Identification of Power Transformer Winding Mechanical Fault Types Based on Online IFRA by Support Vector Machine
Abstract
:1. Introduction
2. Brief Introduction of Online Impulse Frequency Response Analysis
3. Experimental Setup and Result
3.1. Experimental Setup
3.2. Experimental Results
4. Feature Extraction from IFRA Signature
4.1. Indicator of Resonant Frequency Variation
4.2. Indicator of Mean Square Error
5. Application of Support Vector Machine to Diagnose Winding Fault Types
5.1. Procedure of Identifying Winding Fault Types
5.2. Construction of Training Set and Testing Set
5.3. Diagnostic Result
5.4. Comparison of Two Indicators
6. Conclusions and Future Work
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lee, B.; Park, J.-W.; Crossley, P.; Kang, Y. Induced Voltages Ratio-Based Algorithm for Fault Detection, and Faulted Phase and Winding Identification of a Three-Winding Power Transformer. Energies 2014, 7, 6031–6049. [Google Scholar] [CrossRef]
- Ebrahimi, B.M.; Saffari, S.; Faiz, J.; Fereidunian, A. Analytical estimation of short circuit axial and radial forces on power transformers windings. IET Gener. Transm. Distrib. 2014, 8, 250–260. [Google Scholar] [CrossRef]
- Abu-Siada, A.; Islam, S. A novel online technique to detect power transformer winding faults. IEEE Trans. Power Deliv. 2012, 27, 849–857. [Google Scholar]
- Bagheri, M.; Naderi, M.S.; Blackburn, T. Advanced transformer winding deformation diagnosis: Moving from off-line to on-line. IEEE Trans. Dielectr. Electr. Insul. 2012, 19. [Google Scholar] [CrossRef]
- Ji, T.Y.; Tang, W.H.; Wu, Q.H. Detection of power transformer winding deformation and variation of measurement connections using a hybrid winding model. Electr. Power Syst. Res. 2012, 87, 39–46. [Google Scholar] [CrossRef]
- Hejazi, M.A.; Gharehpetian, G.B.; Moradi, G.; Alehosseini, H.A.; Mohammadi, M. Online monitoring of transformer winding axial displacement and its extent using scattering parameters and k-nearest neighbour method. IET Gener. Transm. Distrib. 2011, 5, 824. [Google Scholar] [CrossRef]
- Dick, E.; Erven, C. Transformer diagnostic testing by frequuency response analysis. IEEE Trans. Power Appar. Syst. 1978, 6, 2144–2153. [Google Scholar] [CrossRef]
- Bagheri, M.; Naderi, M.S.; Blackburn, T.; Phung, T. Frequency response analysis and short-circuit impedance measurement in detection of winding deformation within power transformers. IEEE Electr. Insul. Mag. 2013, 29, 33–40. [Google Scholar] [CrossRef]
- Portilla, W.H.; Mayor, G.A.; Guerra, J.P.; Gonzalez-Garcia, C. Detection of transformer faults using frequency-response traces in the low-frequency bandwidth. IEEE Trans. Ind. Electron. 2014, 61, 4971–4978. [Google Scholar]
- Alsuhaibani, S.; Khan, Y.; Beroual, A.; Malik, N. A Review of Frequency Response Analysis Methods for Power Transformer Diagnostics. Energies 2016, 9, 879. [Google Scholar]
- Leibfried, T.; Feser, K. Monitoring of power transformers using the transfer function method. IEEE Trans. Power Deliv. 1999, 14, 1333–1341. [Google Scholar] [CrossRef]
- Lavrinovich, V.A.; Mytnikov, A.V. Development of pulsed method for diagnostics of transformer windings based on short probe impulse. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 2041–2045. [Google Scholar] [CrossRef]
- Behjat, V.; Vahedi, A.; Setayeshmehr, A.; Borsi, H.; Gockenbach, E. Sweep frequency response analysis for diagnosis of low level short circuit faults on the windings of power transformers: An experimental study. Int. J. Electr. Power Energy Syst. 2012, 42, 78–90. [Google Scholar] [CrossRef]
- Behjat, V.; Vahedi, A.; Setayeshmehr, A.; Borsi, H.; Gockenbach, E. Diagnosing shorted turns on the windings of power transformers based upon online FRA using capacitive and inductive couplings. IEEE Trans. Power Deliv. 2011, 26, 2123–2133. [Google Scholar] [CrossRef]
