Investigation of the Possible Protective Effect of N-Acetylcysteine (NAC) against Irinotecan (CPT-11)-Induced Toxicity in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Collection of Blood and Tissue Samples
2.3. Measurements of Serum Enzyme Activities and Metabolites
2.4. Measurements of Pro-Inflammatory Cytokines
2.5. Measurements of Matrix Metalloproteinases (MMPs) and TIMP-1
2.6. Measurements of Antioxidant Enzymes and Lipid Peroxidation
2.7. Histopathological Evaluation
2.8. Statistical Analyses
3. Results
3.1. Serum Enzyme Activities and Metabolite Concentrations Restored by NAC
3.2. Activities of Tissue Antioxidant Enzymes and Concentration of Lipid Peroxidation Were Reduced by NAC
3.3. NAC Administration Decreased IL-1β and TNF-α Levels
3.4. NAC Reverses MMPs Activities and TIMP-1 Levels
3.5. Histopathological Findings
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chien, C.-R.; Hsia, T.-C.; Chen, C.-Y. Cost-Effectiveness of Chemotherapy Combined with Thoracic Radiotherapy versus Chemotherapy Alone for Limited Stage Small Cell Lung Cancer: A Population-Based Propensity-Score Matched Analysis. Thorac Cancer 2014, 5, 530–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Çakır, T.; Baştürk, A.; Polat, C.; Aslaner, A.; Durgut, H.; Şehirli, A.Ö.; Gül, M.; Öğünç, A.V.; Gül, S.; Sabuncuoglu, M.Z.; et al. Does Alfa Lipoic Acid Prevent Liver from Methotrexate Induced Oxidative Injury in Rats? Acta Cir. Bras. 2015, 30, 247–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilginaylar, K.; Aykac, A.; Sayiner, S.; Özkayalar, H.; Şehirli, A.Ö. Evaluation of the Antiapoptotic and Anti-Inflammatory Properties of Chitosan in Methotrexate-Induced Oral Mucositis in Rats. Mol. Biol. Rep. 2022, 49, 3237–3245. [Google Scholar] [CrossRef] [PubMed]
- Chukwunyere, U.; Mercan, M.; Sehirli, A.O.; Abacioglu, N. Possible Cytoprotective Mechanisms of Oxytocin against 5-Fluorouracil-Induced Gastrointestinal Mucositis. Mol. Biol. Rep. 2022, 49, 4055–4059. [Google Scholar] [CrossRef]
- de Man, F.M.; van Eerden, R.A.G.; van Doorn, G.M.; Oomen-de Hoop, E.; Koolen, S.L.W.; Olieman, J.F.; de Bruijn, P.; Veraart, J.N.; van Halteren, H.K.; Sandberg, Y.; et al. Effects of Protein and Calorie Restriction on the Metabolism and Toxicity Profile of Irinotecan in Cancer Patients. Clin. Pharmacol. Ther. 2020, 109, 1304–1313. [Google Scholar] [CrossRef]
- Milano, G.; Innocenti, F.; Minami, H. Liposomal Irinotecan (Onivyde): Exemplifying the Benefits of Nanotherapeutic Drugs. Cancer Sci. 2022, 113, 2224–2231. [Google Scholar] [CrossRef]
- Nakamura, A.; Harada, M.; Watanabe, K.; Harada, T.; Inoue, A.; Sugawara, S. Phase II Study of S-1 and Irinotecan Combination Therapy in EGFR-Mutated Non-Small Cell Lung Cancer Resistant to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor: North Japan Lung Cancer Study Group Trial 0804 (NJLCG0804). Med. Oncol. 2022, 39, 163. [Google Scholar] [CrossRef]
