Recent Trends in the Production, Combustion and Modeling of Furan-Based Fuels
Abstract
:1. Introduction
2. Classification and Production Methods of Furans
2.1. Furan and Substituted Furans
2.1.1. 2-Methylfuran
2.1.2. 2,5-Dimethylfuran
2.2. Tetrahydrofuran and Alkyl Tetrahydrofurans
2.2.1. Tetrahydrofuran
2.2.2. 2-Methyltetrahydrofuran
3. Theoretical and Experimental Studies of Decomposition and Oxidation
3.1. Quantum Chemical Kinetic Calculations
3.2. Experimental Chemical Kinetic Studies
3.3. Detailed Chemical Kinetic Models
4. Characterization of Furan Combustion Properties
4.1. Engine Studies
4.2. Characterization of Auto-Ignition Behavior of Furans
4.2.1. Ignition Delay Times of Furans
4.2.2. Comparative Ignition Studies of Furans
4.3. Laminar Burning Velocities of Furans
5. Validation of Proposed Chemical Kinetic Models
6. Summary and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- International Energy Agency. Key World Energy Statistics; International Energy Agency: Paris, France, 2014. [Google Scholar]
- Pachauri, R.K.; Reisinger, A. Climate Change 2007 Synthesis Report: Summary for Policymakers; IPCC Secretariat: Geneva, Switzerland, 2007. [Google Scholar]
- Román-Leshkov, Y.; Barrett, C.J.; Liu, Z.Y.; Dumesic, J.A. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 2007, 447, 982–985. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Ma, Y.; Li, Y. Biomass into chemicals: Conversion of sugars to furan derivatives by catalytic processes. Appl. Catal. A 2010, 385, 1–13. [Google Scholar] [CrossRef]
- Chidambaram, M.; Bell, A.T. A two-step approach for the catalytic conversion of glucose to 2,5-dimethylfuran in ionic liquids. Green Chem. 2010, 12, 1253–1262. [Google Scholar] [CrossRef]
- Mascal, M.; Nikitin, E.B. Direct, High-Yield Conversion of Cellulose into Biofuel. Angew. Chem. Int. Ed. 2008, 120, 8042–8044. [Google Scholar] [CrossRef]
- Sanderson, K. Lignocellulose: A chewy problem. Nature 2011, 474, S12–S14. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Yuan, T.; Fournet, R.; Glaude, P.A.; Sirjean, B.; Battin-Leclerc, F.; Zhang, K.; Qi, F. An experimental and kinetic investigation of premixed furan/oxygen/argon flames. Combust. Flame 2011, 158, 756–773. [Google Scholar] [CrossRef] [PubMed]
- Somers, K.P.; Simmie, J.M.; Gillespie, F.; Conroy, C.; Black, G.; Metcalfe, W.K.; Battin-Leclerc, F.; Dirrenberger, P.; Herbinet, O.; Glaude, P.A.; et al. A comprehensive experimental and detailed chemical kinetic modelling study of 2,5-dimethylfuran pyrolysis and oxidation. Combust. Flame 2013, 160, 2291–2318. [Google Scholar] [CrossRef]
- Sirjean, B.; Fournet, R.; Glaude, P.A.; Battin-Leclerc, F.; Wang, W.; Oehlschlaeger, M.A. Shock Tube and Chemical Kinetic Modeling Study of the Oxidation of 2,5-Dimethylfuran. J. Phys. Chem. A 2013, 117, 1371–1392. [Google Scholar] [CrossRef] [PubMed]
- Somers, K.; Simmie, J.; Gillespie, F.; Burke, U.; Connolly, J.; Metcalfe, W.; Battin-Leclerc, F.; Dirrenberger, P.; Herbinet, O.; Glaude, P.A.; et al. A high temperature and atmospheric pressure experimental and detailed chemical kinetic modelling study of 2-methyl furan oxidation. Proc. Combust. Inst. 2013, 34, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.; Daniel, R.; Xu, H.; Zhang, J.; Turner, D.; Wyszynski, M.L.; Richards, P. Combustion and Emissions of 2,5-Dimethylfuran in a Direct-Injection Spark-Ignition Engine. Energy Fuels 2010, 24, 2891–2899. [Google Scholar] [CrossRef]
- Daniel, R.; Xu, H.; Wang, C.; Richardson, D.; Shuai, S. Combustion performance of 2,5-dimethylfuran blends using dual-injection compared to direct-injection in a {SI} engine. Appl. Energy 2012, 98, 59–68. [Google Scholar] [CrossRef]
- Rothamer, D.A.; Jennings, J.H. Study of the knocking propensity of 2,5-dimethylfuran-gasoline and ethanol-gasoline blends. Fuel 2012, 98, 203–212. [Google Scholar] [CrossRef]
- Gouli, S.; Lois, E.; Stournas, S. Effects of Some Oxygenated Substitutes on Gasoline Properties, Spark Ignition Engine Performance, and Emissions. Energy Fuels 1998, 12, 918–924. [Google Scholar] [CrossRef]
- Christensen, E.; Yanowitz, J.; Ratcliff, M.; McCormick, R.L. Renewable oxygenate blending effects on gasoline properties. Energy Fuels 2011, 25, 4723–4733. [Google Scholar] [CrossRef]
- Ma, X.; Jiang, C.; Xu, H.; Ding, H.; Shuai, S. Laminar burning characteristics of 2-methylfuran and isooctane blend fuels. Fuel 2014, 116, 281–291. [Google Scholar] [CrossRef]
- Pan, M.; Shu, G.; Pan, J.; Wei, H.; Feng, D.; Guo, Y.; Liang, Y. Performance comparison of 2-methylfuran and gasoline on a spark-ignition engine with cooled exhaust gas recirculation. Fuel 2014, 132, 36–43. [Google Scholar] [CrossRef]
- Cheng, Z.; Xing, L.; Zeng, M.; Dong, W.; Zhang, F.; Qi, F.; Li, Y. Experimental and kinetic modeling study of 2,5-dimethylfuran pyrolysis at various pressures. Combust. Flame 2014, 161, 2496–2511. [Google Scholar] [CrossRef]
- Alexandrino, K.; Millera, A.; Bilbao, R.; Alzueta, M.U. Interaction between 2,5-dimethylfuran and nitric oxide: Experimental and modeling study. Energy Fuels 2014, 28, 4193–4198. [Google Scholar] [CrossRef]
- Wei, L.; Tang, C.; Man, X.; Huang, Z. Shock-Tube Experiments and Kinetic Modeling of 2-Methylfuran Ignition at Elevated Pressure. Energy Fuels 2013, 27, 7809–7816. [Google Scholar] [CrossRef]
- Uygun, Y.; Ishihara, S.; Olivier, H. A high pressure ignition delay time study of 2-methylfuran and tetrahydrofuran in shock tubes. Combust. Flame 2014, 161, 2519–2530. [Google Scholar] [CrossRef]
- Wei, L.; Tang, C.; Man, X.; Jiang, X.; Huang, Z. High-Temperature Ignition Delay Times and Kinetic Study of Furan. Energy Fuels 2012, 26, 2075–2081. [Google Scholar] [CrossRef]
- Eldeeb, M.A.; Akih-Kumgeh, B. Reactivity Trends in Furan and Alkyl Furan Combustion. Energy Fuels 2014, 28, 6618–6626. [Google Scholar] [CrossRef]
- Eldeeb, M.A.; Akih-Kumgeh, B. Investigation of 2,5-dimethyl furan and iso-octane ignition. Combust. Flame 2015, 162, 2454–2465. [Google Scholar] [CrossRef]
- Simmie, J.M. Kinetics and thermochemistry of 2,5-dimethyltetrahydrofuran and related oxolanes: Next next-generation biofuels. J. Phys. Chem. A 2012, 116, 4528–4538. [Google Scholar] [CrossRef] [PubMed]
- Moshammer, K.; Vranckx, S.; Chakravarty, H.K.; Parab, P.; Fernandes, R.X.; Kohse-Höinghaus, K. An experimental and kinetic modeling study of 2-methyltetrahydrofuran flames. Combust. Flame 2013, 160, 2729–2743. [Google Scholar] [CrossRef]
- Sudholt, A.; Cai, L.; Heyne, J.; Haas, F.M.; Pitsch, H.; Dryer, F.L. Ignition characteristics of a bio-derived class of saturated and unsaturated furans for engine applications. Proc. Combust. Inst. 2015, 35, 2957–2965. [Google Scholar] [CrossRef]
