Integrative Innovation in Genioplasty: Advanced 3D Plate Design: Promoting Stability, Aesthetics, and Harmony Excellence
Abstract
1. Introduction
2. Materials and Methods
2.1. New Design
2.2. Modeling and Mechanical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shokri, T.; Rosi-Schumacher, M.; Petrauskas, L.; Chan, D.; Ducic, Y. Genioplasty and Mandibular Implants. Facial Plast. Surg. 2021, 37, 709. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, C.; Reyneke, J.P. Genioplasty. Atlas Oral Maxillofac. Surg. Clin. N. Am. 2016, 24, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Tabrizi, R.; Behnia, P.; Kavianipour, M.; Behnia, H. Osseous genioplasty versus chin implants: Early complications and patient satisfaction. Int. J. Oral Maxillofac. Surg. 2024, 53, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Choi, A.H.; Ben-Nissan, B.; Conway, R.C. Three-dimensional modelling and finite element analysis of the human mandible during clenching. Aust. Dent. J. 2005, 50, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Stróżyk, P.; Bałchanowski, J. Application of numerical simulation studies to determine dynamic loads acting on the human masticatory system during unilateral chewing of selected foods. Front. Bioeng. Biotechnol. 2023, 11, 993274. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Singh, R.S.; Singh, G.; Raj, P.; Gupta, H.; Kasrija, R. Hard and soft tissue relapse after different genioplasty procedures: A scoping review. Cureus 2023, 15, e41478. [Google Scholar] [CrossRef] [PubMed]
- Cordier, G.; Sigaux, N.; Rasteau, S.; Ibrahim, B.; Cresseaux, P. Long-term stability of basilar mandible osteotomy: Chin Wing. J. Stomatol. Oral Maxillofac. Surg. 2022, 123, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Leon, N.J.; Péres, A.J.P.; Requejo, S.; Goméz, D.; Barros, H.L.M. Telescopic genioplasty: A new concept to reshape the chin. Adv. Oral Maxillofac. Surg. 2021, 4, 10076. [Google Scholar] [CrossRef]
- Guerra, R.C.; de Fátima Borim Pulino, B.; Salomão Júnior, V.F.; Dos Santos Pereira, R.; Thieringer, F.M.; Sacco, R.; Sader, R.; Vieira, E.H. Finite element analysis of low-profile reconstruction plates for atrophic mandibles: A comparison of novel 3D grid and conventional plate designs. Oral Maxillofac. Surg. 2024, 28, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Gulsever, S.; Munevveroglu, S.; Hartomacioglu, S.; Guldiken, I.N.; Uckan, S. Comparison of screw and plate osteosynthesis in advancement genioplasty: A finite element analysis study. Eur. Oral Res. 2025, 59, 40–45. [Google Scholar] [CrossRef]
- Akkoyun, E.F.; Pergel, T. Finite element analysis of shape and thickness variations in patient-specific implants for T-shaped genioplasty. Med. Oral Patol. Oral Cir. Bucal. 2025, 30, e528–e535. [Google Scholar] [CrossRef] [PubMed]
- Ramos, V.F.; Pinto, L.A.P.F.; Basting, R.T. Force and deformation stresses in customized and non-customized plates during simulation of advancement genioplasty. J. Cranio-Maxillofac. Surg. 2017, 45, 1820–1827. [Google Scholar] [CrossRef] [PubMed]
- Jindal, P.; Worcester, F.; Gupta, A.; Breedon, P. Efficiency of nanoparticle reinforcement using finite element analysis of titanium alloy mandible plate. Proc. Inst. Mech. Eng. H 2019, 233, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Tazh, T.; Khorramymehr, S.; Hassani, K.; Nikkhoo, M. Finite element analysis of various fixation patterns in mandible bone fracture. Comput. Methods Biomech. Biomed. Eng. 2025, 13, 1–16. [Google Scholar] [CrossRef] [PubMed]
- da Silveira, M.L.M.; de Oliveira Bueno, M.L.; da Silva, J.S.P.; Germano, A.R. Biomechanical analysis in mandibular advancement and occlusal plane rotation with finite element analysis. Br. J. Oral Maxillofac. Surg. 2021, 59, 362–367. [Google Scholar] [CrossRef] [PubMed]
Criterion | CP | ACP |
---|---|---|
Plate A (Conventional) | B-Plate (Anatomical) | |
Maximum tension (von Mises) | 398.48 MPa | 77.19 MPa |
Critical Concentration Site | Between the center holes | Around the side holes |
Risk of plastic deformation | Moderate | Low |
Stress distribution | Concentrated | Homogeneous |
Potential for fatigue failure | Bigger | Minor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the AO Foundation. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prado, B.N.; Pereira, L.C.; Pulino, B.; Guerra, R.C. Integrative Innovation in Genioplasty: Advanced 3D Plate Design: Promoting Stability, Aesthetics, and Harmony Excellence. Craniomaxillofac. Trauma Reconstr. 2025, 18, 42. https://doi.org/10.3390/cmtr18030042
Prado BN, Pereira LC, Pulino B, Guerra RC. Integrative Innovation in Genioplasty: Advanced 3D Plate Design: Promoting Stability, Aesthetics, and Harmony Excellence. Craniomaxillofacial Trauma & Reconstruction. 2025; 18(3):42. https://doi.org/10.3390/cmtr18030042
Chicago/Turabian StylePrado, Bruno Nifossi, Lucas Cavalieri Pereira, Bianca Pulino, and Raphael Capelli Guerra. 2025. "Integrative Innovation in Genioplasty: Advanced 3D Plate Design: Promoting Stability, Aesthetics, and Harmony Excellence" Craniomaxillofacial Trauma & Reconstruction 18, no. 3: 42. https://doi.org/10.3390/cmtr18030042
APA StylePrado, B. N., Pereira, L. C., Pulino, B., & Guerra, R. C. (2025). Integrative Innovation in Genioplasty: Advanced 3D Plate Design: Promoting Stability, Aesthetics, and Harmony Excellence. Craniomaxillofacial Trauma & Reconstruction, 18(3), 42. https://doi.org/10.3390/cmtr18030042