- Kawamoto, Y.; Yuki, S.; Sawada, K.; Nakamura, M.; Muto, O.; Sogabe, S.; Shindo, Y.; Ishiguro, A.; Sato, A.; Tsuji, Y.; et al. Phase II Study of Ramucirumab Plus Irinotecan Combination Therapy as Second-Line Treatment in Patients with Advanced Gastric Cancer: HGCSG1603. Oncologist 2022, 27, e642–e649. [Google Scholar] [CrossRef]
- Mori, T.; Makino, H.; Okubo, T.; Fujiwara, Y.; Sawada, M.; Kuroboshi, H.; Tsubamoto, H.; Murakoshi, H.; Motohashi, T.; Kitawaki, J.; et al. Multi-Institutional Phase II Study of Neoadjuvant Irinotecan and Nedaplatin Followed by Radical Hysterectomy and the Adjuvant Chemotherapy for Locally Advanced, Bulky Uterine Cervical Cancer: A Kansai Clinical Oncology Group Study (KCOG-G1201). J. Obstet. Gynaecol. Res. 2019, 45, 671–678. [Google Scholar] [CrossRef]
- Tate, S.; Nishikimi, K.; Matsuoka, A.; Otsuka, S.; Kato, K.; Takahashi, Y.; Shozu, M. Tailored-Dose Chemotherapy with Gemcitabine and Irinotecan in Patients with Platinum-Refractory/Resistant Ovarian or Primary Peritoneal Cancer: A Phase II Trial. J. Gynecol. Oncol. 2021, 32, e8. [Google Scholar] [CrossRef]
- Kciuk, M.; Marciniak, B.; Kontek, R. Irinotecan-Still an Important Player in Cancer Chemotherapy: A Comprehensive Overview. Int. J. Mol. Sci. 2020, 21, 4919. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.Y.; Wang, F.X.; Jia, K.K.; Kong, L.D. Natural Product Interventions for Chemotherapy and Radiotherapy-Induced Side Effects. Front. Pharmacol. 2018, 9, 1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pingili, R.B.; Pawar, A.K.; Challa, S.R.; Kodali, T.; Koppula, S.; Toleti, V. A Comprehensive Review on Hepatoprotective and Nephroprotective Activities of Chrysin against Various Drugs and Toxic Agents. Chem. Biol. Interact. 2019, 308, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Zeynali-Moghaddam, S.; Mohammadian, M.; Kheradmand, F.; Fathi-Azarbayjani, A.; Rasmi, Y.; Esna-Ashari, O.; Malekinejad, H. A Molecular Basis for the Synergy between 17-allylamino-17-demethoxy Geldanamycin with Capecitabine and Irinotecan in Human Colorectal Cancer Cells through VEFG and MMP-9 Gene Expression. Gene 2019, 684, 30–38. [Google Scholar] [CrossRef]
- Sener, G.; Tosun, O.; Sehirli, A.O.; Kacmaz, A.; Arbak, S.; Ersoy, Y.; Ayanoglu-Dulger, G. Melatonin and N-Acetylcysteine Have Beneficial Effects during Hepatic Ischemia and Reperfusion. Life Sci. 2003, 72, 2707–2718. [Google Scholar] [CrossRef]
- Zhitkovich, A. N-Acetylcysteine: Antioxidant, Aldehyde Scavenger, and More. Chem. Res. Toxicol. 2019, 32, 1318–1319. [Google Scholar] [CrossRef] [Green Version]
- Uzun, M.A.; Koksal, N.; Kadioglu, H.; Gunerhan, Y.; Aktas, S.; Dursun, N.; Sehirli, A.O. Effects of N-Acetylcysteine on Regeneration Following Partial Hepatectomy in Rats with Nonalcoholic Fatty Liver Disease. Surg. Today 2009, 39, 592–597. [Google Scholar] [CrossRef]