- Jouzdani, S.; Eldeeb, M.A.; Zhang, L.; Akih-Kumgeh, B. High-Temperature Study of 2-Methyl Furan and 2-Methyl Tetrahydrofuran Combustion. Int. J. Chem. Kinet. 2016, 48, 491–503. [Google Scholar] [CrossRef]
- Aylott, M. Biomass Gasification in the UK—Where are we Now? Biomass Mag. 2010, 4, 22–26. [Google Scholar]
- Leitner, W.; Klankermayer, J.; Pischinger, S.; Pitsch, H.; Kohse-Höinghaus, K. Advanced Biofuels and Beyond: Chemistry Solutions for Propulsion and Production. Angew. Chem. Int. Ed. 2017, 56, 5412–5452. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Gong, J.; Huang, Z. Review on the production methods and fundamental combustion characteristics of furan derivatives. Renew. Sustain. Energy Rev. 2016, 54, 1189–1211. [Google Scholar] [CrossRef]
- Kwon, Y.; Schouten, K.J.P.; van der Waal, J.C.; de Jong, E.; Koper, M.T. Electrocatalytic Conversion of Furanic Compounds. ACS Catal. 2016, 6, 6704–6717. [Google Scholar] [CrossRef]
- Yanowitz, J.; Christensen, E.; McCormick, R.L. Utilization of Renewable Oxygenates as Gasoline Blending Components; Technical Report; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2011. [Google Scholar]
- Dreyfuss, P. Poly(Tetrahydrofuran); CRC Press: Boca Raton, FL, USA, 1982; Volume 8. [Google Scholar]
- Dutta, S.; De, S.; Saha, B.; Alam, M.I. Advances in conversion of hemicellulosic biomass to furfural and upgrading to biofuels. Catal. Sci. Technol. 2012, 2, 2025–2036. [Google Scholar] [CrossRef]
- Lange, J.P.; van der Heide, E.; van Buijtenen, J.; Price, R. Furfural—A promising platform for lignocellulosic biofuels. ChemSusChem 2012, 5, 150–166. [Google Scholar] [CrossRef] [PubMed]
- Jężak, S.; Dzida, M.; Zorębski, M. High pressure physicochemical properties of 2-methylfuran and 2,5-dimethylfuran—Second generation biofuels. Fuel 2016, 184, 334–343. [Google Scholar] [CrossRef]
- Burnett, L.; Johns, I.; Holdren, R.; Hixon, R. Production of 2-methylfuran by vapor-phase hydrogenation of furfural. Ind. Eng. Chem. 1948, 40, 502–505. [Google Scholar] [CrossRef]
- Sun, Q.; Liu, S.F.; Yao, X.H.; Su, Y.C.; Zhang, Z. Catalytic Study on Hydrogenation of Carbonyl Group into Methylene or Methyl Group by Silica-supported Poly(acrylonitrile-vinyltriethoxysilicon) Palladium (II) Complex. Chin. J. Synth. Chem. 1996, 4, 146–150. [Google Scholar]
- Rao, R.S.; Baker, R.T.K.; Vannice, M.A. Furfural hydrogenation over carbon-supported copper. Catal. Lett. 1999, 60, 51–57. [Google Scholar] [CrossRef]
- Zheng, H.Y.; Zhu, Y.L.; Teng, B.T.; Bai, Z.Q.; Zhang, C.H.; Xiang, H.W.; Li, Y.W. Towards understanding the reaction pathway in vapour phase hydrogenation of furfural to 2-methylfuran. J. Mol. Catal. A Chem. 2006, 246, 18–23. [Google Scholar] [CrossRef]
- Li, C.; Li, G. A new orbital complex catalyst for vapor phase hydrogenation of furfural to 2-methylfuran. Ind. Catal. 2008, 16, 60–64. [Google Scholar]
- Sitthisa, S.; An, W.; Resasco, D.E. Selective conversion of furfural to methylfuran over silica-supported Ni Fe bimetallic catalysts. J. Catal. 2011, 284, 90–101. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, L.; Liu, S. Efficient Production of Furan Derivatives from a Sugar Mixture by Catalytic Process. Energy Fuels 2012, 26, 4560–4567. [Google Scholar] [CrossRef]
- Nilges, P.; Schröder, U. Electrochemistry for biofuel generation: Production of furans by electrocatalytic hydrogenation of furfurals. Energy Environ. Sci. 2013, 6, 2925–2931. [Google Scholar] [CrossRef]
- Dong, F.; Zhu, Y.; Zheng, H.; Zhu, Y.; Li, X.; Li, Y. Cr-free Cu-catalysts for the selective hydrogenation of biomass-derived furfural to 2-methylfuran: The synergistic effect of metal and acid sites. J. Mol. Catal. A Chem. 2015, 398, 140–148. [Google Scholar] [CrossRef]
- Dong, F.; Ding, G.; Zheng, H.; Xiang, X.; Chen, L.; Zhu, Y.; Li, Y. Highly dispersed Cu nanoparticles as an efficient catalyst for the synthesis of the biofuel 2-methylfuran. Catal. Sci. Technol. 2016, 6, 767–779. [Google Scholar] [CrossRef]
- Zhu, Y.L.; Xiang, H.W.; Li, Y.W.; Jiao, H.; Wu, G.S.; Zhong, B.; Guo, G.Q. A new strategy for the efficient synthesis of 2-methylfuran and γ-butyrolactone. New J. Chem. 2003, 27, 208–210. [Google Scholar] [CrossRef]
- Zheng, H.Y.; Zhu, Y.L.; Bai, Z.Q.; Huang, L.; Xiang, H.W.; Li, Y.W. An environmentally benign process for the efficient synthesis of cyclohexanone and 2-methylfuran. Green Chem. 2006, 8, 107–109. [Google Scholar] [CrossRef]
- Zheng, H.Y.; Zhu, Y.L.; Huang, L.; Zeng, Z.Y.; Wan, H.J.; Li, Y.W. Study on Cu–Mn–Si catalysts for synthesis of cyclohexanone and 2-methylfuran through the coupling process. Catal. Commun. 2008, 9, 342–348. [Google Scholar] [CrossRef]
- Limacher, A.; Kerler, J.; Davidek, T.; Schmalzried, F.; Blank, I. Formation of furan and methylfuran by Maillard-type reactions in model systems and food. J. Agric. Food Chem. 2008, 56, 3639–3647. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.; Liu, X.; Aldosari, O.F.; Miedziak, P.J.; Edwards, J.K.; Brett, G.L.; Akram, A.; King, G.M.; Davies, T.E.; Morgan, D.J.; et al. Conversion of furfuryl alcohol into 2-methylfuran at room temperature using Pd/TiO2 catalyst. Catal. Sci. Technol. 2014, 4, 2280–2286. [Google Scholar] [CrossRef]
- Cui, J.; Tan, J.; Cui, X.; Zhu, Y.; Deng, T.; Ding, G.; Li, Y. Conversion of Xylose to Furfuryl Alcohol and 2-Methylfuran in a Continuous Fixed-Bed Reactor. ChemSusChem 2016, 9, 1259–1262. [Google Scholar] [CrossRef] [PubMed]
- Vorotnikov, V.; Mpourmpakis, G.; Vlachos, D.G. DFT study of furfural conversion to furan, furfuryl alcohol, and 2-methylfuran on Pd (111). ACS Catal. 2012, 2, 2496–2504. [Google Scholar] [CrossRef]
- Simmie, J.M.; Würmel, J. Harmonising Production, Properties and Environmental Consequences of Liquid Transport Fuels from Biomass—2,5-Dimethylfuran as a Case Study. ChemSusChem 2013, 6, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Lin, L.; Liu, S. Chemoselective hydrogenation of biomass-derived 5-hydroxymethylfurfural into the liquid biofuel 2,5-dimethylfuran. Ind. Eng. Chem. Res. 2014, 53, 9969–9978. [Google Scholar] [CrossRef]
- Qian, Y.; Zhu, L.; Wang, Y.; Lu, X. Recent progress in the development of biofuel 2,5-dimethylfuran. Renew. Sustain. Energy Rev. 2015, 41, 633–646. [Google Scholar] [CrossRef]
- Saha, B.; Abu-Omar, M.M. Current Technologies, Economics, and Perspectives for 2,5-Dimethylfuran Production from Biomass-Derived Intermediates. ChemSusChem 2015, 8, 1133–1142. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Wang, C. A Comprehensive Review of 2,5-Dimethylfuran as a Biofuel Candidate. In Biofuels from Lignocellulosic Biomass; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2016; pp. 105–129. [Google Scholar]
