Thermal Impact Analysis of Circulating Current in High Power Modular Online Uninterruptible Power Supplies Application
Abstract
:1. Introduction
2. System Control Mechanism
2.1. Single Module Control
2.2. Power Balance among Modules
2.3. Voltage Amplitude and Phase Synchronized
2.4. Cycle and Plug’n’Play Control
3. Experimental Results
3.1. Modules Plug’n’Play Performance
3.2. Cycle Control Transient Performance
4. Thermal Analysis Results
4.1. Single DC/AC Module
4.2. DC/AC Modules with Zero Sequence Circulating Current
4.3. DC/AC Modules with Suppressed Zero Sequence Circulating Current
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Majumder, R.; Ghosh, A.; Ledwich, G.; Zare, F. Load sharing and power quality enhanced operation of a distributed microgrid. IET Renew. Power Gener. 2009, 3, 109–119. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Chen, Z. Overview of different wind generator systems and their comparisons. IET Renew. Power Gener. 2008, 2, 123–138. [Google Scholar] [CrossRef]
- Chiang, H.C.; Ma, T.T.; Cheng, Y.H.; Chang, J.M.; Chang, W.N. Design and implementation of a hybrid regenerative power system combining grid-tie and uninterruptible power supply functions. IET Renew. Power Gener. 2010, 4, 85–99. [Google Scholar] [CrossRef]
- Kim, E.-H.; Kwon, J.-M.; Kwon, B.-H. Transformerless three-phase on-line UPS with high performance. IET Power Electron. 2009, 2, 103–112. [Google Scholar] [CrossRef]
- Yeh, C.C.; Manjrekar, M.D. A reconfigurable uninterruptible power supply system for multiple power quality applications. IEEE Trans. Power Electron. 2007, 22, 1361–1372. [Google Scholar] [CrossRef]
- Zhao, B.; Song, Q.; Liu, W.; Xiao, Y. Next-generation multi-functional modular intelligent UPS system for smart grid. IEEE Trans. Ind. Electron. 2013, 60, 3602–3618. [Google Scholar] [CrossRef]
- Shahparasti, M.; Yazdian, A.; Mohamadian, M.; Larijani, A.S.; Fatemi, A. Parallel uninterruptible power supplies based on Z-source inverters. IET Power Electron. 2012, 5, 1359–1366. [Google Scholar] [CrossRef]
- Sato, E.K.; Kinoshita, M.; Yamamoto, Y.; Amboh, T. Redundant high-density high-efficiency double-conversion uninterruptible power system. IEEE Trans. Ind. Appl. 2010, 46, 1525–1533. [Google Scholar] [CrossRef]
- Kawabata, T.; Higashino, S. Parallel operation of voltage source inverters. IEEE Trans. Ind. Appl. 1988, 24, 281–287. [Google Scholar] [CrossRef]
- Dixon, J.W.; Ooi, B.T. Series and parallel operation of hysteresis current-controlled PWM rectifiers. IEEE Trans. Ind. Appl. 1989, 25, 644–651. [Google Scholar] [CrossRef]
- Komatsuzaki, Y. Cross current control for parallel operating three phase inverter. In Proceedings of the 25th Annual IEEE Power Electronics Specialists Conference, Taipei, Taiwan, 20–25 June 1994; Volume 2, pp. 943–950.
- Matsui, K.; Murai, Y.; Watanabe, M.; Kaneko, M.; Ueda, F. A pulse width-modulated inverter with parallel connected transistors using current-sharing reactors. IEEE Trans. Power Electron. 1993, 8, 186–191. [Google Scholar] [CrossRef]
- Sato, Y.; Kataoka, T. Simplified control strategy to improve AC-input-current waveform of parallel-connected current-type PWM rectifiers. IEE Proc. Electr. Power Appl. 1995, 142, 246–254. [Google Scholar] [CrossRef]
- Ogasawara, S.; Takagaki, J.; Akagi, H.; Nabae, A. A novel control scheme of a parallel current-controlled PWM inverter. IEEE Trans. Ind. Appl. 1992, 28, 1023–1030. [Google Scholar] [CrossRef]
- Chunwei, S.; Rongxiang, Z.; Minglei, Z.; Zheng, Z. Operation method for parallel inverter system with common dc link. IET Power Electron. 2014, 7, 1138–1147. [Google Scholar]
- Fukuda, S.; Matsushita, K. A control method for parallel-connected multiple inverter systems. In Proceedings of the 1998 Seventh International Conference on Power Electronics and Variable Speed Drives, London, UK, 21–23 September 1998; pp. 175–180.
- Abe, R.; Nagai, Y.; Tsuyuki, K.; Nishikawa, H.; Shimamura, T.; Kawaguchi, A.; Shimada, K. Development of multiple space vector control for direct connected parallel current source power converters. In Proceedings of the Power Conversion Conference—Nagaoka 1997, Nagaoka, Japan, 3–6 August 1997; Volume 1, pp. 283–288.
