# Stochastic Wake Modelling Based on POD Analysis

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. LES Simulations

**PA**rallelized

**L**ES

**M**odel PALM [57,58], which has been extensively used for the simulation of the atmospheric boundary layer for the last 15 years. PALM solves the non-hydrostatic, incompressible Navier-Stokes Equations under the Boussinesq Approximation using central differences on a uniformly spaced Cartesian staggered grid. For the time integration a third-order Runge-Kutta scheme and for the advection terms a fifth-order Wicker-Skamarock scheme is used. Subgrid-scale turbulence is filtered implicitly and is parametrized by a modified Smagorinsky approach following Deardorff [59].

## 3. Methods

#### 3.1. Preprocessing

#### 3.2. POD

#### 3.3. Temporal Stochastic Modelling

#### 3.3.1. Uncorrelated Model

#### 3.3.2. OU-Based Model

#### 3.3.3. Spectral Mode

#### 3.3.4. Comments on More Complex Models

#### 3.4. A Spectral Surrogate in Three Dimensions

#### 3.5. Aeroelastic Simulations and Model Verification

## 4. Truncated PODs

#### 4.1. POD Modes and Eigenvalues

#### 4.2. Performance of the Truncated PODs

#### 4.2.1. Results

#### 4.2.2. Discussion

## 5. Stochastic Wake Models

#### 5.1. Modeling the Weighting Coefficients ${a}_{j}(t)$

#### 5.2. Performance of the Stochastic Wake Models

#### 5.2.1. Results

#### 5.2.2. Discussion

## 6. A Stochastic Wake Model with Added Turbulence

#### 6.1. Basic Idea

#### 6.2. Performance

#### 6.2.1. Results

#### 6.2.2. Discussion

## 7. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## Appendix A. Details of the Spectral Model

#### Appendix A.1. Fitting Procedure

#### Appendix A.2. Estimated Parameters

## Appendix B. Time Series of Loads

**Figure A2.**Sections of the time series of the different loads for the truncated POD (red) with $N=6$ compared to spectral model (blue), OU-based model (blue), uncorrelated model (magenta).

**Figure A3.**Sections of the time series of the different loads for original LES and for the spectral model with added turbulence including $N=6$ modes.