- Hu, E.; Hu, X.; Wang, X.; Xu, Y.; Dearn, K.D.; Xu, H. On the fundamental lubricity of 2,5-dimethylfuran as a synthetic engine fuel. Tribol. Int. 2012, 55, 119–125. [Google Scholar] [CrossRef]
- Paine, J.B., III; Pithawalla, Y.B.; Naworal, J.D. Carbohydrate pyrolysis mechanisms from isotopic labeling: Part 4. The pyrolysis of d-glucose: The formation of furans. J. Anal. Appl. Pyrolysis 2008, 83, 37–63. [Google Scholar] [CrossRef]
- Binder, J.B.; Raines, R.T. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J. Am. Chem. Soc. 2009, 131, 1979–1985. [Google Scholar] [CrossRef] [PubMed]
- Thananatthanachon, T.; Rauchfuss, T.B. Efficient Production of the Liquid Fuel 2,5-Dimethylfuran from Fructose Using Formic Acid as a Reagent. Angew. Chem. Int. Ed. Engl. 2010, 122, 6766–6768. [Google Scholar] [CrossRef]
- Luijkx, G.C.; Huck, N.P.; van Rantwijk, F.; Maat, L.; van Bekkum, H. Ether formation in the hydrogenolysis of hydroxymethylfurfural over palladium catalysts in alcoholic solution. Heterocycles 2009, 77, 1037–1044. [Google Scholar]
- Cai, H.; Li, C.; Wang, A.; Zhang, T. Biomass into chemicals: One-pot production of furan-based diols from carbohydrates via tandem reactions. Catal. Today 2014, 234, 59–65. [Google Scholar] [CrossRef]
- De, S.; Dutta, S.; Saha, B. One-pot conversions of lignocellulosic and algal biomass into liquid fuels. ChemSusChem 2012, 5, 1826–1833. [Google Scholar] [CrossRef] [PubMed]
- Jae, J.; Zheng, W.; Lobo, R.F.; Vlachos, D.G. Production of dimethylfuran from hydroxymethylfurfural through catalytic transfer hydrogenation with ruthenium supported on carbon. ChemSusChem 2013, 6, 1158–1162. [Google Scholar] [CrossRef] [PubMed]
- Jae, J.; Zheng, W.; Karim, A.M.; Guo, W.; Lobo, R.F.; Vlachos, D.G. The Role of Ru and RuO2 in the Catalytic Transfer Hydrogenation of 5-Hydroxymethylfurfural for the Production of 2,5-Dimethylfuran. ChemCatChem 2014, 6, 848–856. [Google Scholar] [CrossRef]
- Hu, L.; Tang, X.; Xu, J.; Wu, Z.; Lin, L.; Liu, S. Selective transformation of 5-hydroxymethylfurfural into the liquid fuel 2,5-dimethylfuran over carbon-supported ruthenium. Ind. Eng. Chem. Res. 2014, 53, 3056–3064. [Google Scholar] [CrossRef]
- Huang, Y.B.; Chen, M.Y.; Yan, L.; Guo, Q.X.; Fu, Y. Nickel-Tungsten Carbide Catalysts for the Production of 2,5-Dimethylfuran from Biomass-Derived Molecules. ChemSusChem 2014, 7, 1068–1072. [Google Scholar] [CrossRef] [PubMed]
- Saha, B.; Bohn, C.M.; Abu-Omar, M.M. Zinc-Assisted Hydrodeoxygenation of Biomass-Derived 5-Hydroxymethylfurfural to 2,5-Dimethylfuran. ChemSusChem 2014, 7, 3095–3101. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, S.; Ikeda, N.; Ebitani, K. Selective hydrogenation of biomass-derived 5-hydroxymethylfurfural (HMF) to 2,5-dimethylfuran (DMF) under atmospheric hydrogen pressure over carbon supported PdAu bimetallic catalyst. Catal. Today 2014, 232, 89–98. [Google Scholar] [CrossRef]
- Zu, Y.; Yang, P.; Wang, J.; Liu, X.; Ren, J.; Lu, G.; Wang, Y. Efficient production of the liquid fuel 2,5-dimethylfuran from 5-hydroxymethylfurfural over Ru/Co3O4 catalyst. Appl. Catal. B Environ. 2014, 146, 244–248. [Google Scholar] [CrossRef]
- Nagpure, A.S.; Venugopal, A.K.; Lucas, N.; Manikandan, M.; Thirumalaiswamy, R.; Chilukuri, S. Renewable fuels from biomass-derived compounds: Ru-containing hydrotalcites as catalysts for conversion of HMF to 2,5-dimethylfuran. Catal. Sci. Technol. 2015, 5, 1463–1472. [Google Scholar] [CrossRef]
- Upare, P.P.; Hwang, D.W.; Hwang, Y.K.; Lee, U.H.; Hong, D.Y.; Chang, J.S. An integrated process for the production of 2,5-dimethylfuran from fructose. Green Chem. 2015, 17, 3310–3313. [Google Scholar] [CrossRef]
- Yang, P.; Cui, Q.; Zu, Y.; Liu, X.; Lu, G.; Wang, Y. Catalytic production of 2,5-dimethylfuran from 5-hydroxymethylfurfural over Ni/Co3O4 catalyst. Catal. Commun. 2015, 66, 55–59. [Google Scholar] [CrossRef]
- Gawade, A.B.; Tiwari, M.S.; Yadav, G.D. Biobased Green Process: Selective Hydrogenation of 5-Hydroxymethylfurfural to 2,5-Dimethyl Furan under Mild Conditions Using Pd-Cs2. 5H0. 5PW12O40/K-10 Clay. ACS Sustain. Chem. Eng. 2016, 4, 4113–4123. [Google Scholar] [CrossRef]
- Shi, J.; Wang, Y.; Yu, X.; Du, W.; Hou, Z. Production of 2,5-dimethylfuran from 5-hydroxymethylfurfural over reduced graphene oxides supported Pt catalyst under mild conditions. Fuel 2016, 163, 74–79. [Google Scholar] [CrossRef]
- Chen, B.; Li, F.; Huang, Z.; Yuan, G. Carbon-coated Cu-Co bimetallic nanoparticles as selective and recyclable catalysts for production of biofuel 2,5-dimethylfuran. Appl. Catal. B Environ. 2017, 200, 192–199. [Google Scholar] [CrossRef]
- Dutta, S.; Mascal, M. Novel Pathways to 2,5-Dimethylfuran via Biomass-Derived 5-(Chloromethyl) furfural. ChemSusChem 2014, 7, 3028–3030. [Google Scholar] [CrossRef] [PubMed]
- Kazi, F.K.; Patel, A.D.; Serrano-Ruiz, J.C.; Dumesic, J.A.; Anex, R.P. Techno-economic analysis of dimethylfuran (DMF) and hydroxymethylfurfural (HMF) production from pure fructose in catalytic processes. Chem. Eng. J. 2011, 169, 329–338. [Google Scholar] [CrossRef]
- Smith, M.D.; Mostofian, B.; Cheng, X.; Petridis, L.; Cai, C.M.; Wyman, C.E.; Smith, J.C. Cosolvent pretreatment in cellulosic biofuel production: Effect of tetrahydrofuran-water on lignin structure and dynamics. Green Chem. 2016, 18, 1268–1277. [Google Scholar]
- Wilson, C.L. 16. Reactions of furan compounds. Part III. Formation of tetrahydrofuran, 2,3-dihydrofuran, and other substances by passage of tetrahydrofurfuryl alcohol vapour over a nickel catalyst. J. Chem. Soc. 1945, 57, 52–57. [Google Scholar] [CrossRef]
- Bagnall, W.H.; Goodings, E.P.; Wilson, C.L. Reactions of Furan Compounds. XII. Elimination of the Side Chain of Tetrahydrofurfuryl Alcohol Using Nickel-Copper Catalysts1. J. Am. Chem. Soc. 1951, 73, 4794–4798. [Google Scholar] [CrossRef]
- Kanetaka, J.; Asano, T.; Masamune, S. New process for production of tetrahydrofuran. Ind. Eng. Chem. 1970, 62, 24–32. [Google Scholar] [CrossRef]
- Luque, R.; Clark, J.H.; Yoshida, K.; Gai, P.L. Efficient aqueous hydrogenation of biomass platform molecules using supported metal nanoparticles on Starbons®. Chem. Commun. 2009, 35, 5305–5307. [Google Scholar] [CrossRef] [PubMed]
- Minh, D.P.; Besson, M.; Pinel, C.; Fuertes, P.; Petitjean, C. Aqueous-phase hydrogenation of biomass-based succinic acid to 1, 4-butanediol over supported bimetallic catalysts. Top. Catal. 2010, 53, 1270–1273. [Google Scholar] [CrossRef]
- Hong, U.G.; Park, H.W.; Lee, J.; Hwang, S.; Yi, J.; Song, I.K. Hydrogenation of succinic acid to tetrahydrofuran (THF) over rhenium catalyst supported on H2SO4-treated mesoporous carbon. Appl. Catal. A Gen. 2012, 415, 141–148. [Google Scholar] [CrossRef]