- Sehirli, A.O.; Sayiner, S.; Velioğlu-Oğünç, A.; Serakinci, N.; Eksioglu-Demiralp, E.; Yegen, B.; Ercan, F.; Sener, G. The Influence of N-Acetylcysteine Alone and in Combination with Angiotensin Converting Enzyme Inhibitor and Angiotensin Receptor Antagonist on Systemic and Tissue Levels in Rats with Experimentally-Induced Chronic Renal Failure. Pak. J. Zool 2020, 52, 1263–1274. [Google Scholar] [CrossRef]
- Ozgur, E.; Güler, G.; Seyhan, N. Mobile Phone Radiation-Induced Free Radical Damage in the Liver Is Inhibited by the Antioxidants n-Acetyl Cysteine and Epigallocatechin-Gallate. Int. J. Radiat. Biol. 2010, 86, 935–945. [Google Scholar] [CrossRef]
- Jiang, Y.; Song, B.; Chen, Z. Efficacy and Side Effects of Irinotecan Combined with Nedaplatin versus Paclitaxel Combined with Cisplatin in Neoadjuvant Chemotherapy for Locally Advanced Cervical Cancer and Tumor Marker Analysis: Based on a Retrospective Analysis. Comput. Math. Methods Med. 2022, 2022, 5936773. [Google Scholar] [CrossRef]
- Zhu, H.; Lu, C.; Gao, F.; Qian, Z.; Yin, Y.; Kan, S.; Chen, D. Selenium-Enriched Bifidobacterium Longum DD98 Attenuates Irinotecan-Induced Intestinal and Hepatic Toxicity in Vitro and in Vivo. Biomed. Pharmacother. 2021, 143, 112192. [Google Scholar] [CrossRef] [PubMed]
- Fakiha, K.; Coller, J.K.; Logan, R.M.; Gibson, R.J.; Bowen, J.M. Amitriptyline Prevents CPT-11-Induced Early-Onset Diarrhea and Colonic Apoptosis without Reducing Overall Gastrointestinal Damage in a Rat Model of Mucositis. Support. Care Cancer 2019, 27, 2313–2320. [Google Scholar] [CrossRef] [PubMed]
- Stringer, A.M.; Gibson, R.J.; Bowen, J.M.; Logan, R.M.; Yeoh, A.S.-J.; Keefe, D.M.K. Chemotherapy-Induced Mucositis: The Role of Gastrointestinal Microflora and Mucins in the Luminal Environment. J. Support. Oncol. 2007, 5, 259–267. [Google Scholar] [PubMed]
- Ma, J.-Q.; Ding, J.; Zhang, L.; Liu, C.-M. Protective Effects of Ursolic Acid in an Experimental Model of Liver Fibrosis through Nrf2/ARE Pathway. Clin. Res. Hepatol. Gastroenterol. 2015, 39, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Doguc, D.K.; Gurbuz, N.; Aylak, F.; Savik, E.; Gultekin, F. Farklı Dozlarda Ardıç Yağının Sıçan Karaciğerinde Antioksidan Enzimler Üzerine Etkisi The Effect of Different Doses of Juniper Oil on the Antioxidant Enzymes in Rat Liver. SDU J. Health Sci. Inst. 2012, 3, 77–81. [Google Scholar]
- Zahr, N.M.; Luong, R.; Sullivan, E.V.; Pfefferbaum, A. Measurement of Serum, Liver, and Brain Cytokine Induction, Thiamine Levels, and Hepatopathology in Rats Exposed to a 4-Day Alcohol Binge Protocol. Alcohol. Clin. Exp. Res. 2010, 34, 1858–1870. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for Lipid Peroxides in Animal Tissues by Thiobarbituric Acid Reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Nurgali, K.; Jagoe, R.T.; Abalo, R. Editorial: Adverse Effects of Cancer Chemotherapy: Anything New to Improve Tolerance and Reduce Sequelae? Front. Pharmacol. 2018, 9, 245. [Google Scholar] [CrossRef] [Green Version]
