Craniofacial Bone Grafting: Wolff's Law Revisited
Abstract
:HISTORY
BONE GRAFT PHYSIOLOGY
Osteogenesis
Osteoconduction
Osteoinduction
Cancellous Bone Graft Incorporation
Cortical Bone Graft Incorporation
Biochemical Phenomena
GROWTH FACTORS
OSTEOINDUCTIVE FACTORS
FACTORS AFFECTING BONE GRAFT SURVIVAL
Graft Orientation
Embryonic Origin
Periosteum
Rigid Fixation
Revascularization
Recipient Site
Mechanical Stress
CLINICAL APPLICATIONS
Donor Sites
Vascularized Bone Transfer
Allogenic Bone Grafts
Bone Substitutes
CALCIUM SULFATES
CALCIUM PHOSPHATES
METHYL METHACRYLATE
CONCLUSION
References
- Frommelt, H. Polymers for medical applications. Macromol Chem Makromol Symp 1987, 12, 281. [Google Scholar]
- Van Meekren, J. Observationes Medicochirurgicae; Henrici and Bloom: Amsterdam, The Netherlands, 1682. [Google Scholar]
- Ollier, L. Traite Experimental et Linique de la Regeneration des Os et de la Production Artificielle du Tissue Osseux; Masson et Fils: Paris, France, 1867. [Google Scholar]
- Macewen, W. The Growth of Bone; J Maclehose and Sons: Glasgow, Scotland, 1912. [Google Scholar]
- Barth, A. Uber histologische Befunde nach Knochenimplantation. Arch Klin Chir 1893, 46, 409. [Google Scholar]
- Axhausen, G. Histologische Untersuchungen uber Knochentransplantation am Menschen. Dtsch Z Chir 1907, 91, 388. [Google Scholar]
- Phemister, D. The fate of transplanted bone and regenerative power of its various constituents. Surg Gynecol Obstet 1914, 19, 303. [Google Scholar]
- Gallie, W.; Robertson, D. Transplantation of bone. JAMA 1918, 70, 1134. [Google Scholar]
- Mowlem, R. Cancellous chip bone grafts: report on 75 cases. Lancet 1944, 2, 746. [Google Scholar]
- Burchardt, H. Biology of bone transplantation. Orthop Clin North Am 1987, 18, 187–196. [Google Scholar] [CrossRef]
- Mulliken, J.B.; Kaban, L.B.; Glowacki, J. Induced osteogenesis: the biological principle and clinical applications. J Surg Res 1984, 37, 487–496. [Google Scholar]
- Heslop, B.F.; Zeiss, I.M.; Nisbet, N.W. Studies on transference of bone: I. A comparison of autologous and homologous bone implants with reference to osteocyte survival, osteogenesis, and host reaction. Br J Exp Pathol 1960, 41, 269–287. [Google Scholar]
- Gross, T.P.; Jinnah, R.H.; Clarke, H.J.; Cox, Q.G. The biology of bone grafting. Orthopedics 1991, 14, 563–568. [Google Scholar]
- Schmitz, J.P.; Hollinger, J.O. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res 1986, 205, 299–308. [Google Scholar] [CrossRef]
- Stevenson, S.; Emery, S.E.; Goldberg, V.M. Factors affecting bone graft incorporation. Clin Orthop Relat Res 1996, 324, 66–74. [Google Scholar] [CrossRef]
- Pinholt, E.M.; Solheim, E.; et al. Revascularization of calvarial, mandibular, tibial, and iliac bone grafts in rats. Ann Plast Surg 1994, 33, 193–197. [Google Scholar] [CrossRef]
- Burchardt, H. The biology of bone graft repair. Clin Orthop Relat Res 1983, 178, 28–42. [Google Scholar] [CrossRef]
- Heiple, K.G.; Goldberg, V.M.; Powell, A.E.; Bos, G.D.; Zika, J.M. Biology of cancellous bone grafts. Orthop Clin North Am 1987, 18, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.T.; Glowacki, J.; Bucky, L.P.; Hong, H.Z.; Kim, W.K.; Yaremchuk, M.J. The roles of revascularization and resorption on endurance of craniofacial onlay bone grafts in the rabbit. Plast Reconstr Surg 1994, 93, 714–722. [Google Scholar] [CrossRef]
