomazello-Filho, M.; Valaert, J. Quality of pellets made from agricultural and forestry crops in Costa Rican tropical climates. BioResources 2014, 9, 482–498. [Google Scholar] [CrossRef]
- Moya, R.; Rodriguez-Zuñiga, A.; Puente-Urbina, A.; Gaitan-Alvarez, J. Study of light, middle and severe torrefaction and effects of extractives and chemical compositions on torrefaction process by thermogravimetric analyses in five fast-growing plantation of Costa Rica. Energy 2018, 149, 152–160. [Google Scholar] [CrossRef]
- Sbirrazzuoli, N.; Vyazovkin, S.; Mititelu, A.; Sladic, C.; Vincent, L. A Study of Epoxy-Amine Cure Kinetics by Combining Isoconversional Analysis with Temperature Modulated DSC and Dynamic Rheometry. Macromol. Chem. Phys. 2003, 204, 1815–1821. [Google Scholar] [CrossRef]
- Grønli, M.G.; Várhegyi, G.; Di Blasi, C. Thermogravimetric analysis and devolatilization kinetics of wood. Ind. Eng. Chem. Res. 2002, 41, 4201–4208. [Google Scholar] [CrossRef]
- Prins, M.J.; Ptasinski, K.J.; Janssen, F.J. Torrefaction of wood: Part 2. Analysis of products. J. Anal. Appl. Pyrolysis 2006, 77, 35–40. [Google Scholar] [CrossRef]
- Arias, B.; Pevida, C.; Fermoso, J.; Plaza, M.G.; Rubiera, F.; Pis, J.J. Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process. Technol. 2008, 89, 169–175. [Google Scholar] [CrossRef]
- Ramiah, M.V. Thermogravimetric and differential thermal analysis of cellulose, hemicellulose, and lignin. J. Appl. Polym. Sci. 1970, 14, 1323–1337. [Google Scholar] [CrossRef]
- Bach, Q.V.; Skreiberg, Ø. Upgrading biomass fuels via wet torrefaction: A review and comparison with dry torrefaction. Renew. Sustain. Energy Rev. 2016, 54, 665–677. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Avni, E.; Coughlin, R.W. Kinetic analysis of lignin pyrolysis using non-isothermal TGA data. Thermochim. Acta 1985, 90, 157–167. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kang, I.A.; Doh, G.H.; Kim, W.J.; Kim, J.S.; Yoon, H.G.; Wu, Q. Thermal, mechanical and morphological properties of polypropylene/clay/wood flour nanocomposites. Express Polym. Lett. 2008, 2, 78–87. [Google Scholar] [CrossRef]
- Islam, M.S.; Hamdan, S.; Rahman, M.R.; Jusoh, I.; Ahmen, A.S. Dynamic Young’s modulus, morphological, and thermal stability of 5 tropical light hardwoods modified by benzene diazonium salt treatment. BioResources 2011, 6, 737–750. [Google Scholar]
- Arteaga-Pérez, L.E.; Grandón, H.; Flores, M.; Segura, C.; Kelley, S.S. Steam torrefaction of Eucalyptus globulus for producing black pellets: A pilot-scale experience. Bioresour. Technol. 2017, 238, 194–204. [Google Scholar] [CrossRef] [PubMed]
- McKendry, P. Energy production from biomass (part 2): Conversion technologies. Bioresour. Technol. 2002, 83, 47–54. [Google Scholar] [CrossRef]