- Arruebo, M.; Vilaboa, N.; Sáez-Gutierrez, B.; Lambea, J.; Tres, A.; Valladares, M.; González-Fernández, Á. Assessment of the Evolution of Cancer Treatment Therapies. Cancers 2011, 3, 3279–3330. [Google Scholar] [CrossRef] [Green Version]
- Falzone, L.; Salomone, S.; Libra, M. Evolution of Cancer Pharmacological Treatments at the Turn of the Third Millennium. Front. Pharmacol. 2018, 9, 1300. [Google Scholar] [CrossRef]
- de Man, F.M.; Goey, A.K.L.; van Schaik, R.H.N.; Mathijssen, R.H.J.; Bins, S. Individualization of Irinotecan Treatment: A Review of Pharmacokinetics, Pharmacodynamics, and Pharmacogenetics. Clin. Pharmacokinet. 2018, 57, 1229–1254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Zhang, G.; Ren, Y.; Lan, T.; Li, D.; Tian, J.; Jiang, W. Darunavir Alleviates Irinotecan-Induced Intestinal Toxicity in Vivo. Eur. J. Pharmacol. 2018, 834, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Riera, P.; Artigas-Baleri, A.; Salazar, J.; Sebio, A.; Virgili, A.C.; Arranz, M.J.; Páez, D. ABCB1 Genetic Variants as Predictors of Irinotecan-Induced Severe Gastrointestinal Toxicity in Metastatic Colorectal Cancer Patients. Front. Pharmacol. 2020, 11, 973. [Google Scholar] [CrossRef] [PubMed]
- Yokooji, T.; Kawabe, Y.; Mori, N.; Murakami, T. Effect of Genistein, a Natural Soy Isoflavone, on the Pharmacokinetics and Intestinal Toxicity of Irinotecan Hydrochloride in Rats. J. Pharm. Pharmacol. 2012, 65, 280–291. [Google Scholar] [CrossRef]
- Vincenzi, B.; Imperatori, M.; Picardi, A.; Vespasiani Gentilucci, U.; Gallo, P.; Fausti, V.; Spalato Ceruso, M.; Santini, D.; Tonini, G. Liver Toxicity in Colorectal Cancer Patients Treated with First-Line FOLFIRI-Containing Regimen: A Single Institution Experience. Expert. Rev. Anticancer Ther. 2015, 15, 971–976. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, X.; Mao, Y.; Huang, M.; Yuan, B.; Chu, Z.; Lu, G. Synergetic Toxicity of DATR, a Recombinant Soluble Human TRAIL Mutant, in Combination with Traditional Chemotherapeutics in Rats. Regul. Toxicol. Pharmacol. 2012, 64, 361–366. [Google Scholar] [CrossRef]
- Oršolić, N.; Benković, V.; Lisičić, D.; Đikić, D.; Erhardt, J.; Horvat Knežević, A. Protective Effects of Propolis and Related Polyphenolic/Flavonoid Compounds against Toxicity Induced by Irinotecan. Med. Oncol. 2010, 27, 1346–1358. [Google Scholar] [CrossRef]
- Boeing, T.; Gois, M.B.; de Souza, P.; Somensi, L.B.; Sant’Ana, D.M.G.; da Silva, L.M. Irinotecan-Induced Intestinal Mucositis in Mice: A Histopathological Study. Cancer Chemother. Pharmacol. 2021, 87, 327–336. [Google Scholar] [CrossRef]
- Fersahoğlu, M.M.; Özkan, E.; Velioğlu-Öğünç, A.; Sayıner, S.; Ercan, F.; Çilingir Kaya, Ö.T.; Şehirli, A.Ö. Impact of Pycnogenol on Acetaminophen-Induced Hepatorenal Damage. Biointerface Res. Appl. Chem. 2021, 12, 8070–8080. [Google Scholar] [CrossRef]
- Kwon, Y. Possible Beneficial Effects of N-Acetylcysteine for Treatment of Triple-Negative Breast Cancer. Antioxidants 2021, 10, 169. [Google Scholar] [CrossRef] [PubMed]