- Ozaki, W.; Buchman, S.R. Volume maintenance of onlay bone grafts in the craniofacial skeleton: micro-architecture versus embryologic origin. Plast Reconstr Surg 1998, 102, 291–299. [Google Scholar] [CrossRef]
- Reddi, A.H.; Ma, S.S.; Cunningham, N.S. Induction and maintenance of new bone formation by growth and differentiation factors. Ann Chir Gynaecol 1988, 77, 189–192. [Google Scholar]
- Linkhart, T.A.; Mohan, S.; Baylink, D.J. Growth factors for bone growth and repair: IGF, TGF beta, and BMP. Bone 1996, 19, 1S–12S. [Google Scholar] [CrossRef]
- Joyce, M.E.; Jingushi, S.; Bolander, M.E. Transforming growth factor-beta in the regulation of fracture repair. Orthop Clin North Am 1990, 21, 199–209. [Google Scholar] [CrossRef]
- Hong, L.; Tabata, Y.; Miyamoto, S.; et al. Bone regeneration at rabbit skull defects treated with transforming growth factor-beta1 incorporated into hydrogels with different levels of biodegradability. J Neurosurg 2000, 92, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Arnaud, E.; Morieux, C.; Wybier, M.; de Vernejoul, M.C. Potentiation of transforming growth factor (TGF-beta 1) by natural coral and fibrin in a rabbit cranioplasty model. Calcif Tissue Int 1994, 54, 493–498. [Google Scholar]
- Barnes, G.L.; Kostenuik, P.J.; Gerstenfeld, L.C.; Einhorn, T.A. Growth factor regulation of fracture repair. J Bone Miner Res 1999, 14, 1805–1815. [Google Scholar]
- Eppley, B.L.; Doucet, M.; Connolly, D.T.; Feder, J. Enhancement of angiogenesis by bFGF in mandibular bone graft healing in the rabbit. J Oral Maxillofac Surg 1988, 46, 391–398. [Google Scholar] [PubMed]
- Urist, M.R. Bone: formation by autoinduction. Science 1965, 150, 893–899. [Google Scholar] [CrossRef]
- Urist, M.R.; DeLange, R.J.; Finerman, G.A. Bone cell differentiation and growth factors. Science 1983, 220, 680–686. [Google Scholar] [PubMed]
- Spector, J.A.; Luchs, J.S.; Mehrara, B.J.; et al. Expression of bone morphogenetic proteins during membranous bone healing. Plast Reconstr Surg 2001, 107, 124–134. [Google Scholar]
- Ferguson, D.; Davis, W.L.; Urist, M.R.; Hurt, W.C.; Allen, E.P. Bovine bone morphogenetic protein (bBMP) fractioninduced repair of craniotomy defects in the rhesus monkey (Macaca speciosa). Clin Orthop Relat Res 1987, 219, 251–258. [Google Scholar]
- Lindholm, T.C.; Lindholm, T.S.; Alitalo, I.; Urist, M.R. Bovine bone morphogenetic protein (bBMP) induced repair of skull trephine defects in sheep. Clin Orthop Relat Res 1988, 227, 265–268. [Google Scholar] [CrossRef]
- Sato, K.; Urist, M.R. Induced regeneration of calvaria by bone morphogenetic protein (BMP) in dogs. Clin Orthop Relat Res 1985, 197, 301–311. [Google Scholar]
- Sailer, H.F.; Kolb, E. Application of purified bone morphogenetic protein (BMP) preparations in cranio-maxillo-facial surgery: reconstruction in craniofacial malformations and post-traumatic or operative defects of the skull with lyophilized cartilage and BMP. J Craniomaxillofac Surg 1994, 22, 191–199. [Google Scholar]