## References

- Barthelmie, R.J.; Frandsen, S.T.; Nielsen, M.; Pryor, S.; Rethore, P.E.; Jørgensen, H.E. Modelling and measurements of power losses and turbulence intensity in wind turbine wakes at Middelgrunden offshore wind farm. Wind Energy
**2007**, 10, 517–528. [Google Scholar] [CrossRef] - Barthelmie, R.J.; Pryor, S.C.; Frandsen, S.T.; Hansen, K.S.; Schepers, J.G.; Rados, K.; Schlez, W.; Neubert, A.; Jensen, L.E.; Neckelmann, S. Quantifying the Impact of Wind Turbine Wakes on Power Output at Offshore Wind Farms. J. Atmos. Ocean. Technol.
**2010**, 27, 1302–1317. [Google Scholar] [CrossRef] - Frandsen, S. Turbulence and Turbulence Generated Fatigue in Wind Turbine Clusters; Risø-R 1188; Risø National Laboratory: Roskilde, Denmark, 2005. [Google Scholar]
- Barthelmie, R.J.; Hansen, K.; Frandsen, S.T.; Rathmann, O.; Schepers, J.G.; Schlez, W.; Phillips, J.; Rados, K.; Zervos, A.; Politis, E.S.; et al. Modelling and Measuring Flow and Wind Turbine Wakes in Large Wind Farms Offshore. Wind Energy
**2009**, 12, 431–444. [Google Scholar] [CrossRef] - Chowdhury, S.; Zhang, J.; Messac, A.; Castillo, L. Unrestricted wind farm layout optimization (UWFLO): Investigating key factors influencing the maximum power generation. Renew. Energy
**2012**, 38, 16–30. [Google Scholar] [CrossRef] - Gonzalez, J.S.; Payan, M.B.; Santos, J.M.R.; Gonzalez-Longatt, F. A review and recent developments in the optimal wind-turbine micro-siting problem. Renew. Sustain. Energy Rev.
**2014**, 30, 133–144. [Google Scholar] [CrossRef] - Schmidt, J.; Stoevesandt, B. Wind Farm Layout Optimisation Using Wakes from Computational Fluid Dynamics Simulations. In Proceedings of the EWEA Conference, Barcelona, Spain, 10–13 March 2014. [Google Scholar]
- Corten, G.; Schaak, P. Heat and flux: increase of wind farm production by reduction of the axial induction. In Proceedings of the European Wind Energy Conference, Madrid, Spain, 16–19 June 2003. [Google Scholar]
- Fleming, P.A.; Gebraad, P.M.O.; Lee, S.; van Wingerden, J.W.; Johnson, K.; Churchfield, M.; Michalakes, J.; Spalart, P.; Moriarty, P. Evaluating techniques for redirecting turbine wakes using SOWFA. Renew. Energy
**2014**, 70, 211–218. [Google Scholar] [CrossRef] - Annoni, J.; Gebraad, P.M.O.; Scholbrock, A.K.; Fleming, P.A.; van Wingerden, J.W. Analysis of axial-induction-based wind plant control using an engineering and a high-order wind plant model. Wind Energy
**2016**, 19, 1135–1150. [Google Scholar] [CrossRef] - Gebraad, P.M.O.; Teeuwisse, F.W.; van Wingerden, J.W.; Fleming, P.A.; Ruben, S.D.; Marden, J.R.; Pao, L.Y. Wind plant power optimization through yaw control using a parametric model for wake effects-a CFD simulation study. Wind Energy
**2016**, 19, 95–114. [Google Scholar] [CrossRef] - Ferrer, E.; Browne, O.M.; Valero, E. Sensitivity Analysis to Control the Far-Wake Unsteadiness Behind Turbines. Energies
**2017**, 10, 1599. [Google Scholar] [CrossRef] - Frisch, U. Turbulence; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Mikkelsen, R. Actuator Disc Methods Applied to Wind Turbines. Ph.D. Thesis, Technical University of Denmark, Lyngby, Denmark, 2003. [Google Scholar]
- Calaf, M.; Meneveau, C.; Meyers, J. Large eddy simulation study of fully developed wind-turbine array boundary layers. Phys. Fluids
**2010**, 22, 015110. [Google Scholar] [CrossRef] - Lu, H.; Porte-Agel, F. Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer. Phys. Fluids
**2011**, 23, 065101. [Google Scholar] [CrossRef] - Wu, Y.T.; Porte-Agel, F. Large-Eddy Simulation of Wind-Turbine Wakes: Evaluation of Turbine Parametrisations. Bound.-Layer Meteorol.
**2011**, 138, 345–366. [Google Scholar] - Porté-Agel, F.; Wu, Y.T.; Lu, H.; Conzemius, R.J. Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms. J. Wind Eng. Ind. Aerodyn.
**2011**, 99, 154–168. [Google Scholar] [CrossRef] - Goit, J.P.; Meyers, J. Analysis of turbulent flow properties and energy fluxes in optimally controlled wind-farm boundary layers. J. Phys. Conf. Ser.