- Markov, A.V.; Sen’kova, A.V.; Babich, V.O.; Odarenko, K.V.; Talyshev, V.A.; Salomatina, O.V.; Salakhutdinov, N.F.; Zenkova, M.A.; Logashenko, E.B. Dual Effect of Soloxolone Methyl on LPS-Induced Inflammation In Vitro and In Vivo. Int. J. Mol. Sci. 2020, 21, 7876. [Google Scholar] [CrossRef] [PubMed]
- Luthra, S.; Maroo, S.; Maroo, N.; Grover, H. The Pleotropic Role of Statins: Could It Be the Imminent Host Modulation Agent in Periodontics? Dent. Res. J. 2013, 10, 143. [Google Scholar] [CrossRef] [PubMed]
- Aksoy, U.; Savtekin, G.; Şehirli, A.Ö.; Kermeoğlu, F.; Kalender, A.; Özkayalar, H.; Sayıner, S.; Orhan, K. Effects of Alpha-Lipoic Acid Therapy on Experimentally Induced Apical Periodontitis: A Biochemical, Histopathological and Micro-CT Analysis. Int. Endod. J. 2019, 52, 1317–1326. [Google Scholar] [CrossRef] [PubMed]
- Zmora, O.; Gutzeit, O.; Segal, L.; Boulos, S.; Millo, Z.; Ginsberg, Y.; Khatib, N.; Fainaru, O.; Ross, M.G.; Weiner, Z.; et al. Maternal N-acetyl-cysteine Prevents Neonatal Brain Injury Associated with Necrotizing Enterocolitis in a Rat Model. Acta Obstet. Gynecol. Scand. 2021, 100, 979–987. [Google Scholar] [CrossRef] [PubMed]
- Kermeoğlu, F.; Sayıner, S.; Şehirli, A.Ö.; Savtekin, G.; Aksoy, U. Does α-Lipoic Acid Therapeutically Effective against Experimentally Induced-Acute Pulpitis in Rats? Aust. Endod. J. 2022. [Google Scholar] [CrossRef]
- Wen, W.; Zhu, S.; Ma, R.; Wang, L.; Shen, X.; Li, Y.; Feng, N.; Wang, L.; Liu, M.; Xie, L.; et al. Correlation Analysis of TGF-Β1, MMP-9, TIMP-1, IL-1, IL-4, IL-6, IL-17, and TNF-α in Refractory Chronic Rhinosinusitis: A Retrospective Study. Allergol. Immunopathol. 2022, 50, 137–142. [Google Scholar] [CrossRef]
- Ries, C. Cytokine Functions of TIMP-1. Cell. Mol. Life Sci. 2014, 71, 659–672. [Google Scholar] [CrossRef]
- Charzewski, Ł.; Krzyśko, K.A.; Lesyng, B. Structural Characterisation of Inhibitory and Non-Inhibitory MMP-9–TIMP-1 Complexes and Implications for Regulatory Mechanisms of MMP-9. Sci. Rep. 2021, 11, 13376. [Google Scholar] [CrossRef]
- Kim, B.; Abdel-Rahman, M.H.; Wang, T.; Pouly, S.; Mahmoud, A.M.; Cebulla, C.M. Retinal MMP-12, MMP-13, TIMP-1, and TIMP-2 Expression in Murine Experimental Retinal Detachment. Investig. Opthalmology Vis. Sci. 2014, 55, 2031. [Google Scholar] [CrossRef] [Green Version]
- Sampilvanjil, A.; Karasawa, T.; Yamada, N.; Komada, T.; Higashi, T.; Baatarjav, C.; Watanabe, S.; Kamata, R.; Ohno, N.; Takahashi, M. Cigarette Smoke Extract Induces Ferroptosis in Vascular Smooth Muscle Cells. Am. J. Physiol.-Heart Circ. Physiol. 2020, 318, H508–H518. [Google Scholar] [CrossRef] [PubMed]
- Kulshrestha, R.; Pandey, A.; Jaggi, A.; Bansal, S. Beneficial Effects of N-Acetylcysteine on Protease-Antiprotease Balance in Attenuating Bleomycin-Induced Pulmonary Fibrosis in Rats. Iran. J. Basic Med. Sci. 2020, 23, 396–405. [Google Scholar] [CrossRef]