- Zeitsch, K.J. The Chemistry and Technology of Furfural and Its Many by-Products; Elsevier: Amsterdam, The Netherlands, 2000; Volume 13. [Google Scholar]
- Yan, K.; Wu, G.; Lafleur, T.; Jarvis, C. Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals. Renew. Sustain. Energy Rev. 2014, 38, 663–676. [Google Scholar] [CrossRef]
- Godawa, C.; Gaset, A.; Kalck, P.; Maire, Y. Mise en oeuvre d’un catalyseur actif pour l’hydrogenation selective du furanne en tetrahydrofuranne. J. Mol. Catal. 1986, 34, 199–212. [Google Scholar] [CrossRef]
- Godawa, C.; Rigal, L.; Gaset, A. Palladium catalyzed hydrogenation of furan: Optimization of production conditions for tetrahydrofuran. Resour. Conserv. Recycl. 1990, 3, 201–216. [Google Scholar] [CrossRef]
- Corma, A.; Iborra, S.; Velty, A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 2007, 107, 2411–2502. [Google Scholar] [CrossRef] [PubMed]
- Kremer, F.; Heuser, B.; Pischinger, S. Furanoids. In Biofuels from Lignocellulosic Biomass; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2016; pp. 131–158. [Google Scholar]
- Zhang, W.; Zhu, Y.; Niu, S.; Li, Y. A study of furfural decarbonylation on K-doped Pd/Al2O3 catalysts. J. Mol. Catal. A Chem. 2011, 335, 71–81. [Google Scholar] [CrossRef]
- Alonso, D.M.; Bond, J.Q.; Dumesic, J.A. Catalytic conversion of biomass to biofuels. Green Chem. 2010, 12, 1493–1513. [Google Scholar] [CrossRef]
- Christian, R.V., Jr.; Brown, H.D.; Hixon, R. Derivatives of γ-Valerolactone, 1,4-Pentanediol and 1,4-Di-(β-cyanoethoxy)-pentane1. J. Am. Chem. Soc. 1947, 69, 1961–1963. [Google Scholar] [CrossRef]
- Yan, K.; Liao, J.; Wu, X.; Xie, X. A noble-metal free Cu-catalyst derived from hydrotalcite for highly efficient hydrogenation of biomass-derived furfural and levulinic acid. RSC Adv. 2013, 3, 3853–3856. [Google Scholar] [CrossRef]
- Bozell, J.J.; Moens, L.; Elliott, D.; Wang, Y.; Neuenscwander, G.; Fitzpatrick, S.; Bilski, R.; Jarnefeld, J. Production of levulinic acid and use as a platform chemical for derived products. Resour. Conserv. Recycl. 2000, 28, 227–239. [Google Scholar] [CrossRef]
- Mehdi, H.; Fábos, V.; Tuba, R.; Bodor, A.; Mika, L.T.; Horváth, I.T. Integration of homogeneous and heterogeneous catalytic processes for a multi-step conversion of biomass: From sucrose to levulinic acid, γ-valerolactone, 1,4-pentanediol, 2-methyl-tetrahydrofuran, and alkanes. Top. Catal. 2008, 48, 49–54. [Google Scholar] [CrossRef]
- Du, X.L.; Bi, Q.Y.; Liu, Y.M.; Cao, Y.; He, H.Y.; Fan, K.N. Tunable copper-catalyzed chemoselective hydrogenolysis of biomass-derived γ-valerolactone into 1,4-pentanediol or 2-methyltetrahydrofuran. Green Chem. 2012, 14, 935–939. [Google Scholar] [CrossRef]
- Upare, P.P.; Lee, J.M.; Hwang, Y.K.; Hwang, D.W.; Lee, J.H.; Halligudi, S.B.; Hwang, J.S.; Chang, J.S. Direct hydrocyclization of biomass-derived levulinic acid to 2-methyltetrahydrofuran over nanocomposite copper/silica catalysts. ChemSusChem 2011, 4, 1749–1752. [Google Scholar] [CrossRef] [PubMed]
- Geilen, F.; Engendahl, B.; Harwardt, A.; Marquardt, W.; Klankermayer, J.; Leitner, W. Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system. Angew. Chem. Int. Ed. 2010, 122, 5642–5646. [Google Scholar] [CrossRef]
- Al-Shaal, M.G.; Dzierbinski, A.; Palkovits, R. Solvent-free γ-valerolactone hydrogenation to 2-methyltetrahydrofuran catalysed by Ru/C: A reaction network analysis. Green Chem. 2014, 16, 1358–1364. [Google Scholar] [CrossRef]
- Elliott, D.C.; Frye, J.G. Hydrogenated 5-Carbon Compound and Method of Making. U.S. Patent 5,883,266, 16 March 1999. [Google Scholar]
- Huber, G.W.; Iborra, S.; Corma, A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem. Rev. 2006, 106, 4044–4098. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I. Processes for the Preparation of 2-Methylfuran and 2-Methyltetrahydrofuran. U.S. Patent 6,479,677, 12 November 2002. [Google Scholar]
- Yang, W.; Sen, A. One-Step Catalytic Transformation of Carbohydrates and Cellulosic Biomass to 2,5-Dimethyltetrahydrofuran for Liquid Fuels. ChemSusChem 2010, 3, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Sen, A.; Yang, W. One-Step Catalytic Conversion of Biomass-Derived Carbohydrates to Liquid Fuels. U.S. Patent 0,307,050, 9 December 2010. [Google Scholar]
- Liu, R.; Zhou, X.; Zhai, L. Theoretical investigation of unimolecular decomposition channels of furan4. J. Comput. Chem. 1998, 19, 240–249. [Google Scholar] [CrossRef]
- Liu, R.; Zhou, X.; Zuo, T. The pyrolysis mechanism of furan revisited. Chem. Phys. Lett. 2000, 325, 457–464. [Google Scholar] [CrossRef]
- Sendt, K.; Bacskay, G.B.; Mackie, J.C. Pyrolysis of furan: Ab initio quantum chemical and kinetic modeling studies. J. Phys. Chem. A 2000, 104, 1861–1875. [Google Scholar] [CrossRef]
- Lifshitz, A.; Bidani, M.; Bidani, S. Thermal reactions of cyclic ethers at high temperatures. III. Pyrolysis of furan behind reflected shocks. J. Phys. Chem. 1986, 90, 5373–5377. [Google Scholar] [CrossRef]
- Davis, A.C.; Sarathy, S.M. Computational Study of the Combustion and Atmospheric Decomposition of 2-Methylfuran. J. Phys. Chem. A 2013, 117, 7670–7685. [Google Scholar] [CrossRef] [PubMed]
- Somers, K.P.; Simmie, J.M.; Curran, H.; Metcalfe, W.K. The Pyrolysis of 2-Methylfuran: A Quantum Chemical, Statistical Rate Theory and Kinetic Modelling Study. Phys. Chem. Chem. Phys. 2014, 16, 5349–5367. [Google Scholar] [CrossRef] [PubMed]
- Hudzik, J.M.; Bozzelli, J.W. Thermochemistry of Hydroxyl and Hydroperoxide Substituted Furan, Methylfuran, and Methoxyfuran. J. Phys. Chem. A 2017, 121, 4523–4544. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Du, B.; Mu, L.; Feng, C. Mechanism for the gas-phase reaction between OH and 3-methylfuran: A theoretical study. Int. J. Quantum Chem. 2008, 108, 1232–1238. [Google Scholar] [CrossRef]
- Simmie, J.M.; Metcalfe, W.K. Ab initio study of the decomposition of 2,5-dimethylfuran. J. Phys. Chem. A 2011, 115, 8877–8888. [Google Scholar] [CrossRef] [PubMed]
- Sirjean, B.; Fournet, R. Theoretical study of the thermal decomposition of the 5-methyl-2-furanylmethyl radical. J. Phys. Chem. A 2012, 116, 6675–6684. [Google Scholar] [CrossRef] [PubMed]
- Friese, P.; Simmie, J.M.; Olzmann, M. The reaction of 2,5-dimethylfuran with hydrogen atoms—An experimental and theoretical study. Proc. Combust. Inst. 2013, 34, 233–239. [Google Scholar] [CrossRef]
- Sirjean, B.; Fournet, R. Theoretical study of the reaction 2,5-dimethylfuran+ H → products. Proc. Combust. Inst. 2013, 34, 241–249. [Google Scholar] [CrossRef]
- Ferraz-Santos, T.; Bauerfeldt, G. Ab Initio Study of the Reactions of OH Radical with 2,5-Dimethylfuran. In Proceedings of the European Combustion Meeting, Budapest, Hungary, 30 March–2 April 2015. [Google Scholar]