- Hardesty, R.A.; Marsh, J.L. Craniofacial onlay bone grafting: a prospective evaluation of graft morphology, orientation, and embryonic origin. Plast Reconstr Surg 1990, 85, 5–14. [Google Scholar] [PubMed]
- Mowlem, R. Bone grafting. Br J Plast Surg 1963, 16, 293–304. [Google Scholar]
- Sullivan, W.G.; Szwajkun, P.R. Revascularization of cranial versus iliac crest bone grafts in the rat. Plast Reconstr Surg 1991, 87, 1105–1109. [Google Scholar] [PubMed]
- Peer, L.A. The fate of autogenous human bone grafts. Br J Plast Surg 1951, 3, 233–243. [Google Scholar]
- Smith, J.D.; Abramson, M. Membranous vs endochondral bone autografts. Arch Otolaryngol 1974, 99, 203–205. [Google Scholar]
- Zins, J.E.; Whitaker, L.A. Membranous versus endochondral bone: implications for craniofacial reconstruction. Plast Reconstr Surg 1983, 72, 778–785. [Google Scholar] [PubMed]
- Hardesty, R.A.; Marsh, J.L. Craniofacial onlay bone grafting: a prospective evaluation of graft morphology, orientation, and embryonic origin. Plast Reconstr Surg 1990, 85, 5–14. [Google Scholar]
- Buchman, S.R.; Ozaki, W. The ultrastructural and resorptive pattern of cancellous onlay bone grafts in the craniofacial skeleton. Ann Plast Surg 1999, 43, 49–56. [Google Scholar]
- Thompson, N.; Casson, J.A. Experimental onlay bone grafts to the jaws: a preliminary study in dogs. Plast Reconstr Surg 1970, 46, 341–349. [Google Scholar]
- Knize, D.M. The influence of periosteum and calcitonin on onlay bone graft survival: a roentgenographic study. Plast Reconstr Surg 1974, 53, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Burstein, F.D.; Ariyan, S.; Chicarilli, Z.; Canalis, R.F. The effect of periosteal preservation on osteogenesis in a canine rib autograft model: tetracycline fluorescence incident photometry. J Craniofac Surg 1994, 5, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.H.; Rahn, B.A. Fixation effects on membranous and endochondral onlay bone-graft resorption. Plast Reconstr Surg 1988, 82, 872–877. [Google Scholar] [CrossRef]
- Lin, K.Y.; Bartlett, S.P.; Yaremchuk, M.J.; Fallon, M.; Grossman, R.F.; Whitaker, L.A. The effect of rigid fixation on the survival of onlay bone grafts: an experimental study. Plast Reconstr Surg 1990, 86, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Jackson, I.T.; Choi, H.Y.; Clay, R.; et al. Long-term follow-up of cranial bone graft in dorsal nasal augmentation. Plast Reconstr Surg 1998, 102, 1869–1873. [Google Scholar] [CrossRef]
- Lukash, F.N.; Zingaro, E.A.; Salig, J. The survival of free nonvascularized bone grafts in irradiated areas by wrapping in muscle flaps. Plast Reconstr Surg 1984, 74, 783–788. [Google Scholar] [CrossRef]
- Ermis, I.; Poole, M. The effects of soft tissue on bone graft resorption in the craniofacial region. Br J Plast Surg 1992, 45, 26–29. [Google Scholar] [CrossRef]
- Enlow, D.H. The Handbook of Facial Growth; WB Saunders: Philadelphia, PA, USA, 1982. [Google Scholar]
- Zins, J.E.; Kusiak, J.F.; Whitaker, L.A.; Enlow, D.H. The influence of the recipient site on bone grafts to the face. Plast Reconstr Surg 1984, 73, 371–381. [Google Scholar] [CrossRef]