- Doddapaneni, T.R.; Konttinen, J.; Hukka, T.I.; Moilanen, A. Influence of torrefaction pretreatment on the pyrolysis of Eucalyptus clone: A study on kinetics, reaction mechanism and heat flow. Ind. Crops Prod. 2016, 92, 244–254. [Google Scholar] [CrossRef]
- Chen, W.H.; Kuo, P.C. Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy 2011, 36, 803–811. [Google Scholar] [CrossRef]
- Park, J.; Meng, J.; Lim, K.H.; Rojas, O.J.; Park, S. Transformation of lignocellulosic biomass during torrefaction. J. Anal. Appl. Pyrolysis 2013, 100, 199–206. [Google Scholar] [CrossRef]
- Ramos, L.P. The chemistry involved in the steam treatment of lignocellulosic materials. Quim. Nova 2003, 26, 863–871. [Google Scholar] [CrossRef]
- Biswas, A.K.; Umeki, K.; Yang, W.; Blasiak, W. Change of pyrolysis characteristics and structure of woody biomass due to steam explosion pretreatment. Fuel Process. Technol. 2011, 92, 1849–1854. [Google Scholar] [CrossRef]
- Bach, Q.V.; Tran, K.Q.; Skreiberg, Ø.; Khalil, R.A.; Phan, A.N. Effects of wet torrefaction on reactivity and kinetics of wood under air combustion conditions. Fuel 2014, 137, 375–383. [Google Scholar] [CrossRef]
- Bobleter, O. Hydrothermal degradation of polymers derived from plants. Prog. Polym. Sci. 1994, 19, 797–841. [Google Scholar] [CrossRef]
- Wyman, C.E.; Decker, S.R.; Himmel, M.E.; Brady, J.W.; Skopec, C.E.; Viikari, L. Hydrolysis of cellulose and hemicellulose. Polysaccharides 2005, 1, 1023–1062. [Google Scholar]
- Skreiberg, A.; Skreiberg, Ø.; Sandquist, J.; Sørum, L. TGA and macro-TGA characterisation of biomass fuels and fuel mixtures. Fuel 2011, 90, 2182–2197. [Google Scholar] [CrossRef]
- Ball, R.; McIntosh, A.C.; Brindley, J. Feedback processes in cellulose thermal decomposition: Implications for fire-retarding strategies and treatments. Combust. Theory Model. 2004, 8, 281–291. [Google Scholar] [CrossRef]
- Shen, J.; Igathinathane, C.; Yu, M.; Pothula, A.K. Biomass pyrolysis and combustion integral and differential reaction heats with temperatures using thermogravimetric analysis/differential scanning calorimetry. Bioresour. Technol. 2015, 185, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Stenseng, M.; Jensen, A.; Dam-Johansen, K. Investigation of biomass pyrolysis by thermogravimetric analysis and differential scanning calorimetry. J. Anal. Appl. Pyrolysis 2001, 58, 765–780. [Google Scholar] [CrossRef]
Properties | Cupressus lusitanica | Dipterix panamensis | Gmelina arborea | Tectona grandis | Vochysia ferruginea |
---|---|---|---|---|---|
Cellulose (%) | 64.7 | 49.9 | 55.6 | 54.4 | 50.9 |
Lignin (%) | 31.4 | 20.3 | 24.2 | 21.90 | 11.2 |