- Simmie, J.M.; Curran, H.J. Formation Enthalpies and Bond Dissociation Energies of Alkylfurans. The Strongest C–X Bonds Known? J. Phys. Chem. A 2009, 113, 5128–5137. [Google Scholar] [CrossRef] [PubMed]
- Feller, D.; Simmie, J.M. High-level ab initio enthalpies of formation of 2,5-dimethylfuran, 2-methylfuran, and furan. J. Phys. Chem. A 2012, 116, 11768–11775. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Feng, C.; Du, B.; Mu, L. An ab initio and density functional theory study on the mechanism for the reaction of OH with 2-ethylfuran. Struct. Chem. 2009, 20, 525–532. [Google Scholar] [CrossRef]
- Smith, A.R.; Meloni, G. Absolute photoionization cross sections of furanic fuels: 2-ethylfuran, 2-acetylfuran and furfural. J. Mass Spectrom. 2015, 50, 1206–1213. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.W.; Simmie, J.M.; Somers, K.P.; Goldsmith, C.F.; Curran, H.J. Chemical Kinetics of Hydrogen Atom Abstraction from Allylic Sites by (3)O2; Implications for Combustion Modeling and Simulation. J. Phys. Chem. A 2017, 121, 1890–1899. [Google Scholar] [CrossRef] [PubMed]
- Chakravarty, H.K.; Fernandes, R.X. Reaction kinetics of hydrogen abstraction reactions by hydroperoxyl radical from 2-methyltetrahydrofuran and 2,5-dimethyltetrahydrofuran. J. Phys. Chem. A 2013, 117, 5028–5041. [Google Scholar] [CrossRef] [PubMed]
- Parab, P.R.; Sakade, N.; Sakai, Y.; Fernandes, R.; Heufer, K.A. Theoretical investigation of intramolecular hydrogen shift reactions in 3-methyltetrahydrofuran (3-MTHF) oxidation. J. Phys. Chem. A 2015, 119, 10917–10928. [Google Scholar] [CrossRef] [PubMed]
- Parab, P.R.; Sakade, N.; Sakai, Y.; Fernandes, R.; Heufer, K.A. A Computational Kinetics Study on the Intramolecular Hydrogen Shift Reactions of Alkylperoxy Radicals in 2-Methyltetrahydrofuran Oxidation. Int. J. Chem. Kinet. 2017, 49, 419–437. [Google Scholar] [CrossRef]
- Antonov, I.O.; Zádor, J.; Rotavera, B.; Papajak, E.; Osborn, D.L.; Taatjes, C.A.; Sheps, L. Pressure-dependent competition among reaction pathways from first-and second-O2 additions in the low-temperature oxidation of tetrahydrofuran. J. Phys. Chem. A 2016, 120, 6582–6595. [Google Scholar] [CrossRef] [PubMed]
- Badovskaya, L.; Povarova, L. Oxidation of furans. Chem. Heterocycl. Compd. 2009, 45, 1023–1034. [Google Scholar] [CrossRef]
- Grela, M.; Amorebieta, V.; Colussi, A. Very low pressure pyrolysis of furan, 2-methylfuran and 2,5-dimethylfuran. The stability of the furan ring. J. Phys. Chem. 1985, 89, 38–41. [Google Scholar] [CrossRef]
- Bruinsma, O.S.; Tromp, P.J.; de Sauvage Nolting, H.J.; Moulijn, J.A. Gas phase pyrolysis of coal-related aromatic compounds in a coiled tube flow reactor: 2. Heterocyclic compounds, their benzo and dibenzo derivatives. Fuel 1988, 67, 334–340. [Google Scholar] [CrossRef]
- Organ, P.P.; Mackie, J.C. Kinetics of pyrolysis of furan. J. Chem. Soc. Faraday Trans. 1991, 87, 815–823. [Google Scholar] [CrossRef]
- Fulle, D.; Dib, A.; Kiefer, J.; Zhang, Q.; Yao, J.; Kern, R. Pyrolysis of furan at low pressures: Vibrational relaxation, unimolecular dissociation, and incubation times. J. Phys. Chem. A 1998, 102, 7480–7486. [Google Scholar] [CrossRef]
- Urness, K.N. A Molecular Picture of Biofuel Decomposition: Pyrolysis of Furan and Select Furanics. Ph.D. Thesis, University of Colorado at Boulder, Boulder, CO, USA, 2014. [Google Scholar]
- Cheng, Z.; Tan, Y.; Wei, L.; Xing, L.; Yang, J.; Zhang, L.; Guan, Y.; Yan, B.; Chen, G.; Leung, D.Y. Experimental and kinetic modeling studies of furan pyrolysis: Fuel decomposition and aromatic ring formation. Fuel 2017, 206, 239–247. [Google Scholar] [CrossRef]
- Lifshitz, A.; Tamburu, C.; Shashua, R. Decomposition of 2-methylfuran. Experimental and modeling study. J. Phys. Chem. A 1997, 101, 1018–1029. [Google Scholar] [CrossRef]
- Cheng, Z.; He, S.; Xing, L.; Wei, L.; Li, W.; Li, T.; Yan, B.; Ma, W.; Chen, G. Experimental and Kinetic Modeling Study of 2-Methylfuran Pyrolysis at Low and Atmospheric Pressures. Energy Fuels 2017, 31, 896–903. [Google Scholar] [CrossRef]
- Lifshitz, A.; Tamburu, C.; Shashua, R. Thermal decomposition of 2,5-dimethylfuran. Experimental results and computer modeling. J. Phys. Chem. A 1998, 102, 10655–10670. [Google Scholar] [CrossRef]
- Djokic, M.; Carstensen, H.H.; Van Geem, K.M.; Marin, G.B. The thermal decomposition of 2,5-dimethylfuran. Proc. Combust. Inst. 2013, 34, 251–258. [Google Scholar] [CrossRef]
- Alexandrino, K.; Millera, Á.; Bilbao, R.; Alzueta, M.U. Novel aspects in the pyrolysis and oxidation of 2,5-dimethylfuran. Proc. Combust. Inst. 2015, 35, 1717–1725. [Google Scholar] [CrossRef]
- Alexandrino, K.; Salvo, P.; Millera, Á.; Bilbao, R.; Alzueta, M.U. Influence of the Temperature and 2,5-Dimethylfuran Concentration on Its Sooting Tendency. Combust. Sci. Technol. 2016, 188, 651–666. [Google Scholar] [CrossRef]
- De Bruycker, R.; Tran, L.S.; Carstensen, H.H.; Glaude, P.A.; Monge, F.; Alzueta, M.U.; Battin-Leclerc, F.; Van Geem, K.M. Experimental and modeling study of the pyrolysis and combustion of 2-methyl- tetrahydrofuran. Combust. Flame 2017, 176, 409–428. [Google Scholar] [CrossRef]
- Elwardany, A.; Es-Sebbar, E.; Khaled, F.; Farooq, A. A chemical kinetic study of the reaction of hydroxyl with furans. Fuel 2016, 166, 245–252. [Google Scholar] [CrossRef]
- Kim, D.; El Gharamti, I.; Hantouche, M.; Elwardany, A.E.; Farooq, A.; Bisetti, F.; Knio, O. A hierarchical method for Bayesian inference of rate parameters from shock tube data: Application to the study of the reaction of hydroxyl with 2-methylfuran. Combust. Flame 2017, 184, 55–67. [Google Scholar] [CrossRef]
- Alexandrino, K.; Millera, Á.; Bilbao, R.; Alzueta, M.U. 2-methylfuran Oxidation in the Absence and Presence of NO. Flow Turbul. Combust. 2016, 96, 343–362. [Google Scholar] [CrossRef]
- Eble, J.; Bänsch, C.; Olzmann, M. Kinetic Investigation of the Reactions of 2,5-Dimethylfuran and 2-Methylfuran with Hydroxyl Radicals. In Proceedings of the European Combustion Meeting, Budapest, Hungary, 30 March–2 April 2015. [Google Scholar]
- Yoshizawa, H.; Nagashima, H.; Murakami, Y.; Takahashi, K. Kinetic Studies on the Reactions of Atomic Oxygen with Furan, 2-Methylfuran, and 2,5-Dimethylfuran at Elevated Temperatures. Chem. Lett. 2017, 46, 1207–1210. [Google Scholar] [CrossRef]
- Vanhove, G.; Yu, Y.; Boumehdi, M.A.; Frottier, O.; Herbinet, O.; Glaude, P.A.; Battin-Leclerc, F. Experimental study of tetrahydrofuran oxidation and ignition in low-temperature conditions. Energy Fuels 2015, 29, 6118–6125. [Google Scholar] [CrossRef]