- Ye, Z.; Boroyevich, D.; Jae-Young, C.; Lee, F.C. Control of circulating current in two parallel three-phase boost rectifiers. IEEE Trans. Power Electron. 2002, 17, 609–615. [Google Scholar]
- Jassim, B.M.H.; Zahawi, B.; Atkinson, D. Simple control method for parallel connected three-phase PWM converters. In Proceedings of the 6th IET International Conference on Power Electronics, Machines and Drives (PEMD 2012), Bristol, UK, 27–29 March 2012; pp. 1–5.
- Shao, Z.; Zhang, X.; Wang, F.; Cao, R. Modeling and elimination of zero-sequence circulating currents in parallel three-level t-type grid-connected inverters. IEEE Trans. Power Electron. 2015, 30, 1050–1063. [Google Scholar] [CrossRef]
- Wang, W.; Zeng, X.; Tang, X.; Tang, C. Analysis of microgrid inverter droop controller with virtual output impedance under non-linear load condition. IET Power Electron. 2014, 7, 1547–1556. [Google Scholar] [CrossRef]
- Ma, H.; Lin, Z.; Lin, L.; Zhang, Y.; Wang, X. Flexible power weighting distribution for three-phase parallel inverters with networked control. IET Power Electron. 2015, 8, 1181–1194. [Google Scholar] [CrossRef]
- Sun, X.; Tian, Y.; Chen, Z. Adaptive decoupled power control method for inverter connected DG. IET Renew. Power Gener. 2014, 8, 171–182. [Google Scholar] [CrossRef]
- Guerrero, J.M.; Matas, J.; Vicuna, L.; Castilla, M.; Miret, J. Decentralized Control for Parallel Operation of Distributed Generation Inverters Using Resistive Output Impedance. IEEE Trans. Ind. Electron. 2007, 54, 994–1004. [Google Scholar] [CrossRef]
- Planas, E.; Gil-de-Muro, A.; Andreu, J.; Kortabarria, I.; de Alegría, I.M. Design and implementation of a droop control in d-q frame for islanded microgrids. IET Renew. Power Gener. 2013, 7, 458–474. [Google Scholar] [CrossRef]
- Nutkani, I.U.; Poh Chiang, L.; Blaabjerg, F. Cost-based droop scheme with lower generation costs for microgrids. IET Power Electron. 2014, 7, 1171–1180. [Google Scholar] [CrossRef]
- ABB Application Note: Applying IGBTs; ABB Switzerland Ltd Semiconductors: Lenzburg, Switzerland, 2007.
- Intelligent MicroGrids Laboratory. Available online: http://www.microgrids.et.aau.dk (accessed on 1 July 2016).
- Wei, L.; McGuire, J.; Lukaszewski, R.A. Analysis of PWM frequency control to improve the lifetime of PWM inverter. In Proceedings of the 2009 IEEE Energy Conversion Congress and Exposition (ECCE 2009), San Jose, CA, USA, 20–24 September 2009; pp. 900–907.
- ABB Hipak, IGBT Module 5SND 0800M170100; ABB Switzerland Ltd Semiconductors: Lenzburg, Switzerland, 2014.
- SG Series UPS 10–600 kVA Three Phase 400 Vac with Ultra-High Efficiency eBoostTM Technology; General Electric Company: Boston, MA, USA, 2013.
Nominal Power | Switch Frequency | DC Side | Bus Voltage | Bus Current |
---|---|---|---|---|
200 kW | 5 kHz | 700 V | 230 V | 290 A |
Phase Number | Topology | Filter | Inductor | Capacitance |
3 | H_bridge | LC filter | 1.8 mH | 27 μF |
Load Type | Voltage Variation (%) | Dynamic Time Requirement (ms) |
---|---|---|
Linear Load | 14 | 20–40 |
12 | 40–60 | |
11 | 60–100 | |
10 | 100–1000 | |
Nonlinear Load | 12 | 40–60 |
11 | 60–100 | |
10 | 100–1000 |
Thermal Impedance | ZT/D(j-c) | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
RiIGBT (K/kW) | 15.2 | 3.6 | 1.49 | 0.74 |
τiIGBT (ms) | 202 | 20.3 | 2.01 | 0.52 |
RiDiode (K/kW) | 25.3 | 5.78 | 2.6 | 2.52 |
τiIGBT (ms) | 210 | 29.6 | 7.01 | 1.49 |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Guerrero, J.M.; Vasquez, J.C. Thermal Impact Analysis of Circulating Current in High Power Modular Online Uninterruptible Power Supplies Application. Energies 2017, 10, 50. https://doi.org/10.3390/en10010050
Zhang C, Guerrero JM, Vasquez JC. Thermal Impact Analysis of Circulating Current in High Power Modular Online Uninterruptible Power Supplies Application. Energies. 2017; 10(1):50. https://doi.org/10.3390/en10010050
Chicago/Turabian StyleZhang, Chi, Josep M. Guerrero, and Juan C. Vasquez. 2017. "Thermal Impact Analysis of Circulating Current in High Power Modular Online Uninterruptible Power Supplies Application" Energies 10, no. 1: 50. https://doi.org/10.3390/en10010050
APA StyleZhang, C., Guerrero, J. M., & Vasquez, J. C. (2017). Thermal Impact Analysis of Circulating Current in High Power Modular Online Uninterruptible Power Supplies Application. Energies, 10(1), 50. https://doi.org/10.3390/en10010050