Ash (%) | 0.18 | 3.04 | 0.96 | 2.81 | 0.99 |
Carbon (%) | 50.18 | 48.64 | 48.39 | 49.77 | 49.32 |
Nitrogen (%) | 0.27 | 0.24 | 0.20 | 0.20 | 0.27 |
Species | Temperature (°C) | Time (min) | Ti (°C) | Tf (°C) | Residual Mass (%) | Tonset(hc) (°C) | Toffset(hc) (°C) | Tsh (°C) | Tonset(c) (°C) | Toffset(c) (°C) | Tm (°C) |
---|---|---|---|---|---|---|---|---|---|---|---|
Cupressus lusitanica | 0 | 0 | 172.1 | 448.7 | 21.0 | 221.2 | 455.4 | 339.3 | 253.8 | 465.8 | 378.8 |
200 | 8 | 177.2 | 449.8 | 22.6 | 231.2 | 454.4 | 345.3 | 345.5 | 418.7 | 383.5 | |
10 | 181.7 | 438.0 | 24.1 | 234.0 | 452.3 | 340.1 | 346.4 | 418.1 | 383.5 | ||
12 | 191.7 | 453.5 | 23.3 | 231.4 | 454.5 | 345.3 | 346.1 | 418.4 | 382.6 | ||
225 | 8 | 215.4 | 436.2 | 22.8 | 230.9 | 452.4 | 346.5 | 344.6 | 416.4 | 380.8 | |
10 | 183.5 | 412.6 | 23.6 | 237.1 | 438.2 | 329.7 | 340.1 | 409.7 | 375.3 | ||
12 | 173.5 | 445.3 | 25.0 | 245.0 | 439.1 | 337.5 | 341.2 | 413.6 | 378.0 | ||
250 | 8 | 161.7 | 437.1 | 28.3 | 247.9 | 440.9 | 342.7 | 343.4 | 415.7 | 379.8 | |
10 | 172.6 | 425.3 | 31.3 | 266.5 | 425.7 | 263.5 | 333.5 | 413.8 | 371.7 | ||
12 | 213.8 | 476.6 | 36.1 | 273.5 | 415.8 | 275.2 | 323.3 | 410.7 | 364.4 | ||
Dipteryx panamensis | 0 | 0 | 146.3 | 460.9 | 18.7 | 239.5 | 375.4 | 315.0 | 238.2 | 468.2 | 372.1 |
200 | 8 | 194.7 | 431.1 | 19.6 | 206.9 | 438.6 | 310.2 | 330.3 | 413.0 | 373.8 | |
10 | 188.2 | 441.3 | 21.5 | 206.4 | 443.0 | 307.6 | 330.4 | 416.7 | 375.1 | ||
12 | 201.2 | 425.7 | 20.2 | 205.2 | 443.1 | 306.3 | 332.4 | 415.6 | 375.1 | ||
225 | 8 | 212.8 | 430.9 | 20.8 | 211.6 | 440.9 | 316.7 | 333.0 | 411.3 | 373.8 | |
10 | 205.1 | 433.5 | 23.4 | 211.0 | 437.9 | 314.1 | 331.2 | 409.2 | 372.5 | ||
12 | 206.4 | 446.5 | 18.5 | 212.4 | 441.3 | 311.5 | 331.2 | 411.9 | 372.5 | ||
250 | 8 | 212.8 | 433.5 | 24.1 | 237.6 | 428.4 | 308.9 | 325.7 | 409.3 | 367.3 | |
10 | 206.4 | 438.7 | 27.2 | 263.6 | 420.2 | 272.6 | 329.8 | 407.9 | 368.6 | ||
12 | 196.0 | 424.4 | 33.5 | 266.1 | 413.8 | 272.6 | 232.8 | 404.0 | 362.1 | ||
Gmelina arborea | 0 | 0 | 172.1 | 471.5 | 20.8 | 249.1 | 385.0 | 305.8 | 258.7 | 417.9 | 349.9 |
200 | 8 | 194.7 | 410.2 | 24.4 | 196.7 | 392.7 | 247.9 | 305.6 | 395.6 | 351.7 | |
10 | 197.3 | 401.1 | 24.4 | 225.1 | 410.4 | 247.9 | 301.7 | 401.6 | 346.5 | ||
12 | 221.9 | 419.2 | 25.5 | 217.9 | 417.2 | 302.4 | 295.9 | 391.7 | 341.4 | ||
225 | 8 | 201.2 | 399.8 | 26.6 | 227.0 | 411.4 | 303.7 | 305.3 | 381.4 | 341.4 | |
10 | 199.9 | 406.3 | 26.4 | 236.3 | 391.9 | 240.1 | 303.9 | 376.0 | 338.8 | ||
12 | 207.7 | 424.4 | 50.0 | 238.5 | 418.1 | 262.2 | 305.2 | 380.7 | 344.0 | ||
250 | 8 | 173.9 | 454.3 | 25.8 | 247.9 | 440.9 | 267.4 | 343.4 | 415.7 | 341.4 | |