- Jiao, C.; Adams, S.; Garscadden, A. Ionization of 2,5-dimethylfuran by electron impact and resulting ion-parent molecule reactions. J. Appl. Phys. 2009, 106, 013306. [Google Scholar] [CrossRef]
- Wu, S.; Yang, H.; Hu, J.; Shen, D.; Zhang, H.; Xiao, R. Pyrolysis of furan and its derivatives at 1100 °C: PAH products and DFT study. J. Anal. Appl. Pyrolysis 2016, 120, 252–257. [Google Scholar] [CrossRef]
- Tran, L.S.; Wang, Z.; Carstensen, H.H.; Hemken, C.; Battin-Leclerc, F.; Kohse-Höinghaus, K. Comparative experimental and modeling study of the low-to moderate-temperature oxidation chemistry of 2,5-dimethylfuran, 2-methylfuran, and furan. Combust. Flame 2017, 181, 251–269. [Google Scholar] [CrossRef]
- Tran, L.S.; Sirjean, B.; Glaude, P.A.; Fournet, R.; Battin-Leclerc, F. Progress in detailed kinetic modeling of the combustion of oxygenated components of biofuels. Energy 2012, 43, 4–18. [Google Scholar] [CrossRef] [PubMed]
- Fenard, Y.; Boumehdi, M.; Vanhove, G. Experimental and kinetic modeling study of 2-methyltetrahydrofuran oxidation under engine-relevant conditions. Combust. Flame 2017, 178, 168–181. [Google Scholar] [CrossRef]
- Tran, L.S.; Verdicchio, M.; Monge, F.; Martin, R.C.; Bounaceeur, R.; Sirjean, B.; Glaude, P.A.; Alzueta, M.U.; Battin-Leclerc, F. An experimental and modeling study of the combustion of tetrahydrofuran. Combust. Flame 2015, 162, 1899–1918. [Google Scholar] [CrossRef]
- Liu, D.; Togbé, C.; Tran, L.S.; Felsmann, D.; Oßwald, P.; Nau, P.; Koppmann, J.; Lackner, A.; Glaude, P.A.; Sirjean, B.; et al. Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography—Part I: Furan. Combust. Flame 2014, 161, 748–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran, L.S.; Togbé, C.; Liu, D.; Felsmann, D.; Oßwald, P.; Glaude, P.A.; Fournet, R.; Sirjean, B.; Battin-Leclerc, F.; Kohse-Höinghaus, K. Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography—Part II: 2-Methylfuran. Combust. Flame 2014, 161, 766–779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Togbé, C.; Tran, L.S.; Liu, D.; Felsmann, D.; Oßwald, P.; Glaude, P.A.; Sirjean, B.; Fournet, R.; Battin-Leclerc, F.; Kohse-Höinghaus, K. Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography—Part III: 2,5-Dimethylfuran. Combust. Flame 2014, 161, 780–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehl, M.; Herbinet, O.; Dirrenberger, P.; Bounaceur, R.; Glaude, P.A.; Battin-Leclerc, F.; Pitz, W.J. Experimental and modeling study of burning velocities for alkyl aromatic components relevant to diesel fuels. Proc. Combust. Inst. 2015, 35, 341–348. [Google Scholar] [CrossRef]
- Thewes, M.; Muether, M.; Pischinger, S.; Budde, M.; Brunn, A.; Sehr, A.; Adomeit, P.; Klankermayer, J. Analysis of the Impact of 2-Methylfuran on Mixture Formation and Combustion in a Direct-Injection Spark-Ignition Engine. Energy Fuels 2011, 25, 5549–5561. [Google Scholar] [CrossRef]
- Hoppe, F.; Burke, U.; Thewes, M.; Heufer, A.; Kremer, F.; Pischinger, S. Tailor-Made Fuels from Biomass: Potentials of 2-butanone and 2-methylfuran in direct injection spark ignition engines. Fuel 2016, 167, 106–117. [Google Scholar] [CrossRef]
- Hoppe, F.; Heuser, B.; Thewes, M.; Kremer, F.; Pischinger, S.; Dahmen, M.; Hechinger, M.; Marquardt, W. Tailor-made fuels for future engine concepts. Int. J. Engine Res. 2016, 17, 16–27. [Google Scholar] [CrossRef]
- Hoppe, F.; Thewes, M.; Kremer, F.; Pischinger, S. Tailor-made Fuels for Highly Boosted Gasoline Engines. ATZextra Worldw. 2016, 21, 32–37. [Google Scholar] [CrossRef]
- Wei, H.; Feng, D.; Shu, G.; Pan, M.; Guo, Y.; Gao, D.; Li, W. Experimental investigation on the combustion and emissions characteristics of 2-methylfuran gasoline blend fuel in spark-ignition engine. Appl. Energy 2014, 132, 317–324. [Google Scholar] [CrossRef]
- Wei, H.; Gao, D.; Zhou, L.; Feng, D.; Chen, C.; Pei, Z. Experimental analysis on spray development of 2-methylfuran-gasoline blends using multi-hole DI injector. Fuel 2016, 164, 245–253. [Google Scholar] [CrossRef]
- Sivasubramanian, H. Effect of Ignition Delay (ID) on performance, emission and combustion characteristics of 2-Methyl Furan-Unleaded gasoline blends in a MPFI SI engine. Alex. Eng. J. 2017. [Google Scholar] [CrossRef]
- Wei, H.; Feng, D.; Pan, M.; Pan, J. Effects of Multiple Parameters on Cyclic Variation of a SI Engine Fueled with 2-Methylfuran Gasoline Blends; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2017. [Google Scholar]
- Xiao, H.; Zeng, P.; Li, Z.; Zhao, L.; Fu, X. Combustion performance and emissions of 2-methylfuran diesel blends in a diesel engine. Fuel 2016, 175, 157–163. [Google Scholar] [CrossRef]
- Daniel, R.; Tian, G.; Xu, H.; Wyszynski, M.L.; Wu, X.; Huang, Z. Effect of spark timing and load on a DISI engine fuelled with 2,5-dimethylfuran. Fuel 2011, 90, 449–458. [Google Scholar] [CrossRef]
- Daniel, R.; Wei, L.; Xu, H.; Wang, C.; Wyszynski, M.L.; Shuai, S. Speciation of Hydrocarbon and Carbonyl Emissions of 2,5-Dimethylfuran Combustion in a DISI Engine. Energy Fuels 2012, 26, 6661–6668. [Google Scholar] [CrossRef]
- Daniel, R.; Tian, G.; Xu, H.; Shuai, S. Ignition timing sensitivities of oxygenated biofuels compared to gasoline in a direct-injection SI engine. Fuel 2012, 99, 72–82. [Google Scholar] [CrossRef]
- Daniel, R.; Wang, C.; Xu, H.; Tian, G. Effects of combustion phasing, injection timing, relative air-fuel ratio and variable valve timing on SI engine performance and emissions using 2,5-dimethylfuran. SAE Int. J. Fuels Lubr. 2012, 5, 855–866. [Google Scholar] [CrossRef]
- Wang, C.; Xu, H.; Herreros, J.M.; Lattimore, T.; Shuai, S. Fuel effect on particulate matter composition and soot oxidation in a direct-injection spark ignition (DISI) engine. Energy Fuels 2014, 28, 2003–2012. [Google Scholar] [CrossRef]
- Tian, G.; Li, H.; Xu, H.; Li, Y.; Raj, S.M. Spray characteristics study of DMF using phase doppler particle analyzer. SAE Int. J. Passeng. Cars Mech. Syst. 2010, 3, 948–958. [Google Scholar] [CrossRef]
- Tian, G.; Xu, H.; Daniel, R.; Li, H.; Li, Y. Spray characteristics and engine adaptability of 2,5-dimethylfuran. J. Automot. Saf. Energy 2010, 2, 132–140. [Google Scholar]
- Wu, X.; Daniel, R.; Tian, G.; Xu, H.; Huang, Z.; Richardson, D. Dual-injection: The flexible, bi-fuel concept for spark-ignition engines fuelled with various gasoline and biofuel blends. Appl. Energy 2011, 88, 2305–2314. [Google Scholar] [CrossRef]
- Shukla, M.K.; Singh, E.; Singh, N.; Singal, S. Prospects of 2,5-dimethylfuran as a fuel: Physico-chemical and engine performance characteristics evaluation. J. Mater. Cycles Waste Manag. 2015, 17, 459–464. [Google Scholar] [CrossRef]