- Uyanık, Ö.; Gürbüz, Ş.; Çiftci, O.; Oğuztürk, H.; Aydın, M.; Çetin, A.; Başak, N.; Gökhan Turtay, M.; Yücel, N. Curcumin Protects against Testis-Specific Side Effects of Irinotecan. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 7440–7448. [Google Scholar] [CrossRef] [PubMed]
- Rtibi, K.; Selmi, S.; Grami, D.; Sebai, H.; Amri, M.; Marzouki, L. Irinotecan Chemotherapy-Induced Intestinal Oxidative Stress: Underlying Causes of Disturbed Mucosal Water and Electrolyte Transport. Pathophysiology 2017, 24, 275–279. [Google Scholar] [CrossRef] [PubMed]
Control | NAC | CPT-11 | CPT-11+NAC | |
---|---|---|---|---|
Albumin (g/dL) | 3.25 ± 0.25 | 3.27 ± 0.23 | 3.17 ± 0.25 | 2.91 ± 0.34 |
TP (g/dL) | 6.10 ± 0.63 | 6.15 ± 1.82 | 5.78 ± 1.60 | 4.76 ± 0.40 |
ALP (U/L) | 124.20 ± 54.96 | 137.2 ± 45.55 | 266.20 ± 57.47 ***,†† | 153.00 ± 43.78 §§ |
ALT (U/L) | 47.36 ± 11.27 | 74.58 ± 13.51 | 157.80 ± 29.16 ****,†††† | 85.91 ± 20.13 *,§§§§ |
AST (U/L) | 60.69 ± 23.30 | 63.82 ± 20.94 | 140.80 ± 23.23 ****,†††† | 84.40 ± 19.59 §§ |
LDH (U/L) | 398 ± 140 | 727 ± 161 | 2392 ± 817 ****,†††† | 901 ± 236 §§§§ |
BUN (mg/dL) | 12.97 ± 2.32 | 14.87 ± 3.02 | 23.49 ± 3.68 ****,††† | 17.86 ± 2.60 *,† |
Creatinine (mg/dL) | 0.47 ± 0.13 | 0.51 ± 0.15 | 1.06 ± 0.19 ****, †††† | 0.56 ± 0.10 §§§§ |
Amylase (U/L) | 2096 ± 128 | 1990 ± 171 | 1910 ± 252 | 1909 ± 270 |
Lipase (U/L) | 30.33 ± 2.25 | 27.33 ± 1.63 | 26.67 ± 1.86 | 27.33 ± 5.28 |
Control | NAC | CPT-11 | CPT-11+NAC | |
---|---|---|---|---|
MMP-1 (Serum pg/mL; Tissues pg/mg Protein) | ||||
Serum | 2.31 ± 0.4475 | 1.895 ± 0.4842 | 7.053 ± 1.871 ****,†††† | 2.943 ± 1.06 §§§§ |
Stomach | 1.175 ± 0.5253 | 1.41 ± 0.4878 | 2.842 ± 0.975 ***,†† | 1.81 ± 0.3281 § |
Small Intestine | 0.5817 ± 0.215 | 0.5533 ± 0.243 | 1.165 ± 0.2037 ***,††† | 0.8033 ± 0.1646 § |
Liver | 0.91 ± 0.3876 | 1.368 ± 0.2883 | 2.463 ± 0.5477 ****,††† | 1.687 ± 0.3654 *,§ |
Kidney | 1.572 ± 0.4782 | 1.551 ± 0.8503 | 3.873 ± 1.047 ***,††† | 2.247 ± 0.5629 §§ |
MMP-2 (Serum pg/mL; Tissues pg/mg Protein) | ||||
Serum | 21.51 ± 6.658 | 20.00 ± 4.484 | 53.63 ± 19.79 ***,††† | 32.67 ± 4.73§ |
Stomach | 1.393 ± 0.3101 | 1.645 ± 0.4054 | 2.552 ± 0.5098 ***,†† | 1.685 ± 0.4281 §§ |
Small Intestine | 1.06 ± 0.2866 | 0.945 ± 0.3526 | 2.423 ± 0.4816 ****,†††† | 1.615 ± 0.3868 †,§§ |
Liver | 0.905 ± 0.2818 | 0.9117 ± 0.3597 | 1.837 ± 0.3499 **,† | 1.188 ± 0.4857 § |
Kidney | 0.8333 ± 0.528 | 1.103 ± 0.4106 | 2.265 ± 0.3682 ***,†† | 1.428 ± 0.4825 § |
MMP-8 (Serum pg/mL; Tissues pg/mg Protein) | ||||
Serum | 80.67 ± 12.90 | 84.75 ± 13.42 | 222.60 ± 68.85 ****,†††† | 114.00 ± 32.13 §§§ |
Stomach | 2.553 ± 1.557 | 3.007 ± 1.626 | 7.078 ± 2.104 ***,†† | 4.195 ± 0.9386 § |
Small Intestine | 1.407 ± 0.5606 | 1.307 ± 0.3708 | 3.44 ± 0.7098 ****,†††† | 2.313 ± 0.4913 *,†,§§ |
Liver | 3.542 ± 0.7431 | 4.722 ± 0.798 | 9.173 ± 1.768 ****,††† | 6.305 ± 2.086 *,§ |
Kidney | 4.475 ± 1.303 | 5.152 ± 0.8695 | 11.08 ± 1.861 ****,†††† | 6.343 ± 1.629 §§§§ |
TIMP-1 (Serum pg/mL; Tissues pg/mg Protein) | ||||