- Whitaker, L.A. Biological boundaries: a concept in facial skeletal restructuring. Clin Plast Surg 1989, 16, 1–10. [Google Scholar] [CrossRef]
- Moss, M.L. Facial growth: the functional matrix concept. In Cleft Lip and Palate; Grabb, W.C., Rosenstein, S.W., Bzoch, K.R., Eds.; Little, Brown & Co.: Boston, 1971. [Google Scholar]
- Salter, R.B. Textbook of Disorders and Injuries of the Musculoskeletal System, 1st ed; Williams & Wilkins: Baltimore, MD, USA, 1970. [Google Scholar]
- LaTrenta, G.S.; McCarthy, J.G.; Breitbart, A.S.; May, M.; Sissons, H.A. The role of rigid skeletal fixation in a bone-graft augmentation of the craniofacial skeleton. Plast Reconstr Surg 1989, 84, 578–588. [Google Scholar] [CrossRef]
- Rosenthal, A.H.; Buchman, S.R. Volume maintenance of inlay bone grafts in the craniofacial skeleton. Plast Reconstr Surg 2003, 112, 802–811. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, J.; Mase, C.; Newman, M.H. Fixed membranous bone graft survival after recipient bed alteration. Plast Reconstr Surg 1993, 91, 589–596. [Google Scholar] [CrossRef]
- Buchman, S.R.; Tong, L. Facial bone grafts: contemporary science and thought. J Craniomaxillofac Trauma 2000, 6, 31–41. [Google Scholar]
- Wang, N.; Butler, J.P.; Ingber, D.E. Mechanotransduction across the cell surface and through the cytoskeleton. Science 1993, 260, 1124–1127. [Google Scholar] [CrossRef] [PubMed]
- Bierbaum, S.; Notbohm, H. Tyrosine phosphorylation of 40 kDa proteins in osteoblastic cells after mechanical stimulation of beta1-integrins. Eur J Cell Biol 1998, 77, 60–67. [Google Scholar] [CrossRef]
- Rhee, S.T.; El-Bassiony, L.; Buchman, S.R. Extracellular signal-related kinase and bone morphogenetic protein expression during distraction osteogenesis of the mandible: in vivo evidence of a mechanotransduction mechanism for differentiation and osteogenesis by mesenchymal precursor cells. Plast Reconstr Surg 2006, 117, 2243–2249. [Google Scholar] [CrossRef]
- Rhee, S.T.; Buchman, S.R. Colocalization of c-Src (pp60src) and bone morphogenetic protein 2/4 expression during mandibular distraction osteogenesis: in vivo evidence of their role within an integrin-mediated mechanotransduction pathway. Ann Plast Surg 2005, 55, 207–215. [Google Scholar] [CrossRef]
- Bonanno, P.C.; Converse, J.M. Primary bone grafting in management for facial fractures. N Y State J Med 1975, 75, 710–712. [Google Scholar]
- Gruss, J.S.; Mackinnon, S.E.; Kassel, E.E.; Cooper, P.W. The role of primary bone grafting in complex craniomaxillofacial trauma. Plast Reconstr Surg 1985, 75, 17–24. [Google Scholar] [CrossRef]
- Manson, P.N.; Crawley, W.A.; et al. Midface fractures: advantages of immediate extended open reduction and bone grafting. Plast Reconstr Surg 1985, 76, 1–12. [Google Scholar] [CrossRef]
- Blair, V. Surgery and Disease of the Mouth and Jaws; CV Mosby; CV Mosby: St. Louis, MI, USA, 1918. [Google Scholar]
- Screening and Testing of Donors of Human Tissue Intended for Transplantation; U.S. Department of Health and Human Services, Food and Drug Administration, Center for Biologics Evaluation and Research: Washington, DC, USA, 1997.