10 | 198.6 | 442.6 | 56.9 | 236.6 | 416.5 | 242.7 | 295.0 | 384.6 | 337.5 | ||
12 | 179.1 | 412.8 | 56.9 | 188.0 | 495.9 | 255.7 | 294.7 | 386.6 | 344.0 | ||
Tectona grandis | 0 | 0 | 164.5 | 473.0 | 19.2 | 262.6 | 398.5 | 321.0 | 257.8 | 454.6 | 368.2 |
200 | 8 | 233.6 | 425.7 | 22.1 | 226.6 | 435.2 | 312.8 | 322.0 | 418.8 | 371.2 | |
10 | 219.3 | 430.9 | 23.2 | 233.0 | 433.8 | 320.6 | 330.2 | 410.6 | 369.9 | ||
12 | 227.1 | 425.7 | 23.1 | 225.7 | 434.4 | 316.7 | 320.4 | 413.4 | 366.0 | ||
225 | 8 | 198.6 | 438.7 | 22.1 | 227.2 | 441.1 | 312.8 | 320.4 | 413.4 | 373.8 | |
10 | 220.6 | 423.1 | 26.5 | 233.0 | 430.8 | 312.8 | 329.1 | 409.6 | 369.9 | ||
12 | 233.6 | 443.9 | 24.2 | 232.0 | 434.8 | 316.7 | 328.6 | 411.9 | 369.9 | ||
250 | 8 | 212.8 | 432.2 | 25.1 | 240.2 | 434.9 | 308.9 | 330.8 | 414.9 | 373.8 | |
10 | 241.4 | 427.0 | 28.8 | 266.0 | 422.4 | 286.8 | 331.9 | 412.0 | 369.9 | ||
12 | 272.6 | 430.9 | 36.9 | 256.6 | 416.1 | 298.5 | 317.6 | 408.6 | 363.4 | ||
Vochysia ferruginea | 0 | 0 | 161.5 | 439.6 | 22.3 | 233.7 | 369.6 | 301.3 | 227.2 | 442.9 | 339.3 |
200 | 8 | 219.3 | 427.0 | 22.5 | 220.1 | 414.8 | 301.1 | 301.9 | 407.7 | 350.4 | |
10 | 233.6 | 430.9 | 26.2 | 222.0 | 419.1 | 306.3 | 306.3 | 408.1 | 355.6 | ||
12 | 223.2 | 424.4 | 22.9 | 217.1 | 384.1 | 299.8 | 282.2 | 405.5 | 338.8 | ||
225 | 8 | 224.5 | 420.5 | 23.7 | 222.3 | 415.6 | 255.7 | 297.9 | 408.4 | 337.5 | |
10 | 224.5 | 401.1 | 29.6 | 214.5 | 407.1 | 298.5 | 286.1 | 394.1 | 336.2 | ||
12 | 251.8 | 432.2 | 24.8 | 237.9 | 401.2 | 245.3 | 294.2 | 400.5 | 346.5 | ||
250 | 8 | 245.3 | 415.4 | 24.7 | 224.4 | 414.8 | 297.2 | 303.4 | 406.7 | 350.4 | |
10 | 245.1 | 420.5 | 30.4 | 228.4 | 401.8 | 253.1 | 288.4 | 398.4 | 340.1 | ||
12 | 227.1 | 414.1 | 35.3 | 251.7 | 395.4 | 268.7 | 294.8 | 395.7 | 342.7 |
Specie | Temperature (°C) | Time (min) | WTi (%) | WTf (%) | WTonset(hc) (%) | WToffset (hc) (%) | WTsh (%) | WTonset(c) (%) | WToffset(c) (%) | WTm (%) |
---|---|---|---|---|---|---|---|---|---|---|
Cupressus lusitanica | 0 | 0 | 90.3 | 21.0 | 89.7 | 20.6 | 65.4 | 88.1 | 20.0 | 38.5 |
200 | 8 | 91.2 | 22.6 | 90.4 | 22.3 | 65.3 | 65.3 | 24.7 | 39.8 | |
10 | 91.8 | 24.1 | 91.0 | 23.3 | 68.5 | 65.7 | 25.6 | 40.5 | ||
12 | 92.0 | 23.3 | 91.3 | 23.2 | 66.2 | 65.7 | 25.7 | 41.7 | ||
225 | 88 | 92.0 | 22.8 | 91.7 | 21.7 | 65.1 | 66.1 | 24.2 | 40.9 | |
10 | 92.0 | 23.6 | 91.1 | 21.8 | 71.9 | 66.5 | 23.9 | 40.4 | ||
12 | 93.3 | 25.0 | 92.3 | 25.5 | 72.9 | 71.0 | 27.5 | 43.8 | ||
250 | 8 | 94.0 | 28.3 | 92.8 | 26.8 | 72.1 | 71.6 | 28.8 | 42.5 | |
10 | 93.7 | 31.3 | 92.1 | 31.3 | 92.3 | 79.4 | 32.5 | 52.7 | ||
12 | 94.1 | 36.1 | 92.7 | 42.1 | 92.6 | 86.1 | 42.7 | 62.2 | ||
Dipteryx panamensis | 0 | 0 | 90.9 | 18.7 | 89.6 | 35.5 | 72.6 | 89.7 | 18.4 | 38.3 |