**2014**, 524, 012178. [Google Scholar] [CrossRef] - VerHulst, C.; Meneveau, C. Large eddy simulation study of the kinetic energy entrainment by energetic turbulent flow structures in large wind farms. Phys. Fluids
**2014**, 26, 025113. [Google Scholar] [CrossRef] - Witha, B.; Steinfeld, G.; Heinemann, D. High-resolution offshore wake simulations with the LES model PALM. In Wind Energy-Impact Turbul; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Dörenkämper, M.; Witha, B.; Steinfeld, G.; Heinemann, D.; Kühn, M. The impact of stable atmospheric boundary layers on wind-turbine wakes within offshore wind farms. J. Wind Eng. Ind. Aerodyn.
**2015**, 144, 146–153. [Google Scholar] [CrossRef] - Stevens, R.J.A.M.; Gayme, D.F.; Meneveau, C. Effects of turbine spacing on the power output of extended wind-farms. Wind Energy
**2016**, 19, 359–370. [Google Scholar] [CrossRef] - Jensen, N.O. A Note on Wind Generator Interaction; Risø National Laboratory: Roskilde, Denmark, 1983. [Google Scholar]
- Frandsen, S.; Barthelmie, R.; Pryor, S.; Rathmann, O.; Larsen, S.; Hojstrup, J.; Thogersen, M. Analytical modelling of wind speed deficit in large offshore wind farms. Wind Energy
**2006**, 9, 39–53. [Google Scholar] [CrossRef] - Quarton, D.; Ainslie, J. Turbulence in wind turbine wakes. Wind Eng.
**1990**, 14, 15–23. [Google Scholar] - Larsen, G.C.; Madsen Aagaard, H.; Bingöl, F.; Mann, J.; Ott, S.; Sørensen, J.N.; Okulov, V.; Troldborg, N.; Nielsen, N.M.; Thomsen, K. Dynamic Wake Meandering Modeling; Risø-R 1607; Risø National Laboratory: Roskilde, Denmark, 2007. [Google Scholar]
- Larsen, G.C.; Madsen, H.A.; Thomsen, K.; Larsen, T.J. Wake meandering: A pragmatic approach. Wind Energy
**2008**, 11, 377–395. [Google Scholar] [CrossRef] - Madsen, H.A.; Larsen, G.C.; Larsen, T.J.; Troldborg, N.; Mikkelsen, R. Calibration and validation of the dynamic wake meandering model for implementation in an aeroelastic code. J. Sol. Energy Eng.
**2010**, 132, 041014. [Google Scholar] [CrossRef] - Keck, R.E.; Maré, M.; Churchfield, M.J.; Lee, S.; Larsen, G.; Madsen, H.A. Two improvements to the dynamic wake meandering model: including the effects of atmospheric shear on wake turbulence and incorporating turbulence build-up in a row of wind turbines. Wind Energy
**2015**, 18, 111–132. [Google Scholar] [CrossRef] - Larsen, T.J.; Madsen, H.A.; Larsen, G.C.; Hansen, K.S. Validation of the dynamic wake meander model for loads and power production in the Egmond aan Zee wind farm. Wind Energy
**2013**, 16, 605–624. [Google Scholar] [CrossRef] [Green Version] - Singh, A.; Howard, K.B.; Guala, M. On the homogenization of turbulent flow structures in the wake of a model wind turbine. Phys. Fluids
**2014**, 26. [Google Scholar] [CrossRef] - Bastine, D.; Wächter, M.; Peinke, J.; Trabucchi, D.; Kühn, M. Characterizing Wake Turbulence with Staring Lidar Measurements. J. Phys. Conf. Ser.
**2015**, 625, 012006. [Google Scholar] [CrossRef] - Andersen, S.J.; Sørensen, J.N.; Mikkelsen, R. Reduced order model of the inherent turbulence of wind turbine wakes inside an infinitely long row of turbines. J. Phys. Conf. Ser.
**2014**, 555, 012005. [Google Scholar] [CrossRef] - Andersen, S.J.; Sorensen, J.N.; Mikkelsen, R. Simulation of the inherent turbulence and wake interaction inside an infinitely long row of wind turbines. J. Turbul.
**2013**, 14, 1–24. [Google Scholar] [CrossRef] - Bastine, D.; Witha, B.; Wächter, M.; Peinke, J. POD Analysis of a Wind Turbine Wake in a Turbulent Atmospheric Boundary Layer. J. Phys. Conf. Ser.
**2014**, 524, 012153. [Google Scholar] [CrossRef] - Bastine, D.; Witha, B.; Wächter, M.; Peinke, J. Towards a Simplified DynamicWake Model Using POD Analysis. Energies
**2015**, 8, 895–920. [Google Scholar] [CrossRef] - Hamilton, N.; Tutkun, M.; Cal, R.B. Wind turbine boundary layer arrays for Cartesian and staggered configurations: Part II, low-dimensional representations via the proper orthogonal decomposition. Wind Energy
**2015**, 18, 297–315. [Google Scholar] [CrossRef] - Hamilton, N.; Tutkun, M.; Cal, R.B. Low-order representations of the canonical wind turbine array boundary layer via double proper orthogonal decomposition. Phys. Fluids
**2016**, 28, 025103. [Google Scholar] [CrossRef] - Iungo, G.V.; Santoni-Ortiz, C.; Abkar, M.; Porté-Agel, F.; Rotea, M.A.; Leonardi, S. Data-driven Reduced Order Model for prediction of wind turbine wakes. J. Phys. Conf. Ser.