- Bagheri, M.; Naderi, M.S.; Blackburn, T.; Phung, B. Bushing characteristic impacts on on-line frequency response analysis of transformer winding. In Proceedings of the 2012 IEEE International Conference on Power and Energy (PECon), Kota Kinabalu, Malaysia, 2–5 December 2012; pp. 956–961. [Google Scholar]
- Leibfried, T.; Feser, K. On-line monitoring of transformers by means of the transfer function method. In Proceedings of the Conference Record of the 1994 IEEE International Symposium on Electrical Insulation, Pittsburgh, PA, USA, 5–8 June 1994; pp. 111–114. [Google Scholar]
- Wang, M. Winding Movement and Condition Monitoring of Power Transformers in Service; University of British Columbia: Vancouver, BC, Canada, 2003. [Google Scholar]
- De Rybel, T.; Singh, A.; Vandermaar, J.A.; Wang, M.; Marti, J.R.; Srivastava, K. Apparatus for online power transformer winding monitoring using bushing tap injection. IEEE Trans. Power Deliv. 2009, 24, 996–1003. [Google Scholar] [CrossRef]
- Yao, C.; Zhao, Z.; Chen, Y.; Zhao, X.; Li, Z.; Wang, Y.; Zhou, Z.; Wei, G. Transformer winding deformation diagnostic system using online high frequency signal injection by capacitive coupling. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 1486–1492. [Google Scholar] [CrossRef]
- Zhao, Z.; Yao, C.; Zhao, X.; Hashemnia, N.; Islam, S. Impact of capacitive coupling circuit on online impulse frequency response of a power transformer. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 1285–1293. [Google Scholar] [CrossRef]
- Hashemnia, N.; Abu-Siada, A.; Islam, S. Improved power transformer winding fault detection using FRA diagnostics—Part 1: Axial displacement simulation. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 556–563. [Google Scholar] [CrossRef]
- Saleh, S.M.; El-Hoshy, S.H.; Gouda, O.E. Proposed diagnostic methodology using the cross-correlation coefficient factor technique for power transformer fault identification. IET Electr. Power Appl. 2017, 11, 412–422. [Google Scholar] [CrossRef]
- Rahimpour, E.; Jabbari, M.; Tenbohlen, S. Mathematical comparison methods to assess transfer functions of transformers to detect different types of mechanical faults. IEEE Trans. Power Deliv. 2010, 25, 2544–2555. [Google Scholar] [CrossRef]
- Bigdeli, M.; Vakilian, M.; Rahimpour, E. Transformer winding faults classification based on transfer function analysis by support vector machine. IET Electr. Power Appl. 2012, 6, 268–276. [Google Scholar] [CrossRef]
- Bagheri, M.; Nezhivenko, S.; Phung, B. Loss of low-frequency data in on-line frequency response analysis of transformers. IEEE Electr. Insul. Mag. 2017, 33, 32–39. [Google Scholar] [CrossRef]
- Li, C.; Xia, Q.; Zhao, Z.; Yao, C.; Mi, Y.; Zhao, X.; Wang, J. Impact analysis of the capacitive coupling sensor on bushing external insulation. IET Gener. Transm. Distrib. 2016, 10, 3663–3670. [Google Scholar] [CrossRef]
- Yao, C.; Zhao, Z.; Li, C.; Chen, X.; Zhao, Y.; Zhao, X.; Wang, J.; Li, W. Noninvasive method for online detection of internal winding faults of 750 kV EHV shunt reactors. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 2833–2840. [Google Scholar] [CrossRef]
- Gomez-Luna, E.; Mayor, G.A.; Gonzalez-Garcia, C.; Guerra, J.P. Current status and future trends in frequency-response analysis with a transformer in service. IEEE Trans. Power Deliv. 2013, 28, 1024–1031. [Google Scholar] [CrossRef]
- Tenbohlen, S.; Coenen, S.; Djamali, M.; Müller, A.; Samimi, M.; Siegel, M. Diagnostic Measurements for Power Transformers. Energies 2016, 9, 347. [Google Scholar] [CrossRef]
- Yang, Q.; Su, P.; Chen, Y. Comparison of Impulse Wave and Sweep Frequency Response Analysis Methods for Diagnosis of Transformer Winding Faults. Energies 2017, 10, 431. [Google Scholar] [CrossRef]