200 | 8 | 91.4 | 19.6 | 91.3 | 19.3 | 74.0 | 65.6 | 20.6 | 36.5 | |
10 | 92.4 | 21.5 | 92.3 | 21.4 | 78.1 | 69.4 | 22.8 | 39.6 | ||
12 | 92.6 | 20.2 | 92.6 | 19.2 | 77.8 | 67.6 | 20.8 | 37.7 | ||
225 | 8 | 93.1 | 20.8 | 93.1 | 20.2 | 21.7 | 68.4 | 22.1 | 39.6 | |
10 | 93.8 | 23.4 | 93.8 | 23.2 | 77.0 | 70.0 | 25.0 | 41.1 | ||
12 | 93.4 | 18.5 | 93.3 | 18.8 | 77.4 | 69.1 | 20.8 | 39.5 | ||
250 | 8 | 93.4 | 24.1 | 92.8 | 24.4 | 82.9 | 76.8 | 25.9 | 46.4 | |
10 | 93.8 | 27.2 | 92.3 | 28.8 | 91.7 | 83.8 | 30.1 | 50.9 | ||
12 | 93.9 | 33.5 | 92.3 | 34.5 | 92.0 | 93.4 | 35.3 | 56.4 | ||
Gmelina arborea | 0 | 0 | 89.8 | 20.8 | 88.0 | 26.0 | 76.1 | 87.2 | 23.5 | 44.1 |
200 | 8 | 91.4 | 24.4 | 91.4 | 25.6 | 89.2 | 76.4 | 25.4 | 45.9 | |
10 | 90.8 | 24.4 | 90.0 | 23.8 | 88.4 | 75.7 | 24.4 | 46.1 | ||
12 | 92.3 | 25.5 | 92.4 | 25.6 | 78.4 | 81.3 | 27.5 | 51.0 | ||
225 | 8 | 92.2 | 26.6 | 91.7 | 25.7 | 77.2 | 76.3 | 28.2 | 49.5 | |
10 | 92.5 | 26.4 | 91.5 | 27.5 | 91.3 | 76.9 | 29.1 | 49.0 | ||
12 | 93.0 | 50.0 | 92.3 | 50.6 | 91.1 | 85.1 | 54.8 | 67.5 | ||
250 | 8 | 93.9 | 25.8 | 92.8 | 26.8 | 91.6 | 71.6 | 28.8 | 72.5 | |
10 | 92.1 | 56.9 | 91.1 | 59.4 | 90.9 | 86.5 | 62.7 | 74.4 | ||
12 | 92.4 | 56.9 | 92.3 | 50.0 | 90.5 | 87.5 | 60.0 | 72.2 | ||
Tectona grandis | 0 | 0 | 91.0 | 19.2 | 88.8 | 23.9 | 74.4 | 89.2 | 19.9 | 43.2 |
200 | 8 | 91.1 | 22.1 | 91.3 | 21.5 | 78.5 | 74.5 | 22.5 | 41.5 | |
10 | 91.5 | 23.2 | 91.2 | 23.0 | 76.0 | 71.7 | 24.5 | 44.1 | ||
12 | 91.9 | 23.1 | 91.9 | 22.5 | 77.1 | 75.4 | 23.9 | 44.2 | ||
225 | 8 | 92.7 | 22.1 | 92.4 | 22.0 | 79.7 | 76.7 | 23.7 | 43.1 | |
10 | 93.1 | 26.5 | 92.9 | 26.1 | 80.4 | 73.3 | 27.4 | 45.2 | ||
12 | 92.7 | 24.2 | 92.7 | 24.7 | 79.5 | 74.7 | 26.3 | 46.2 | ||
250 | 8 | 93.7 | 25.1 | 93.2 | 25.0 | 84.3 | 76.3 | 26.5 | 45.5 | |
10 | 93.6 | 28.8 | 92.6 | 29.3 | 91.0 | 80.6 | 30.2 | 52.9 | ||
12 | 92.6 | 36.9 | 93.2 | 38.3 | 89.6 | 86.5 | 39.1 | 58.8 | ||
Vochysia ferruginea | 0 | 0 | 89.6 | 22.3 | 88.1 | 32.3 | 74.9 | 88.3 | 22.2 | 52.1 |
200 | 8 | 90.2 | 22.5 | 90.2 | 23.4 | 76.0 | 76.0 | 23.9 | 45.7 | |
10 | 90.8 | 26.2 | 91.2 | 26.9 | 76.1 | 76.1 | 27.6 | 46.0 | ||
12 | 91.0 | 22.9 | 91.2 | 26.4 | 76.9 | 83.2 | 24.3 | 52.0 | ||
225 | 8 | 91.4 | 23.7 | 91.4 | 24.1 | 89.3 | 78.2 | 24.7 | 53.6 | |
10 | 92.3 | 29.6 | 92.6 | 29.2 | 79.6 | 84.0 | 30.2 | 54.6 | ||
12 | 91.7 | 24.8 | 92.4 | 27.7 | 92.0 | 85.9 | 27.9 | 52.8 | ||
250 | 8 | 91.5 | 24.7 | 92.5 | 24.8 | 81.6 | 79.3 | 25.4 | 48.9 | |
10 | 92.2 | 30.4 | 92.9 | 32.1 | 91.7 | 87.2 | 32.4 | 58.7 | ||
12 | 93.5 | 35.3 | 92.7 | 37.4 | 91.8 | 88.7 | 37.4 | 62.4 |
Species | Temperature (°C) | Time (min) | Hemicellulose | Cellulose | ||||
