Empirical Calibration of XGBoost Model Hyperparameters Using the Bayesian Optimisation Method: The Case of Bitcoin Volatility
Abstract
1. Introduction
2. Literature Review
3. Bayesian Optimization
3.1. Overview
- The objective function has no closed-form expression.
- Evaluations are expensive or time-consuming.
- Derivatives are unavailable.
- The optimization problem is non-convex.
3.2. Bayesian Optimization Approach
3.3. A Priori Function
- The acquisition function is continuous and approximately minimizes the risk with respect to the global minimum at a fixed point.
- The variance converges to zero (or to a positive minimum in the presence of noise) if and only if the distance to the nearest observation is zero.
- The objective function itself is continuous.
- The a priori function is homogeneous.
- The method is independent of specific variants and applicable to a wide range of optimization tasks.
3.3.1. Covariance Function
3.3.2. Posterior Prediction
3.4. Choice of Covariance Function
3.5. Acquisition Function in BO
3.5.1. Expected Improvement (EI) and Probability of Improvement (PI)
3.5.2. Upper Confidence Bound (UCB) Acquisition Functions
3.5.3. Extreme Gradient Boosting (XGBoost)
4. Application with the Volatility of Bitcoin
4.1. Data
4.2. Tuning Hyperparameters with Bayesian Optimization
4.3. Graphical Representation of Various Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. R Codes
References
- Anghel, A. S., Papandreou, N., Parnell, T., De Palma, A., & Pozidis, H. (2018, December 2–8). Benchmarking and optimization of gradient boosting decision tree algorithms. Annual Conference on Neural Information Processing Systems, Montreal, QC, Canada. [Google Scholar]
- Bentéjac, C., Csörgo, A., & Martínez-Muñoz, G. (2021). A comparative analysis of gradient boosting algorithms. Artificial Intelligence Review, 54, 1937–1967. [Google Scholar] [CrossRef]
- Bouri, E., Das, M., Gupta, R., & Roubaud, D. (2018). Spillovers between bitcoin and other assets during bear and bull markets. Applied Economics, 50, 5935–5949. [Google Scholar] [CrossRef]
- Bouri, E., Salisu, A. A., & Gupta, R. (2023). The predictive power of bitcoin prices for the realized volatility of us stock sector returns. Financial Innovation, 9, 62. [Google Scholar] [CrossRef]
- Brochu, E., Brochu, T., & De Freitas, N. (2010, July 2–4). A Bayesian interactive optimization approach to procedural animation design. 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (pp. 103–112), Madrid, Spain. [Google Scholar]
- Brochu, E., Cora, V. M., & De Freitas, N. (2010). A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv, arXiv:1012.2599. [Google Scholar] [CrossRef]
- Cowen-Rivers, A. I., Lyu, W., Tutunov, R., Wang, Z., Grosnit, A., Griffiths, R. R., Maraval, A. M., Jianye, H., Wang, J., Peters, J., & Ammar, H. B. (2022). Hebo: Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research, 74, 1269–1349. [Google Scholar] [CrossRef]
- Eggensperger, K., Feurer, M., Hutter, F., Bergstra, J., Snoek, J., Hoos, H., & Leyton-Brown, K. (2013). Towards an empirical foundation for assessing Bayesian optimization of hyperparameters. In NIPS workshop on Bayesian optimization in theory and practice (Vol. 10, pp. 1–5). NeurIPS. [Google Scholar]
- Frean, M., & Boyle, P. (2008, December 3–5). Using Gaussian processes to optimize expensive functions. Australasian Joint Conference on Artificial Intelligence (pp. 258–267), Auckland, New Zealand. [Google Scholar]
- Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29, 1189–1232. [Google Scholar] [CrossRef]
- Garnett, R. (2023). Bayesian optimization. Cambridge University Press. [Google Scholar]
- Garnett, R., Osborne, M. A., & Roberts, S. J. (2010, April 12–16). Bayesian optimization for sensor set selection. 9th ACM/IEEE International Conference on Information Processing in Sensor Networks (pp. 209–219), Stockholm, Sweden. [Google Scholar]