- Chen, G.; Shen, Y.; Zhang, Q.; Yao, M.; Zheng, Z.; Liu, H. Experimental study on combustion and emission characteristics of a diesel engine fueled with 2,5-dimethylfuran-diesel, n-butanol-diesel and gasoline-diesel blends. Energy 2013, 54, 333–342. [Google Scholar] [CrossRef]
- Liu, H.; Xu, J.; Zheng, Z.; Li, S.; Yao, M. Effects of fuel properties on combustion and emissions under both conventional and low temperature combustion mode fueling 2,5-dimethylfuran/diesel blends. Energy 2013, 62, 215–223. [Google Scholar] [CrossRef]
- Liu, H.; Zheng, Z.; Yao, M. Effects of Fuel Physical and Chemical Properties on Combustion and Emissions on Both Metal and Optical Diesel Engines and on a Partially Premixed Burner; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2015. [Google Scholar]
- Zhang, Q.; Chen, G.; Zheng, Z.; Liu, H.; Xu, J.; Yao, M. Combustion and emissions of 2,5-dimethylfuran addition on a diesel engine with low temperature combustion. Fuel 2013, 103, 730–735. [Google Scholar] [CrossRef]
- Zhang, Q.; Yao, M.; Luo, J.; Chen, H.; Zhang, X. Diesel engine combustion and emissions of 2,5-dimethylfuran-diesel blends with 2-ethylhexyl nitrate addition. Fuel 2013, 111, 887–891. [Google Scholar] [CrossRef]
- Chen, G.; Di, L.; Zhang, Q.; Zheng, Z.; Zhang, W. Effects of 2,5-dimethylfuran fuel properties coupling with EGR (exhaust gas recirculation) on combustion and emission characteristics in common-rail diesel engines. Energy 2015, 93, 284–293. [Google Scholar] [CrossRef]
- Xiao, H.; Hou, B.; Zeng, P.; Jiang, A.; Hou, X.; Liu, J. Combustion and emission characteristics of diesel engine fueled with 2,5-dimethylfuran and diesel blends. Fuel 2017, 192, 53–59. [Google Scholar] [CrossRef]
- Xiao, H.; Zeng, P.; Zhao, L.; Li, Z.; Fu, X. An experimental study of the combusition and emission performances of 2,5-dimethylfuran diesel blends on a diesel engine. Therm. Sci. 2017, 21, 543–553. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, X.; Yue, L.; Liu, H.; Yao, M. Effects of six-carbon alcohols, ethers and ketones with chain or ring molecular structures on diesel low temperature combustion. Energy Convers. Manag. 2016, 124, 480–491. [Google Scholar] [CrossRef]
- Wei, M.; Li, S.; Liu, J.; Guo, G.; Sun, Z.; Xiao, H. Effects of injection timing on combustion and emissions in a diesel engine fueled with 2,5-dimethylfuran-diesel blends. Fuel 2017, 192, 208–217. [Google Scholar] [CrossRef]
- Wang, C.; Xu, H.; Daniel, R.; Ghafourian, A.; Herreros, J.M.; Shuai, S.; Ma, X. Combustion characteristics and emissions of 2-methylfuran compared to 2,5-dimethylfuran, gasoline and ethanol in a DISI engine. Fuel 2013, 103, 200–211. [Google Scholar] [CrossRef]
- Nasrullah, M.; Gopal, K.R. Effect of Tetra Hydro Furan on Performance and Emission Characteristics of Ci Engine Fuelled With Methyl Ester of Jatropha. Int. J. Emerg. Technol. Adv. Eng. 2014, 4, 251–257. [Google Scholar]
- Boot, M.D.; Tian, M.; Hensen, E.J.; Sarathy, S.M. Impact of fuel molecular structure on auto-ignition behavior—Design rules for future high performance gasolines. Prog. Energy Combust. Sci. 2017, 60, 1–25. [Google Scholar] [CrossRef]
- Eldeeb, M.A. Characterization and Chemical Kinetic Analysis of the Ignition of Representative Conventional and Bio-Derived Fuels. Ph.D. Thesis, Syracuse University, Syracuse, NY, USA, 2015. [Google Scholar]
- Bergthorson, J.M.; Thomson, M.J. A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines. Renew. Sustain. Energy Rev. 2015, 42, 1393–1417. [Google Scholar] [CrossRef]
- Dagaut, P.; McGuinness, M.; Simmie, J.; Cathonnet, M. The ignition and oxidation of tetrahydrofuran: Experiments and kinetic modeling. Combust. Sci. Technol. 1998, 135, 3–29. [Google Scholar] [CrossRef]
- Eldeeb, M.A.; Akih-Kumgeh, B. Investigation of ignition behavior of dimethyl and ethyl isomers of cycloalkanes and furans. In Proceedings of the 25th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS), Leeds, UK, 2–7 August 2015. [Google Scholar]
- Xu, N.; Tang, C.; Meng, X.; Fan, X.; Tian, Z.; Huang, Z. Experimental and kinetic study on the ignition delay times of 2,5-dimethylfuran and the comparison to 2-methylfuran and furan. Energy Fuels 2015, 29, 5372–5381. [Google Scholar] [CrossRef]
- Xu, N.; Wu, Y.; Tang, C.; Zhang, P.; He, X.; Wang, Z.; Huang, Z. Experimental study of 2,5-dimethylfuran and 2-methylfuran in a rapid compression machine: Comparison of the ignition delay times and reactivity at low to intermediate temperature. Combust. Flame 2016, 168, 216–227. [Google Scholar] [CrossRef]
- Xu, N.; Wu, Y.; Tang, C.; Zhang, P.; He, X.; Wang, Z.; Huang, Z. Ignition delay times of low alkylfurans at high pressures using a rapid compression machine. Proc. Combust. Inst. 2017, 36, 323–332. [Google Scholar] [CrossRef]
- Shen, H.P.S.; Oehlschlaeger, M.A. The autoignition of C8H10 aromatics at moderate temperatures and elevated pressures. Combust. Flame 2009, 156, 1053–1062. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Fan, X.; Yang, K. Shock Tube Experimental and Modeling Study of MTHF Ignition Characteristics at High Temperatures; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2015. [Google Scholar]
- Wang, J.; Wang, X.; Fan, X.; Yang, K.; Zhang, Y. An ignition delay time and kinetic study of 2-methyltetrahydrofuran at high temperatures. Fuel 2016, 186, 758–769. [Google Scholar] [CrossRef]
- Sudholt, A.; Lee, C.; Klankermayer, J.; Fernandes, R.X.; Pitsch, H. Ignition characteristics of saturated and unsaturated furans. Combust. Flame 2016, 171, 133–136. [Google Scholar] [CrossRef]
- Fan, X.; Wang, X.; Wang, J.; Yang, K. Comparative Shock Tube and Kinetic Study on High-Temperature Ignition of 2,3-Dihydrofuran and 2,5-Dihydrofuran. Energy Fuels 2016, 30, 8727–8736. [Google Scholar] [CrossRef]
- Fan, X.; Wang, X.; Yang, K.; Li, Y.; Wu, C.; Li, Z. Experimental and Modeling Study on Ignition Characteristics of 2,5-Dihydrofuran. SAE Int. J. Fuels Lubr. 2016, 9, 315–321. [Google Scholar] [CrossRef]
- Tanaka, K.; Isobe, N.; Sato, K.; Okada, R.; Okada, H.; Fujisawa, Y.; Konno, M. Ignition Characteristics of 2,5-Dimethylfuran Compared with Gasoline and Ethanol. SAE Int. J. Engines 2015, 9, 39–46. [Google Scholar] [CrossRef]
- Nilsson, E.J.K.; Konnov, A.A. Flame Studies of Oxygenates. In Cleaner Combustion: Developing Detailed Chemical Kinetic Models; Battin-Leclerc, F., Simmie, J.M., Blurock, E., Eds.; Springer: London, UK, 2013; pp. 231–280. [Google Scholar]
- Cheng, Z.; Niu, Q.; Wang, Z.; Jin, H.; Chen, G.; Yao, M.; Wei, L. Experimental and kinetic modeling studies of low-pressure premixed laminar 2-methylfuran flames. Proc. Combust. Inst. 2017, 36, 1295–1302. [Google Scholar] [CrossRef]
- Ma, X.; Xu, H.; Jiang, C.; Shuai, S. Ultra-high speed imaging and OH-LIF study of {DMF} and {MF} combustion in a {DISI} optical engine. Appl. Energy 2014, 122, 247–260. [Google Scholar] [CrossRef]