---|---|---|---|---|---|---|---|---|
A | Ea | R2 | A | Ea | R2 | |||
Cupressus lusitanica | 0 | 0 | 2 × 109 | 77.9 | 0.999 | 4 × 1019 | 158.3 | 0.955 |
200 | 8 | 3 × 109 | 78.5 | 0.995 | 8 × 107 | 68.2 | 0.999 | |
10 | 4 × 109 | 79.8 | 0.993 | 9 × 107 | 68.5 | 0.999 | ||
12 | 5 × 109 | 80.8 | 0.994 | 5 × 107 | 65.7 | 0.999 | ||
225 | 8 | 2 × 1010 | 87.0 | 0.996 | 1 × 109 | 81.4 | 0.999 | |
10 | 1 × 1010 | 85.1 | 0.996 | 3 × 1017 | 177.7 | 0.997 | ||
12 | 6 × 109 | 84.3 | 0.998 | 9 × 1015 | 160.3 | 0.999 | ||
250 | 8 | 3 × 109 | 82.1 | 0.999 | 1 × 1016 | 161.1 | 0.998 | |
10 | 5 × 108 | 76.0 | 0.998 | 2 × 1025 | 267.6 | 0.973 | ||
12 | 6 × 107 | 68.2 | 0.996 | 6 × 1019 | 201.1 | 0.999 | ||
Dipteryx panamensis | 0 | 0 | 2 × 108 | 66.3 | 0.979 | 2 × 108 | 324.7 | 0.977 |
200 | 8 | 2 × 1012 | 105.1 | 0.997 | 1 × 1012 | 113.4 | 0.997 | |
10 | 4 × 1013 | 118.2 | 0.997 | 3 × 1012 | 119.1 | 0.997 | ||
12 | 3 × 1013 | 117.6 | 0.997 | 6 × 1013 | 133.8 | 0.997 | ||
225 | 8 | 1 × 1014 | 124.5 | 0.998 | 7 × 1015 | 157.1 | 0.994 | |
10 | 1 × 1014 | 123.1 | 0.998 | 1 × 1019 | 193.4 | 0.985 | ||
12 | 1 × 1013 | 113.5 | 0.998 | 4 × 1016 | 164.9 | 0.991 | ||
250 | 8 | 3 × 1010 | 89.7 | 0.999 | 6 × 1018 | 189.2 | 0.989 | |
10 | 4 × 108 | 75.0 | 0.999 | 9 × 1021 | 227.4 | 0.982 | ||
12 | 2 × 107 | 63.5 | 0.998 | 2 × 1028 | 299.9 | 0.946 | ||
Gmelina arborea | 0 | 0 | 3 × 1012 | 109.6 | 0.914 | 9 × 1015 | 146.8 | 0.777 |
200 | 8 | 7 × 108 | 72.3 | 0.989 | 2 × 109 | 77.6 | 0.993 | |
10 | 8 × 109 | 81.8 | 0.994 | 2 × 1011 | 96.8 | 0.986 | ||
12 | 1 × 1011 | 94.1 | 0.999 | 4 × 1022 | 223.1 | 0.899 | ||
225 | 8 | 3 × 1010 | 89.1 | 1.000 | 4 × 1024 | 244.7 | 0.810 | |
10 | 4 × 1010 | 90.2 | 0.999 | 2 × 1032 | 327.9 | 0.729 | ||
12 | 6 × 106 | 56.7 | 0.997 | 2 × 1029 | 298.7 | 0.760 | ||
250 | 8 | 3 × 108 | 73.1 | 0.997 | 1 × 1016 | 161.1 | 0.998 | |
10 | 1 × 106 | 51.5 | 0.999 | 2 × 1012 | 112.7.7 | 0.999 | ||
12 | 9 × 102 | 24.5 | 0.998 | 5 × 1027 | 280.2 | 0.856 | ||
Tectona grandis | 0 | 0 | 2 × 109 | 79.3 | 0.997 | 4 × 1022 | 143.6 | 0.991 |
200 | 8 | 4 × 1011 | 100.7 | 1.000 | 9 × 1014 | 144.9 | 0.994 | |
10 | 3 × 1011 | 100.1 | 1.000 | 6 × 1016 | 167.4 | 0.990 | ||
12 | 1 × 1012 | 105.5 | 1.000 | 5 × 1019 | 198.6 | 0.971 | ||
225 | 8 | 3 × 1012 | 109.4 | 0.999 | 4 × 1012 | 118.9 | 0.996 | |
10 | 2 × 1012 | 108.0 | 0.999 | 7 × 1012 | 121.4 | 0.994 | ||
12 | 2 × 1012 | 108.5 | 0.999 | 4 × 1015 | 153.0 | 0.993 | ||
250 | 8 | 4 × 1011 | 101.83 | 0.999 | 4 × 1013 | 130.32 | 0.998 | |
10 | 4 × 108 | 75.58 | 0.999 | 7 × 1016 | 168.65 | 0.997 | ||
12 | 9 × 108 | 79.99 | 0.949 | 9 × 1028 | 306.93 | 0.935 | ||
Vochysia ferruginea | 0 | 0 | 9 × 1010 | 93.16 | 0.998 | 3 × 1026 | 225.20 | 0.901 |