**2015**, 625, 012009. [Google Scholar] [CrossRef] - Sarmast, S.; Dadfar, R.; Mikkelsen, R.F.; Schlatter, P.; Ivanell, S.; Sorensen, J.N.; Henningson, D.S. Mutual inductance instability of the tip vortices behind a wind turbine. J. Fluid Mech.
**2014**, 755, 705–731. [Google Scholar] [CrossRef] [Green Version] - Debnath, M.; Santoni, C.; Leonardi, S.; Iungo, G.V. Towards reduced order modelling for predicting the dynamics of coherent vorticity structures within wind turbine wakes. Philos. Trans. A Math. Phys. Eng. Sci.
**2017**, 375. [Google Scholar] [CrossRef] [PubMed] - Ali, N.; Cortina, G.; Hamilton, N.; Calaf, M.; Cal, R.B. Turbulence characteristics of a thermally stratified wind turbine array boundary layer via proper orthogonal decomposition. J. Fluid Mech.
**2017**, 828, 175–195. [Google Scholar] [CrossRef] - Araya, D.B.; Colonius, T.; Dabiri, J.O. Transition to bluff-body dynamics in the wake of vertical-axis wind turbines. J. Fluid Mech.
**2017**, 813, 346–381. [Google Scholar] [CrossRef] - Tabib, M.; Siddiqui, M.S.; Fonn, E.; Rasheed, A.; Kvamsdal, T. Near wake region of an industrial scale wind turbine: comparing LES-ALM with LES-SMI simulations using data mining (POD). J. Phys. Conf. Ser.
**2017**, 854, 012044. [Google Scholar] [CrossRef] - Hamilton, N.; Tutkun, M.; Cal, R.B. Anisotropic character of low-order turbulent flow descriptions through the proper orthogonal decomposition. Phys. Rev. Fluids
**2017**, 2. [Google Scholar] [CrossRef] - Berkooz, G.; Holmes, P.; Lumley, J.L. The Proper Orthogonal Decomposition In the Analysis of Turbulent Flows. Ann. Rev. Fluid Mech.
**1993**, 25, 539–575. [Google Scholar] [CrossRef] - Cordier, L.; Noack, B.R.; Tissot, G.; Lehnasch, G.; Delville, J.; Balajewicz, M.; Daviller, G.; Niven, R.K. Identification strategies for model-based control. Exp. Fluids
**2013**, 54, 1580. [Google Scholar] [CrossRef] - Schmid, P.J. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech.
**2010**, 656, 5–28. [Google Scholar] [CrossRef] [Green Version] - Jovanović, M.R.; Schmid, P.J.; Nichols, J.W. Sparsity-promoting dynamic mode decomposition. Phys. Fluids
**2014**, 26, 024103. [Google Scholar] [CrossRef] [Green Version] - Le Clainche, S.; Vega, J.M. Higher order dynamic mode decomposition to identify and extrapolate flow patterns. Phys. Fluids
**2017**, 29, 084102. [Google Scholar] [CrossRef] - Kou, J.; Le Clainche, S.; Zhang, W. A reduced-order model for compressible flows with buffeting condition using higher order dynamic mode decomposition with a mode selection criterion. Phys. Fluids
**2018**, 30, 016103. [Google Scholar] [CrossRef] - Andersen, S.J. Simulation and Prediction of Wakes and Wake Interaction in Wind Farms. Ph.D. Thesis, Technical University of Denmark, Lyngby, Denmark, 2014. [Google Scholar]
- Iungo, G.V.; Wu, Y.T.; Porte-Agel, F. Field Measurements of Wind Turbine Wakes with Lidars. J. Atmos. Ocean. Technol.
**2013**, 30, 274–287. [Google Scholar] [CrossRef] - Witha, B.; Steinfeld, G.; Heinemann, D. Advanced turbine parameterizations in offshore LES wake simulations. In Proceedings of the 6th Intenational Symposium on Computational Wind Engineering, Hamburg, Germany, 8–13 June 2014. [Google Scholar]
- Raasch, S.; Schroter, M. PALM—A large-eddy simulation model performing on massively parallel computers. Meteorol. Z.