- Ginsbourger, D., Le Riche, R., & Carraro, L. (2008). A multi-points criterion for deterministic parallel global optimization based on gaussian processes. HAL Science. [Google Scholar]
- Jalal, R. N. U. D., Sargiacomo, M., & Sahar, N. U. (2020). Commodity prices, tax purpose recognition and bitcoin volatility: Using arch/garch modeling. Journal of Asian Finance Economics and Business, 7, 251–257. [Google Scholar] [CrossRef]
- Jones, D. R. (2001). A taxonomy of global optimization methods based on response surfaces. Journal of Global Optimization, 21, 345–383. [Google Scholar] [CrossRef]
- Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 13, 455–492. [Google Scholar] [CrossRef]
- Joy, T. T., Rana, S., Gupta, S., & Venkatesh, S. (2016, December 4–8). Hyperparameter tuning for big data using Bayesian optimisation. 2016 23rd International Conference on Pattern Recognition (ICPR) (pp. 2574–2579), Cancun, Mexico. [Google Scholar]
- Joy, T. T., Rana, S., Gupta, S., & Venkatesh, S. (2020). Fast hyperparameter tuning using Bayesian optimization with directional derivatives. Knowledge-Based Systems, 205, 106247. [Google Scholar] [CrossRef]
- Karim, M. M., Noman, A. H. M., Kabir Hassan, M., Khan, A. M., & Kawsar, N. H. (2024). Volatility spillover and dynamic correlation between islamic, conventional, cryptocurrency and precious metal markets during the immediate outbreak of COVID-19 pandemic. International Journal of Islamic and Middle Eastern Finance and Management, 17, 662–692. [Google Scholar] [CrossRef]
- Klein, A., Falkner, S., Bartels, S., Hennig, P., & Hutter, F. (2017). Fast Bayesian optimization of machine learning hyperparameters on large datasets. In Artificial intelligence and statistics (pp. 528–536). PMLR. [Google Scholar]
- Kusner, H., & Yin, G. (1997). Stochastic approximation algorithms and applications. Springer. [Google Scholar]
- Lévesque, J.-C. (2018). Bayesian hyperparameter optimization: Overfitting, ensembles and conditional spaces [Ph.D. thesis, Université Laval]. [Google Scholar]
- Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., & Talwalkar, A. (2018). Hyperband: A novel bandit-based approach to hyperparameter optimization. Journal of Machine Learning Research, 18(185), 1–52. [Google Scholar]
- Lizotte, D. J. (2008). Practical Bayesian optimization. University of Alberty. [Google Scholar]
- Maghyereh, A., & Abdoh, H. (2022). COVID-19 and the volatility interlinkage between bitcoin and financial assets. Empirical Economics, 63, 2875–2901. [Google Scholar] [CrossRef]
- Melawati, & Gunarsih, T. (2023). Egarch model: Volatility spillover analysis of bitcoin price on altcoin and S&P 500 index. International Journal of Business Humanities Education and Social Sciences (Ijbhes), 5, 101–110. [Google Scholar]
- Mockus, J., Tiesis, V., & Zilinskas, A. (1978). Toward global optimization, volume 2, chapter Bayesian methods for seeking the extremum. Elsevier. [Google Scholar]
- Nadarajah, S., Mba, J. C., Rakotomarolah, P., & Ratolojanahary, H. T. J. E. (2025). Ensemble learning and adaptive neuro-fuzzy inference system for cryptocurrency volatility forecasting. Journal of Risk and Financial Management, 18, 52. [Google Scholar] [CrossRef]
- Osborne, M., & Osborne, M. A. (2010). Bayesian Gaussian processes for sequential prediction, optimisation and quadrature [Ph.D. thesis, Oxford University]. [Google Scholar]
- Putatunda, S., & Rama, K. (2019, December 20–22). A modified Bayesian optimization based hyper-parameter tuning approach for extreme gradient boosting. 2019 Fifteenth International Conference on Information Processing (ICINPRO) (pp. 1–6), Bengaluru, India. [Google Scholar]
- Rasmussen, C. E., & Williams, C. K. I. (2005). Gaussian processes for machine learning. The MIT Press. [Google Scholar]
- Santner, T. J. (2003). The design and analysis of computer experiments. Springer. [Google Scholar]