200 | 8 | 6 × 108 | 71.85 | 0.996 | 7 × 1011 | 104.78 | 1.000 | |
10 | 6 × 109 | 81.67 | 0.999 | 2 × 109 | 78.04 | 0.999 | ||
12 | 4 × 108 | 69.73 | 0.971 | 4 × 1024 | 244.37 | 0.996 | ||
225 | 8 | 4 × 1010 | 88.96 | 0.999 | 1 × 109 | 71.99 | 0.995 | |
10 | 5 × 109 | 80.92 | 0.999 | 1 × 1030 | 303.55 | 0.985 | ||
12 | 3 × 107 | 63.22 | 0.998 | 1 × 1020 | 198.03 | 0.993 | ||
250 | 8 | 2 × 1011 | 83.23 | 0.997 | 1 × 1013 | 105.55 | 0.990 | |
10 | 1 × 108 | 68.60 | 1.000 | 1 × 1027 | 274.73 | 0.981 | ||
12 | 2 × 106 | 53.10 | 0.999 | 1 × 1036 | 376.89 | 0.958 |
Species | Temperature (°C) | Time (min) | Time Max. (min) | Dmax (% wt/min) |
---|---|---|---|---|
Cupressus lusitanica | 0 | 0 | 18.33 | 17.3 |
200 | 8 | 18.7 | 14.7 | |
10 | 18.8 | 14.1 | ||
12 | 18.7 | 14.8 | ||
225 | 8 | 18.6 | 16.1 | |
10 | 18.3 | 19.2 | ||
12 | 18.3 | 18.8 | ||
250 | 8 | 18.3 | 18.4 | |
10 | 17.0 | 8.2 | ||
12 | 17.6 | 15.1 | ||
Dipteryx panamensis | 0 | 0 | 18.0 | 18.6 |
200 | 8 | 18.3 | 18.0 | |
10 | 18.3 | 18.2 | ||
12 | 18.3 | 19.5 | ||
225 | 8 | 18.3 | 20.7 | |
10 | 18.3 | 20.7 | ||
12 | 18.2 | 21.1 | ||
250 | 8 | 18.0 | 22.7 | |
10 | 18.0 | 20.5 | ||
12 | 17.8 | 16.1 | ||
Gmelina arborea | 0 | 0 | 16.7 | 16.9 |
200 | 8 | 17.0 | 16.6 | |
10 | 16.8 | 14.5 | ||
12 | 16.5 | 17.3 | ||
225 | 8 | 16.6 | 17.9 | |
10 | 16.4 | 20.2 | ||
12 | 16.6 | 14.0 | ||
250 | 8 | 16.5 | 18.1 | |
10 | 14.4 | 13.7 | ||
12 | 16.6 | 8.4 | ||
Tectona grandis | 0 | 0 | 17.7 | 15.8 |
200 | 8 | 17.9 | 14.6 | |
10 | 17.9 | 15.0 | ||
12 | 17.7 | 15.8 | ||
225 | 8 | 18.2 | 19.6 | |
10 | 18.1 | 19.3 | ||
12 | 18.0 | 20.1 | ||
250 | 8 | 18.1 | 20.2 | |
10 | 18.0 | 21.8 | ||
12 | 17.6 | 16.5 | ||
Vochysia ferruginea | 0 | 0 | 16.5 | 14.5 |
200 | 8 | 17.0 | 15.7 | |
10 | 17.1 | 14.8 | ||
12 | 16.4 | 16.2 | ||
225 | 8 | 16.4 | 14.5 | |
10 | 16.4 | 16.6 | ||
12 | 16.8 | 16.4 | ||
250 | 8 | 17.0 | 17.3 | |
10 | 16.6 | 16.9 | ||
12 | 16.4 | 17.9 |
Variable | Cupressus Lusitanica | Dipteryx panamensis | Gmelina arborea | Tectona grandis | Vochysia ferruginea | |||||
---|---|---|---|---|---|---|---|---|---|---|
C1 | C2 | C1 | C2 | C1 | C2 | C1 | C2 | C1 | C2 | |
Ti (°C) | - | - | - | −0.92 ** | - | - | −0.83 ** | - | - | −0.80 ** |
Tm (°C) | −0.90 ** | - | −0.89 * | - | - | - | - | - | - | - |
Tf (°C) | - | - | - | 0.79 ** | - | - | - | −0.71 * | - | - |
Tsh (°C) | −0.91 ** | - | −0.78 ** | - | - | - | 0.83 ** | - | - | - |
Toffset(hc) (°C) | −0.96 ** | - | −0.69 ** | −0.69 * | - | - | - | 0.94 ** | - | −0.93 ** |
Tonset(c) (°C) | - | −0.97 ** | −0.78 ** | - | - | −0.87 ** | - | 0.88 ** | - | −0.94 ** |
Toffset(c) (°C) | - | 0.89 ** | - | 0.97 ** | - | - | - | −0.78 ** | −0.69 * | - |
Tonset(hc) (°C) | 0.97 ** | - | 0.95 ** | - | - | - | - | −0.69 * | - | - |