- Tao, K.; Gao, D.; Pei, Z. Impact of Initial Pressure and Mix Proportion on Flame Propagation Development in Premixed Combustion of 2-Methyl Furan Gasoline Mixed Fuel in Constant Volume Napalm Bomb. J. Comput. Theor. Nanosci. 2016, 13, 9373–9379. [Google Scholar] [CrossRef]
- Wu, X.; Huang, Z.; Yuan, T.; Zhang, K.; Wei, L. Identification of combustion intermediates in a low-pressure premixed laminar 2,5-dimethylfuran/oxygen/argon flame with tunable synchrotron photoionization. Combust. Flame 2009, 156, 1365–1376. [Google Scholar] [CrossRef]
- Wu, X.; Huang, Z.; Jin, C.; Wang, X.; Zheng, B.; Zhang, Y.; Wei, L. Measurements of laminar burning velocities and Markstein lengths of 2,5-dimethylfuran-air-diluent premixed flames. Energy Fuels 2009, 23, 4355–4362. [Google Scholar] [CrossRef]
- Wu, X.; Huang, Z.; Wang, X.; Jin, C.; Tang, C.; Wei, L.; Law, C.K. Laminar burning velocities and flame instabilities of 2,5-dimethylfuran–air mixtures at elevated pressures. Combust. Flame 2011, 158, 539–546. [Google Scholar] [CrossRef]
- Wu, X.; Huang, Z.; Jin, C.; Wang, X.; Wei, L. Laminar burning velocities and Markstein lengths of 2,5-dimethylfuran-air premixed flames at elevated temperatures. Combust. Sci. Technol. 2011, 183, 220–237. [Google Scholar] [CrossRef]
- Tian, G.; Daniel, R.; Li, H.; Xu, H.; Shuai, S.; Richards, P. Laminar Burning Velocities of 2,5-Dimethylfuran Compared with Ethanol and Gasoline. Energy Fuels 2010, 24, 3898–3905. [Google Scholar] [CrossRef]
- Wei, L.; Tong, L.; Xu, J.; Wang, Z.; Jin, H.; Yao, M.; Zheng, Z.; Li, H.; Xu, H. Primary combustion intermediates in low-pressure premixed laminar 2,5-dimethylfuran/oxygen/argon flames. Combust. Sci. Technol. 2014, 186, 355–376. [Google Scholar] [CrossRef]
- Liu, X.; Yao, M.; Wang, Y.; Wang, Z.; Jin, H.; Wei, L. Experimental and kinetic modeling study of a rich and a stoichiometric low-pressure premixed laminar 2,5-dimethylfuran/oxygen/argon flames. Combust. Flame 2015, 162, 4586–4597. [Google Scholar] [CrossRef]
- Gogoi, B.; Raj, A.; Alrefaai, M.M.; Stephen, S.; Anjana, T.; Pillai, V.; Bojanampati, S. Effects of 2,5-dimethylfuran addition to diesel on soot nanostructures and reactivity. Fuel 2015, 159, 766–775. [Google Scholar] [CrossRef]
- Russo, C.; D’Anna, A.; Ciajolo, A.; Sirignano, M. Analysis of the chemical features of particles generated from ethylene and ethylene/2,5 dimethyl furan flames. Combust. Flame 2016, 167, 268–273. [Google Scholar] [CrossRef]
- Li, Q.; Fu, J.; Wu, X.; Tang, C.; Huang, Z. Laminar flame speeds of DMF/iso-octane-air-N2/CO2 mixtures. Energy Fuels 2012, 26, 917–925. [Google Scholar] [CrossRef]
- Wu, X.; Li, Q.; Fu, J.; Tang, C.; Huang, Z.; Daniel, R.; Tian, G.; Xu, H. Laminar burning characteristics of 2,5-dimethylfuran and iso-octane blend at elevated temperatures and pressures. Fuel 2012, 95, 234–240. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, H.; Ma, X.; Bao, X.; Wang, B. Laminar burning characteristics of 2-MTHF compared with ethanol and isooctane. Fuel 2017, 190, 10–20. [Google Scholar] [CrossRef]
- Ma, X.; Jiang, C.; Xu, H.; Shuai, S.; Ding, H. Laminar Burning Characteristics of 2-Methylfuran Compared with 2,5-Dimethylfuran and Isooctane. Energy Fuels 2013, 27, 6212–6221. [Google Scholar] [CrossRef]
- Gillespie, F.R. An Experimental and Modelling Study of the Combustion of Oxygenated Hydrocarbons. Ph.D. Thesis, NUI Galway, Galway, Ireland, 2014. [Google Scholar]
- Tran, L.S.; Sirjean, B.; Glaude, P.A.; Kohse-Höinghaus, K.; Battin-Leclerc, F. Influence of substituted furans on the formation of Polycyclic Aromatic Hydrocarbons in flames. Proc. Combust. Inst. 2015, 35, 1735–1743. [Google Scholar] [CrossRef]
- Sirignano, M.; Conturso, M.; D’Anna, A. Effect of furans on particle formation in diffusion flames: An experimental and modeling study. Proc. Combust. Inst. 2015, 35, 525–532. [Google Scholar] [CrossRef]
- Conturso, M.; Sirignano, M.; D’Anna, A. Effect of furanic biofuels on particles formation in premixed ethylene-air flames: An experimental study. Fuel 2016, 175, 137–145. [Google Scholar] [CrossRef]
- Saggese, C.; Cuoci, A.; Frassoldati, A.; Faravelli, T.; Ranzi, E. Gas Phase Kinetics of Volatiles from Biomass Pyrolysis. Note II: Furan, 2-methyl-furan, and 2,5-dimethylfuran. In Proceedings of the 36th Meeting of the Italian Section of the Combustion Institute, Procida, Italy, 13–15 June 2013. [Google Scholar]
- Metcalfe, W.K.; Burke, S.M.; Ahmed, S.S.; Curran, H.J. A hierarchical and comparative kinetic modeling study of C1–C2 hydrocarbon and oxygenated fuels. Int. J. Chem. Kinet. 2013, 45, 638–675. [Google Scholar] [CrossRef]
- Sirignano, M.; Kent, J.; D’Anna, A. Modeling formation and oxidation of soot in nonpremixed flames. Energy Fuels 2013, 27, 2303–2315. [Google Scholar] [CrossRef]
- Sirignano, M.; Kent, J.; D’Anna, A. Detailed modeling of size distribution functions and hydrogen content in combustion-formed particles. Combust. Flame 2010, 157, 1211–1219. [Google Scholar] [CrossRef]
- D’Anna, A.; Sirignano, M.; Kent, J. A model of particle nucleation in premixed ethylene flames. Combust. Flame 2010, 157, 2106–2115. [Google Scholar] [CrossRef]
- Curran, H.J.; Gaffuri, P.; Pitz, W.; Westbrook, C. A comprehensive modeling study of iso-octane oxidation. Combust. Flame 2002, 129, 253–280. [Google Scholar] [CrossRef]
- Mehl, M.; Pitz, W.J.; Westbrook, C.K.; Curran, H.J. Kinetic modeling of gasoline surrogate components and mixtures under engine conditions. Proc. Combust. Inst. 2011, 33, 193–200. [Google Scholar] [CrossRef]
Compound | 2-MF | 2,5-DMF | THF | 2-MTHF | |
---|---|---|---|---|---|
Property | |||||
Boiling point (K) | 336 | 365 | 339 | 353.2 | |
Density (g/cm) | 0.91 | 0.89 | 0.8892 | 0.854 | |
Lower heating value (MJ/kg) | 31.2 | 33.8 | 34.6 | 32.8 | |
RON | 103 | 119 | – | 86 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eldeeb, M.A.; Akih-Kumgeh, B. Recent Trends in the Production, Combustion and Modeling of Furan-Based Fuels. Energies 2018, 11, 512. https://doi.org/10.3390/en11030512
Eldeeb MA, Akih-Kumgeh B. Recent Trends in the Production, Combustion and Modeling of Furan-Based Fuels. Energies. 2018; 11(3):512. https://doi.org/10.3390/en11030512
Chicago/Turabian StyleEldeeb, Mazen A., and Benjamin Akih-Kumgeh. 2018. "Recent Trends in the Production, Combustion and Modeling of Furan-Based Fuels" Energies 11, no. 3: 512. https://doi.org/10.3390/en11030512
APA StyleEldeeb, M. A., & Akih-Kumgeh, B. (2018). Recent Trends in the Production, Combustion and Modeling of Furan-Based Fuels. Energies, 11(3), 512. https://doi.org/10.3390/en11030512