- Buck, B.E.; Malinin, T.I.; Brown, M.D. Bone transplantation and human immunodeficiency virus: an estimate of risk of acquired immunodeficiency syndrome (AIDS). Clin Orthop Relat Res 1989, 240, 129–136. [Google Scholar] [CrossRef]
- Voggenreiter, G.; Ascherl, R.; Blumel, G.; Schmit-Neuerburg, K.P. Effects of preservation and sterilization on cortical bone grafts: a scanning electron microscopic study. Arch Orthop Trauma Surg 1994, 113, 294–296. [Google Scholar] [PubMed]
- Dreesman, J. Uber Knochenplombierung. Beiter Klin Chir 1892, 9, 804–810. [Google Scholar]
- Mehrara, B.J.; McCarthy, J.C. Repair and Grafting of Bone in Mathes’ Plastic Surgery, 2nd ed.; Elsevier: Philadelphia, PA, USA, 2006. [Google Scholar]
- Kwon, H.J.; el Deeb, M.; Morstad, T.; Waite, D. Alveolar ridge maintenance with hydroxylapatite ceramic cones in humans. J Oral Maxillofac Surg 1986, 44, 503–508. [Google Scholar]
- El Deeb, M.; Tompach, P.C.; Morstad, A.T.; Kwon, P. Longterm follow-up of the use of nonporous hydroxyapatite for augmentation of the alveolar ridge. J Oral Maxillofac Surg 1991, 49, 257–261. [Google Scholar]
- Wolford, L.M.; Wardrop, R.W.; Hartog, J.M. Coralline porous hydroxyapatite as a bone graft substitute in orthognathic surgery. J Oral Maxillofac Surg 1987, 45, 1034–1042. [Google Scholar] [CrossRef]
- Ono, I.; Tateshita, T.; Satou, M.; et al. Treatment of large complex cranial bone defects by using hydroxyapatite ceramic implants. Plast Reconstr Surg 1999, 104, 339–349. [Google Scholar]
- Waite, P.D.; Matukas, V.J. Zygomatic augmentation with hydroxyapatite: a preliminary report. J Oral Maxillofac Surg 1986, 44, 349–352. [Google Scholar] [CrossRef]
- Friedman, C.D.; Costantino, P.D.; Takagi, S.; Chow, L.C. BoneSource hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. J Biomed Mater Res 1998, 43, 428–432. [Google Scholar]
- Burstein, F.D.; Cohen, S.R.; Hudgins, R.; Boydston, W.; Simms, C. The use of hydroxyapatite cement in secondary craniofacial reconstruction. Plast Reconstr Surg 1999, 104, 1270–1275. [Google Scholar]
- Gosain, A.K.; Riordan, P.A.; Song, L.; et al. A 1-year study of hydroxyapatite-derived biomaterials in an adult sheep model: III. Comparison with autogenous bone graft for facial augmentation. Plast Reconstr Surg 2005, 116, 1044–1052. [Google Scholar] [PubMed]
- Eppley, B.L. Alloplastic implantation. Plast Reconstr Surg 1999, 104, 1761–1785. [Google Scholar] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2008 by the author. The Author(s) 2008.
Share and Cite
Oppenheimer, A.J.; Tong, L.; Buchman, S.R. Craniofacial Bone Grafting: Wolff's Law Revisited. Craniomaxillofac. Trauma Reconstr. 2008, 1, 49-61. https://doi.org/10.1055/s-0028-1098963
Oppenheimer AJ, Tong L, Buchman SR. Craniofacial Bone Grafting: Wolff's Law Revisited. Craniomaxillofacial Trauma & Reconstruction. 2008; 1(1):49-61. https://doi.org/10.1055/s-0028-1098963
Chicago/Turabian StyleOppenheimer, Adam J., Lawrence Tong, and Steven R. Buchman. 2008. "Craniofacial Bone Grafting: Wolff's Law Revisited" Craniomaxillofacial Trauma & Reconstruction 1, no. 1: 49-61. https://doi.org/10.1055/s-0028-1098963
APA StyleOppenheimer, A. J., Tong, L., & Buchman, S. R. (2008). Craniofacial Bone Grafting: Wolff's Law Revisited. Craniomaxillofacial Trauma & Reconstruction, 1(1), 49-61. https://doi.org/10.1055/s-0028-1098963