WTsh (%) | 0.97 ** | - | - | - | - | - | −0.91 ** | - | 0.76 * | - |
WTi (%) | 0.81 * | - | - | −0.87 ** | - | −0.70 * | - | - | 0.96 ** | - |
WTm (%) | 0.98 ** | - | 0.85 ** | - | 0.87 ** | - | −0.96 ** | - | 0.87 ** | - |
WTf (%) | 0.98 ** | - | 0.80 ** | - | 0.96 ** | - | −0.98 ** | - | 0.91 ** | - |
WTonset(hc) (%) | 0.69 * | - | - | −0.85 ** | - | −0.76 * | −0.66 * | 0.71 * | 0.78 ** | - |
WToffset(hc) (%) | 0.97 ** | - | 0.91 ** | - | 0.93 ** | - | −0.93 ** | - | 0.68 * | - |
WTonset(c) (%) | - | 0.79 * | 0.96 ** | - | - | 0.79 * | - | −0.88 * | - | 0.74 * |
WToffset (c) (%) | 0.96 ** | - | 0.75 * | −0.64 * | 0.96 ** | - | −0.98 ** | - | 0.94 ** | - |
Ea Hemicellulose | −0.72 * | - | −0.92 ** | - | −0.93 ** | - | - | 0.75 * | −0.73 * | - |
Ea Cellulose | 0.73 * | - | 0.86 ** | - | 0.69 * | - | −0.74 * | - | 0.75 * | - |
Residual mass (%) | 0.98 ** | - | 0.80 * | 0.96 ** | - | −0.98 ** | - | 0.91 ** | - | |
Time max (min) | −0.77 * | - | −0.95 ** | - | −0.64 * | - | - | 0.74 * | - | - |
Rate max (wt/%) | - | - | - | - | −0.83 ** | - | - | - | 0.79 * | - |
Percentage of variance | 60.88 | 16.46 | 52.18 | 31.49 | 44.52 | 18.28 | 46.36 | 46.36 | 47.45 | 47.45 |
Cumulative variance | 60.88 | 77.35 | 52.18 | 83.67 | 44.52 | 62.80 | 32.63 | 78.99 | 26.66 | 74.11 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaitán-Álvarez, J.; Moya, R.; Puente-Urbina, A.; Rodriguez-Zúñiga, A. Thermogravimetric, Devolatilization Rate, and Differential Scanning Calorimetry Analyses of Biomass of Tropical Plantation Species of Costa Rica Torrefied at Different Temperatures and Times. Energies 2018, 11, 696. https://doi.org/10.3390/en11040696
Gaitán-Álvarez J, Moya R, Puente-Urbina A, Rodriguez-Zúñiga A. Thermogravimetric, Devolatilization Rate, and Differential Scanning Calorimetry Analyses of Biomass of Tropical Plantation Species of Costa Rica Torrefied at Different Temperatures and Times. Energies. 2018; 11(4):696. https://doi.org/10.3390/en11040696
Chicago/Turabian StyleGaitán-Álvarez, Johanna, Róger Moya, Allen Puente-Urbina, and Ana Rodriguez-Zúñiga. 2018. "Thermogravimetric, Devolatilization Rate, and Differential Scanning Calorimetry Analyses of Biomass of Tropical Plantation Species of Costa Rica Torrefied at Different Temperatures and Times" Energies 11, no. 4: 696. https://doi.org/10.3390/en11040696
APA StyleGaitán-Álvarez, J., Moya, R., Puente-Urbina, A., & Rodriguez-Zúñiga, A. (2018). Thermogravimetric, Devolatilization Rate, and Differential Scanning Calorimetry Analyses of Biomass of Tropical Plantation Species of Costa Rica Torrefied at Different Temperatures and Times. Energies, 11(4), 696. https://doi.org/10.3390/en11040696