**2001**, 10, 363–372. [Google Scholar] [CrossRef] - Maronga, B.; Gryschka, M.; Heinze, R.; Hoffmann, F.; Kanani-Sühring, F.; Keck, M.; Ketelsen, K.; Letzel, M.O.; Sühring, M.; Raasch, S. The Parallelized Large-Eddy Simulation Model (PALM) version 4.0 for atmospheric and oceanic flows: Model formulation, recent developments, and future perspectives. Geosci. Model Dev.
**2015**, 8, 2515–2551. [Google Scholar] [CrossRef] - Deardorff, J.W. Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteorol.
**1980**, 18, 495–527. [Google Scholar] [CrossRef] - Vollmer, L.; Steinfeld, G.; Heinemann, D.; Kühn, M. Estimating the wake deflection downstream of a wind turbine in different atmospheric stabilities: An LES study. Wind Energy Sci. Discuss.
**2016**, 1, 129–141. [Google Scholar] [CrossRef] - Wang, T. A brief review on wind turbine aerodynamics. Theor. Appl. Mech. Lett.
**2012**, 2, 062001. [Google Scholar] [CrossRef] - Jonkman, J.M.; Butterfield, S.; Musial, W.; Scott, G. Definition of a 5-MW Reference Wind Turbine for Offshore System Development; Technical Report NREL/TP-500-38060; National Renewable Energy Laboratory: Golden, CO, USA, 2009.
- Serra, J. Image Analysis and Mathematical Morphology, V. 1; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Risken, H. Fokker-Planck Equation; Springer: New York, NY, USA, 1984. [Google Scholar]
- Gardiner, C.W. Handbook of Stochastic Methods; Springer: Berlin, Germany, 1985; Volume 3. [Google Scholar]
- Friedrich, R.; Peinke, J.; Sahimi, M.; Reza Rahimi Tabar, M. Approaching complexity by stochastic methods: From biological systems to turbulence. Phys. Rep.
**2011**, 506, 87–162. [Google Scholar] [CrossRef] - Kantz, H.; Schreiber, T. Nonlinear Time Series Analysis; Cambridge University Press: Cambridge, UK, 2004; Volume 7. [Google Scholar]
- Jonkman, J.M.; Buhl, M.L., Jr. FAST User’s Guide, NREL/EL-500-29798; Technical Report; National Renewable Energy Laboratory: Golden, Colorado, USA, 2005.
- Laino, D. NWTC Design Code AeroDyn v12.58; Technical Report; National Renewable Energy Laboratory: Golden, CO, USA, 2005.
- Burton, T.; Sharpe, D.; Jenkins, N.; Bossanyi, E. Wind Energy Handbook; Wiley: New York, NY, USA, 2011. [Google Scholar]
- Nieslony, A. Rainflow Counting Algorithm (Version 1.2); Mathworks, Matlab Central: Natick, CA, USA, 2010. [Google Scholar]
- ASTM E1049-85. Standard Practices for Cycle Counting in Fatigue Analysis; ASTM: West Conshohocken, PA, USA, 1994. [Google Scholar]
- Saranyasoontorn, K.; Manuel, L. Low-dimensional representations of inflow turbulence and wind turbine response using proper orthogonal decomposition. J. Sol. Energy Eng.
**2005**, 127, 553–562. [Google Scholar] [CrossRef] - Saranyasoontorn, K.; Manuel, L. Symmetry considerations when using proper orthogonal decomposition for predicting wind turbine yaw loads. J. Sol. Energy Eng.-Trans.
**2006**, 128, 574–579. [Google Scholar] [CrossRef] - Mann, J. Wind field simulation. Probab. Eng. Mech.
**1998**, 13, 269–282. [Google Scholar] [CrossRef] - Kleinhans, D. Stochastische Modellierung Komplexer Systeme—Von den Theoretischen Grundlagen zur Simulation Atmosphärischer Windfelder. Ph.D. Thesis, University of Münster, Münster, Germany, 2008. [Google Scholar]
- Beck, H.; Davide, T.; Andreas, R.; vanDooren, M.; Kühn, M. Volumetric wind field measurements of wind turbine wakes with long-range lidars. In Proceedings of the EWEA Conference, Paris, France, 17–20 November 2015. [Google Scholar]
- Barthelmie, R.J.; Doubrawa, P.; Wang, H.; Pryor, S.C. Defining wake characteristics from scanning and vertical full-scale lidar measurements. J. Phys. Conf. Ser.
**2016**, 753, 032034. [Google Scholar] [CrossRef] - Chamorro, L.P.; Guala, M.; Arndt, R.E.A.; Sotiropoulos, F. On the evolution of turbulent scales in the wake of a wind turbine model. J. Turbul.
**2012**, 13. [Google Scholar] [CrossRef] - Melius, M.S.; Tutkun, M.; Cal, R.B. Identification of Markov process within a wind turbine array boundary layer. J. Renew. Sustain. Energy
**2014**, 6, 023121. [Google Scholar] [CrossRef] - Melius, M.S.; Tutkun, M.; Cal, R.B. Solution of the Fokker–Planck equation in a wind turbine array boundary layer. Phys. D Nonlinear Phenom.
**2014**, 280, 14–21. [Google Scholar] [CrossRef]