- Abu-Siada, A.; Hashemnia, N.; Islam, S.; Masoum, M.A. Understanding power transformer frequency response analysis signatures. IEEE Electr. Insul. Mag. 2013, 29, 48–56. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Sofian, D.M. Interpretation of transformer FRA responses—Part I: Influence of winding structure. IEEE Trans. Power Deliv. 2009, 24, 703–710. [Google Scholar] [CrossRef]
- Samimi, M.H.; Tenbohlen, S. FRA interpretation using numerical indices: State-of-the-art. Int. J. Electr. Power Energy Syst. 2017, 89, 115–125. [Google Scholar] [CrossRef]
- Cherkassky, V.; Ma, Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw. 2004, 17, 113–126. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
No. | Connector | No. | Connector |
---|---|---|---|
1 | 1-2 | 9 | 2-6 |
2 | 1-3 | 10 | 3-4 |
3 | 1-4 | 11 | 3-5 |
4 | 1-5 | 12 | 3-6 |
5 | 1-6 | 13 | 4-5 |
6 | 2-3 | 14 | 4-6 |
7 | 2-4 | 15 | 5-6 |
8 | 2-5 |
No. | Disk Numbers | Degree | Direction | Location |
---|---|---|---|---|
1 | 2 | 5% | 1 | A |
2 | 2 | 7% | 1 | A |
3 | 2 | 10% | 1 | A |
4 | 2 | 5% | 2 | A |
5 | 2 | 5% | 3 | A |
6 | 2 | 5% | 4 | A |
7 | 10 | 5% | 1 | A~E |
8 | 10 | 7% | 1 | A~E |
9 | 10 | 10% | 1 | A~E |
10 | 10 | 5% | 2 | A~E |
11 | 10 | 5% | 3 | A~E |
12 | 10 | 5% | 4 | A~E |
13 | 2 | 10% | 1 | B |
14 | 2 | 10% | 1 | C |
15 | 2 | 10% | 1 | D |
16 | 2 | 10% | 1 | E |
No. | Connector | Degree | No. | Connector | Degree |
---|---|---|---|---|---|
1 | 1-2 | 5% | 9 | 2-3 | 30% |
2 | 1-2 | 10% | 10 | 2-3 | 40% |
3 | 1-2 | 20% | 11 | 3-4 | 5% |
4 | 1-2 | 30% | 12 | 3-4 | 10% |
5 | 1-2 | 40% | 13 | 3-4 | 20% |
6 | 2-3 | 5% | 14 | 3-4 | 30% |
7 | 2-3 | 10% | 15 | 3-4 | 40% |
8 | 2-3 | 20% |
No. | Fault Types | Diagnostic Result | Diagnostic Accuracy Rate |
---|---|---|---|
1 | SC | SC | 100% |
2 | SC | SC | |
3 | SC | SC | |
4 | SC | SC | |
5 | SC | SC | |
6 | RD | RD | 80% |
7 | RD | RD | |
8 | RD | DSV | |
9 | RD | RD | |
10 | RD | RD | |
11 | DSV | DSV | 80% |
12 | DSV | DSV | |
13 | DSV | SC | |
14 | DSV | DSV | |
15 | DSV | DSV | |
Average accuracy rate | 86.7% |
No. | Diagnostic Accuracy Rate |
---|---|
1 | 73.3% |
2 | 66.7% |
3 | 80.0% |
4 | 77.3% |
5 | 86.7% |
6 | 77.3% |
7 | 73.3% |
8 | 80.0% |
9 | 80.0% |
10 | 86.7% |
Average | 78.1% |
No. | Fault Types | Diagnostic Result | Diagnostic Accuracy Rate |
---|---|---|---|
1 | SC | SC | 100% |
2 | SC | SC | |
3 | SC | SC | |
4 | SC | SC | |
5 | SC | SC | |
6 | RD | RD | 100% |
7 | RD | RD | |
8 | RD | RD | |
9 | RD | RD | |
10 | RD | RD | |
11 | DSV | DSV | 80% |
12 | DSV | DSV | |
13 | DSV | RD | |
14 | DSV | DSV | |
15 | DSV | DSV | |
Average accuracy rate | 93.3% |
No. | Diagnostic Accuracy Rate |
---|---|
1 | 100.0% |
2 | 73.3% |
3 | 93.3% |
4 | 80.0% |
5 | 86.7% |
6 | 80.0% |
7 | 80.0% |
8 | 86.7% |
9 | 73.3% |
10 | 80.0% |
Average | 83.3% |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Tang, C.; Zhou, Q.; Xu, L.; Gui, Y.; Yao, C. Identification of Power Transformer Winding Mechanical Fault Types Based on Online IFRA by Support Vector Machine. Energies 2017, 10, 2022. https://doi.org/10.3390/en10122022
Zhao Z, Tang C, Zhou Q, Xu L, Gui Y, Yao C. Identification of Power Transformer Winding Mechanical Fault Types Based on Online IFRA by Support Vector Machine. Energies. 2017; 10(12):2022. https://doi.org/10.3390/en10122022
Chicago/Turabian StyleZhao, Zhongyong, Chao Tang, Qu Zhou, Lingna Xu, Yingang Gui, and Chenguo Yao. 2017. "Identification of Power Transformer Winding Mechanical Fault Types Based on Online IFRA by Support Vector Machine" Energies 10, no. 12: 2022. https://doi.org/10.3390/en10122022
APA StyleZhao, Z., Tang, C., Zhou, Q., Xu, L., Gui, Y., & Yao, C. (2017). Identification of Power Transformer Winding Mechanical Fault Types Based on Online IFRA by Support Vector Machine. Energies, 10(12), 2022. https://doi.org/10.3390/en10122022