Serum | 1210 ± 368.2 | 851.5 ± 221.8 | 322.3 ± 87.42 ****,†† | 742.7 ± 152.7 *,§ |
Stomach | 1261.0 ± 320.8 | 1143 ± 241.1 | 685.9 ± 178.8 **,† | 1088 ± 182.7 § |
Small Intestine | 518.40 ±49.80 | 447.90 ± 73.52 | 109.70 ± 39.56 ****,†††† | 261.70 ± 73.67 ****,†††,§§ |
Liver | 276.10 ± 80.72 | 274.90 ± 56.13 | 101.60 ± 24.29 ***,††† | 190.20 ± 41.62 § |
Kidney | 353.20 ± 81.03 | 307.40 ± 63.72 | 97.83 ± 21.72 ****,†††† | 190.10 ± 25.94 ***,††,§ |
Control | NAC | CPT-11 | CPT-11+NAC | |
---|---|---|---|---|
Stomach | ||||
Degeneration of surface epithelium | 2.31 ± 0.45 | 1.90 ± 0.48 | 7.05 ± 1.87 ****,†††† | 2.94 ± 1.06 §§§§ |
Disruptions in gland structures | 1.18 ± 0.53 | 1.41 ± 0.49 | 2.84 ± 0.98 ***,†† | 1.81 ± 0.33 § |
Congestion | 0.58 ± 0.22 | 0.55 ± 0.24 | 1.17 ± 0.20 ***,††† | 0.80 ± 0.16 § |
Small Intestine | ||||
Villus degeneration | 21.51 ± 6.66 | 20.00 ± 4.48 | 53.63 ± 19.79 ***,††† | 32.67 ± 4.73 § |
Congestion in lamina propria | 1.39 ± 0.31 | 1.65 ± 0.40 | 2.55 ± 0.51 ***,†† | 1.68 ± 0.42 §§ |
Disruption of intestinal glands | 1.06 ± 0.29 | 0.95 ± 0.35 | 2.42 ± 0.48 ****,†††† | 1.61 ± 0.39 †,§§ |
Liver | ||||
Degeneration in hepatocytes | 80.67 ± 12.90 | 84.75 ± 13.42 | 222.60 ± 68.85 ****,†††† | 114.00 ± 32.13 §§§ |
Degeneration in sinusoids | 2.55 ± 1.56 | 3.01 ± 1.62 | 7.09 ± 2.10 ***,†† | 4.20 ± 0.94 § |
Kidney | ||||
Degeneration in tubular cells | 1210.0 ± 368.2 | 851.5 ± 221.8 | 322.3 ± 87.4 ****,†† | 742.7 ± 152.7 *,§ |
Congestion | 1261.0 ± 320.8 | 1143.0 ± 241.0 | 685.9 ± 178.8 **,† | 1088.0 ± 182.7 § |
Caste formation in tubules | 518.4 ± 49.8 | 447.9 ± 73.5 | 109.7 ± 39.7 ****,†††† | 261.7 ± 73.7 ****,†††,§§ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gençosman, S.; Ceylanlı, D.; Şehirli, A.Ö.; Teralı, K.; Bölükbaşı, F.; Çetinel, Ş.; Sayıner, S. Investigation of the Possible Protective Effect of N-Acetylcysteine (NAC) against Irinotecan (CPT-11)-Induced Toxicity in Rats. Antioxidants 2022, 11, 2219. https://doi.org/10.3390/antiox11112219
Gençosman S, Ceylanlı D, Şehirli AÖ, Teralı K, Bölükbaşı F, Çetinel Ş, Sayıner S. Investigation of the Possible Protective Effect of N-Acetylcysteine (NAC) against Irinotecan (CPT-11)-Induced Toxicity in Rats. Antioxidants. 2022; 11(11):2219. https://doi.org/10.3390/antiox11112219
Chicago/Turabian StyleGençosman, Sevgi, Deniz Ceylanlı, Ahmet Özer Şehirli, Kerem Teralı, Furkan Bölükbaşı, Şule Çetinel, and Serkan Sayıner. 2022. "Investigation of the Possible Protective Effect of N-Acetylcysteine (NAC) against Irinotecan (CPT-11)-Induced Toxicity in Rats" Antioxidants 11, no. 11: 2219. https://doi.org/10.3390/antiox11112219
APA StyleGençosman, S., Ceylanlı, D., Şehirli, A. Ö., Teralı, K., Bölükbaşı, F., Çetinel, Ş., & Sayıner, S. (2022). Investigation of the Possible Protective Effect of N-Acetylcysteine (NAC) against Irinotecan (CPT-11)-Induced Toxicity in Rats. Antioxidants, 11(11), 2219. https://doi.org/10.3390/antiox11112219