**Figure 1.**Statistics of the stream-wise velocity $u(y,z,t)$: (

**a**) Mean field $({\mathrm{ms}}^{-1})$ far upstream of the turbine; (

**b**) Mean field $({\mathrm{ms}}^{-1})$, $3.5$ D away from the turbine; (

**c**) Variance $({\mathrm{m}}^{2}{\mathrm{s}}^{-2})$ $3.5$ D away from the turbine. The large black circle marks the rotor area of a turbine in the wake flow, which is modeled later using aeroelastic simulations. The small black circle marks the central region of the wake, which is used to build a spectral surrogate in Section 6.

**Figure 2.**Different profiles at $y=0$ m corresponding to the figures in Figure 1: (

**a**) Mean field far upstream of the turbine; (

**b**) Mean field $3.5$ D away from the turbine; (

**c**) Variance $3.5$ D away from the turbine.

**Figure 3.**Snapshots of the LES showing the the stream-wise velocity u $(\mathrm{m}{\mathrm{s}}^{-1})$ in a yz-plane $3.5$ D away from the turbine. (

**a**) $t=990$ s; (

**b**) $t=1185$ s; (

**c**) $t=1230$ s. The large black circle marks the rotor area of a turbine in the wake flow, which is modeled later using aeroelastic simulations. The small black circle marks the central region of the wake, which is used to build a spectral surrogate in Section 6.

**Figure 4.**Illustration of our modeling approach and its verification: In the left part of the figure, the different steps leading to reduced wake descriptions are presented. These different descriptions are all used as inflows to aeroelastic simulations. All resulting loads are then compared in order to give insight into the strength and weaknesses of the simplified wake flows. The mathematical notation used in the figure will be explained in the rest of this section.

**Figure 5.**Preprocessing of the velocity field u $(\mathrm{m}{\mathrm{s}}^{-1})$ : (

**a**) Instant Snapshot $t=31.8$ s; (

**b**) Velocity deficit; (

**c**) Extracted deficit.

**Figure 6.**(

**a**) POD eigenvalues; (

**b**) Normalised cumulative spectrum of the POD representing the percentage of captured turbulent kinetic energy; (

**c**) Integral time scale of the weighting coefficients versus mode number.

**Figure 8.**Local SKE ${\langle {u}^{\prime}{(y,z)}^{2}\rangle}_{t}$ $({\mathrm{m}}^{2}{\mathrm{s}}^{-2})$ for original LES and truncated PODs including different numbers of modes N.

**Figure 9.**Time series of the different loads for original LES and a truncated POD including $N=6$ modes. Here and in the following figures TB yaw moment is used as an abbreviation for tower base yaw moment.

**Figure 10.**PSDs of the different loads for original LES and truncated PODs including different numbers of modes N.

**Figure 11.**(

**a**) Variance and (

**b**) damage equivalent loads (DELs) versus the number of modes included in the truncated POD. Both are normalised by the values of the original LES.

**Figure 12.**Rainflow counting histograms (RFCs) of different load time series for original LES and truncated PODs including different numbers of modes. To get an impression of the estimation error, the standard error shown for the original LES is estimated by $\frac{\sqrt{{n}_{i}}}{2}$ where ${n}_{i}$ is the number of half-cycles in bin i.