- Sapuric, S., Kokkinaki, A., & Georgiou, I. (2022). The relationship between bitcoin returns, volatility and volume: Asymmetric GARCH modeling. Journal of Enterprise Information Management, 35, 1506–1521. [Google Scholar] [CrossRef]
- Sasena, M. J. (2002). Flexibility and efficiency enhancements for constrained global design optimization with kriging approximations. University of Michigan. [Google Scholar]
- Shermen, J., & Morrison, W. J. (1949). Adjustment of an inverse matrix corresponding to changes in the elements of a given column or a given row of the original matrix. Annual Mathmatical Statistics, 20, 621–625. [Google Scholar]
- Srinivas, N., Krause, A., Kakade, S. M., & Seeger, M. (2009). Gaussian process optimization in the bandit setting: No regret and experimental design. arXiv, arXiv:0912.3995. [Google Scholar]
- Törn, A., & Žilinskas, A. (1989). Global optimization (Vol. 350). Springer. [Google Scholar]
- Tunahan, H., Akkuş, H. T., & Çelİk, I. (2020). Modeling, forecasting the cryptocurrency market volatility and value at risk dynamics of bitcoin. Muhasebe Bilim Dünyası Dergisi, 22(2), 296–312. [Google Scholar] [CrossRef]
- van Hoof, J., & Vanschoren, J. (2021). Hyperboost: Hyperparameter optimization by gradient boosting surrogate models. arXiv, arXiv:2101.02289. [Google Scholar] [CrossRef]
- Verma, V. (2024). Exploring key xgboost hyperparameters: A study on optimal search spaces and practical recommendations for regression and classification. International Journal of All Research Education and Scientific Methods, 12, 3259–3266. [Google Scholar] [CrossRef]
- Wahba, G. (1990). Spline models for observational data. SIAM. [Google Scholar]
- Williams, C. K. I., & Rasmussen, C. E. (2006). Gaussian processes for machine learning (volume 2). MIT Press Cambridge. [Google Scholar]
- Zulfiqar, N., & Gulzar, S. (2021). Implied volatility estimation of bitcoin options and the stylized facts of option pricing. Financial Innovation, 7, 67. [Google Scholar] [CrossRef] [PubMed]
Statistics | Bitcoin Returns |
---|---|
Minimum | |
Average | |
Maximum | |
Variance | |
Standard deviation | |
Skewness | |
Kurtosis |
Hyperparameters | Initialization | Ranges During Optimization |
---|---|---|
eta | ||
max-depth | : | |
subsample | ||
colsample-bytree | ||
min-child-weight | : |
Hyperparameter | EI | POI | UCB |
---|---|---|---|
eta | |||
max-depth | 3 | 4 | 4 |
subsample | |||
colsample-bytree | 1 | ||
min-child-weight | 10 | 6 | 4 |
RMSE |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nadarajah, S.; Mba, J.C.; Ravonimanantsoa, N.M.V.; Rakotomarolahy, P.; Ratolojanahary, H.T.J.E. Empirical Calibration of XGBoost Model Hyperparameters Using the Bayesian Optimisation Method: The Case of Bitcoin Volatility. J. Risk Financial Manag. 2025, 18, 487. https://doi.org/10.3390/jrfm18090487
Nadarajah S, Mba JC, Ravonimanantsoa NMV, Rakotomarolahy P, Ratolojanahary HTJE. Empirical Calibration of XGBoost Model Hyperparameters Using the Bayesian Optimisation Method: The Case of Bitcoin Volatility. Journal of Risk and Financial Management. 2025; 18(9):487. https://doi.org/10.3390/jrfm18090487
Chicago/Turabian StyleNadarajah, Saralees, Jules Clement Mba, Ndaohialy Manda Vy Ravonimanantsoa, Patrick Rakotomarolahy, and Henri T. J. E. Ratolojanahary. 2025. "Empirical Calibration of XGBoost Model Hyperparameters Using the Bayesian Optimisation Method: The Case of Bitcoin Volatility" Journal of Risk and Financial Management 18, no. 9: 487. https://doi.org/10.3390/jrfm18090487
APA StyleNadarajah, S., Mba, J. C., Ravonimanantsoa, N. M. V., Rakotomarolahy, P., & Ratolojanahary, H. T. J. E. (2025). Empirical Calibration of XGBoost Model Hyperparameters Using the Bayesian Optimisation Method: The Case of Bitcoin Volatility. Journal of Risk and Financial Management, 18(9), 487. https://doi.org/10.3390/jrfm18090487