**Figure 13.**(

**a**) PSDs of the weighting coefficients ${a}_{j}(t)$ for $j=1,2,\dots ,50$; (

**b**) PSD for ${a}_{2}(t)$ and the corresponding fit for the spectral model. Additionally, analytical PSDs for uncorrelated and OU-based model are shown corresponding to the estimated model parameters of these models.

**Figure 14.**Time series of ${a}_{2}(t)$ (black) and the different stochastic models ${\tilde{a}}_{2}(t)$. From top to bottom: spectral model (blue), OU-based model (green) and uncorrelated model (magenta).

**Figure 15.**Properties of the weighting coefficients ${a}_{j}(t)$ and the stochastic models ${\tilde{a}}_{j}(t)$: (

**a**) Variance versus mode number j; (

**b**) Integral time scales versus mode number. The results for the uncorrelated model are not shown since the integral time scale is zero for all j; (

**c**) Estimated PSDs of ${a}_{2}(t)$ and realisations of the different stochastic models ${\tilde{a}}_{2}(t)$.

**Figure 16.**Local SKE ${\langle {u}^{\prime}{(y,z)}^{2}\rangle}_{t}$ $({\mathrm{m}}^{2}{\mathrm{s}}^{-2})$ using $N=6$ POD modesfor truncated POD and the different stochastic wake models: (

**a**) truncated POD; (

**b**) spectral model; (

**c**) OU-based model; (

**d**) uncorrelated model.

**Figure 17.**PSDs of the different loads for original LES and the different wake descriptions using $N=6$ POD modes. Note that we aim to capture the behaviour of truncated PODs here, as pointed out in the beginning of this section.

**Figure 18.**RFCs of the different loads for the original LES and the different wake descriptions using $N=6$ POD modes. To get an impression of the estimation error, the standard error is shown for the original LES. It is estimated by $\frac{\sqrt{{n}_{i}}}{2}$ where ${n}_{i}$ is the number of half-cycles in bin i. Note that we aim to capture the behaviour of truncated PODs here, as pointed out in the beginning of this section.

**Figure 19.**(

**a**) Variance and (

**b**) DELs for different loads versus no. of modes N included in the wake descriptions. The solid lines with filled circles represent the results for the spectral model while the dashed lines show the results for the truncated POD. The curves for the different loads are vertically shifted for a better visualisation, as described in the legend. The corresponding shifted values representing $1.0$ are illustrated by the dotted lines. Standard errors are shown for the spectral model for $N=2,4,6,10,30$. They are estimated through the standard deviation from an ensemble of 10 realisations.

**Figure 21.**Snapshot of the spectral model with added small-scale turbulence (Figure 20) in the wake and ambient ABL turbulence outside the wake structure.

**Figure 22.**Local SKE ${\langle {u}^{\prime}{(y,z)}^{2}\rangle}_{t}$ $({\mathrm{m}}^{2}{\mathrm{s}}^{-2})$ for original LES and the spectral model with added turbulence including different numbers of modes N.

**Figure 23.**PSDs of the different loads for original LES and spectral model with added turbulence including different numbers of POD modes.

**Figure 24.**RFCs for different loads and different numbers of modes included in the spectral model with added turbulence.

**Figure 25.**Variance and DELs for different loads versus no. of modes included in the spectral model with added turbulence. Standard errors are shown for the spectral model for $N=2,4,6,10,30$. They are estimated from the standard deviations from an ensemble of 10 realisations.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Bastine, D.; Vollmer, L.; Wächter, M.; Peinke, J.
Stochastic Wake Modelling Based on POD Analysis. *Energies* **2018**, *11*, 612.
https://doi.org/10.3390/en11030612

**AMA Style**

Bastine D, Vollmer L, Wächter M, Peinke J.
Stochastic Wake Modelling Based on POD Analysis. *Energies*. 2018; 11(3):612.
https://doi.org/10.3390/en11030612

**Chicago/Turabian Style**

Bastine, David, Lukas Vollmer, Matthias Wächter, and Joachim Peinke.
2018. "Stochastic Wake Modelling Based on POD Analysis" *Energies* 11, no. 3: 612.
https://doi.org/10.3390/en11030612