SME, Crisis and Geopolitical Risk: Lessons from COVID-19 and War
Abstract
1. Introduction and Literature Review
2. Methodology
3. Data and Preliminary Analysis
4. Discussion
5. Conclusions and Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agyei, S. K. (2023). Emerging markets equities’ response to geopolitical risk: Time-frequency evidence from the Russian-Ukrainian conflict era. Heliyon, 9(2), e13319. [Google Scholar] [CrossRef] [PubMed]
- Arnorsson, A., & Zoega, G. (2018). On the causes of Brexit. European Journal of Political Economy, 55, 301–323. [Google Scholar] [CrossRef]
- Asgary, A., Ozdemir, A. I., & Özyürek, H. (2020). Small and medium enterprises and global risks: Evidence from manufacturing SMEs in Turkey. International Journal of Disaster Risk Science, 11, 59–73. [Google Scholar] [CrossRef]
- Bachmann, V., & Sidaway, J. D. (2016). Brexit geopolitics. Geoforum, 77, 47–50. [Google Scholar] [CrossRef]
- Basher, S. A., & Sadorsky, P. (2016). Hedging emerging market stock prices with oil, gold, VIX, and bonds: A comparison between DCC, ADCC and GO-GARCH. Energy Economics, 54, 235–247. [Google Scholar] [CrossRef]
- Batini, N., & Li, J. (2023). The role of IMF financial support in mitigating the COVID-19 shock (IEO Background Paper No. BP/23-01/01). International Monetary Fund. [Google Scholar]
- Batten, J. A., Boubaker, S., Kinateder, H., Choudhury, T., & Wagner, N. F. (2023). Volatility impacts on global banks: Insights from the GFC, COVID-19, and the Russia-Ukraine war. Journal of Economic Behavior & Organization, 215, 325–350. [Google Scholar] [CrossRef]
- Batten, J. A., Choudhury, T., Kinateder, H., & Wagner, N. F. (2022). Volatility impacts on the European banking sector: GFC and COVID-19. Annals of Operations Research, 330, 335–360. [Google Scholar] [CrossRef]
- Batten, J. A., Kinateder, H., Szilagyi, P. G., & Wagner, N. F. (2017). Can stock market investors hedge energy risk? Evidence from Asia. Energy Economics, 66, 559–570. [Google Scholar] [CrossRef]
- Beck, T., Demirguc-Kunt, A., & Levine, R. (2005). SMEs, growth, and poverty: Cross-country evidence. Journal of Economic Growth, 10, 199–229. [Google Scholar] [CrossRef]
- Beck, T., & Levine, R. (2003). Small and medium enterprises, growth, and poverty: Cross-country evidence (Vol. 3178). World Bank Publications. [Google Scholar]
- Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307–327. [Google Scholar] [CrossRef]
- Caldara, D., & Iacoviello, M. (2022). Measuring geopolitical risk. American Economic Review, 112(4), 1194–1225. [Google Scholar] [CrossRef]
- Celık, S. (2012). The more contagion effect on emerging markets: The evidence of DCC-GARCH model. Economic Modelling, 29(5), 1946–1959. [Google Scholar] [CrossRef]
- Chaudhuri, A., Subramanian, N., & Dora, M. (2022). Circular economy and digital capabilities of SMEs for providing value to customers: Combined resource-based view and ambidexterity perspective. Journal of Business Research, 142, 32–44. [Google Scholar] [CrossRef]
- Chen, Y., Jiang, J., Wang, L., & Wang, R. (2023). Impact assessment of energy sanctions in geo-conflict: Russian–Ukrainian war. Energy Reports, 9, 3082–3095. [Google Scholar] [CrossRef]
- Choudhury, T., Kinateder, H., & Neupane, B. (2022). Gold, bonds, and epidemics: A safe haven study. Finance Research Letters, 48, 102978. [Google Scholar] [CrossRef]
- Engle, R. (2002). Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business & Economic Statistics, 20(3), 339–350. [Google Scholar]
- Engle, R. F., III, & Sheppard, K. (2001). Theoretical and empirical properties of dynamic conditional correlation multivariate GARCH. National Bureau of Economic Research Cambridge. [Google Scholar]
- Ghadir, A. H., Vandchali, H. R., Fallah, M., & Tirkolaee, E. B. (2022). Evaluating the impacts of COVID-19 outbreak on supply chain risks by modified failure mode and effects analysis: A case study in an automotive company. Annals of Operations Research, 1–31. [Google Scholar] [CrossRef]
- Ghosh, I., Sanyal, M. K., & Jana, R. K. (2021). Co-movement and dynamic correlation of financial and energy markets: An integrated framework of nonlinear dynamics, wavelet analysis and DCC-GARCH. Computational Economics, 57, 503–527. [Google Scholar] [CrossRef]
- Hall, B. H., Lotti, F., & Mairesse, J. (2009). Innovation and productivity in SMEs: Empirical evidence for Italy. Small Business Economics, 33, 13–33. [Google Scholar] [CrossRef]
- Hasan, F., Al-Okaily, M., Choudhury, T., & Kayani, U. (2023). A comparative analysis between FinTech and traditional stock markets: Using Russia and Ukraine war data. Electronic Commerce Research, 24, 629–654. [Google Scholar] [CrossRef]
- Hassan, M. K., Djajadikerta, H. G., Choudhury, T., & Kamran, M. (2022a). Safe havens in Islamic financial markets: COVID-19 versus GFC. Global Finance Journal, 54, 100643. [Google Scholar] [CrossRef]
- Hassan, M. K., Kamran, M., Djajadikerta, H. G., & Choudhury, T. (2022b). Search for safe havens and resilience to global financial volatility: Response of GCC equity indexes to GFC and COVID-19. Pacific-Basin Finance Journal, 73, 101768. [Google Scholar] [CrossRef]
- Hennessy, A. (2023). The impact of Russia’s war against Ukraine on Sino-European relations. Journal of European Integration, 45(3), 559–575. [Google Scholar] [CrossRef]
- Huang, X. (2009). Strategic decision making in Chinese SMEs. Chinese Management Studies, 3(2), 87–101. [Google Scholar] [CrossRef]
- Khalil, A., Abdelli, M. E. A., & Mogaji, E. (2022). Do digital technologies influence the relationship between the COVID-19 crisis and SMEs’ resilience in developing countries? Journal of Open Innovation: Technology, Market, and Complexity, 8(2), 100. [Google Scholar] [CrossRef]
- Kinateder, H., Campbell, R., & Choudhury, T. (2021). Safe haven in GFC versus COVID-19: 100 turbulent days in the financial markets. Finance Research Letters, 43, 101951. [Google Scholar] [CrossRef]
- Le, A.-T., & Tran, T. P. (2021). Does geopolitical risk matter for corporate investment? Evidence from emerging countries in Asia. Journal of Multinational Financial Management, 62, 100703. [Google Scholar] [CrossRef]
- Lee, G., & Jeong, J. (2014). Global financial crisis and stock market integration between Northeast Asia and Europe. Review of European Studies, 6, 61. [Google Scholar] [CrossRef]
- Li, X., Guo, Q., Liang, C., & Umar, M. (2023). Forecasting gold volatility with geopolitical risk indices. Research in International Business and Finance, 64, 101857. [Google Scholar] [CrossRef]
- Lin, F., Ansell, J., & Siu, W.-s. (2021). Chinese SME development and industrial upgrading. International Journal of Emerging Markets, 16(6), 977–997. [Google Scholar] [CrossRef]
- Liu, H., Wang, Y., He, D., & Wang, C. (2020). Short term response of Chinese stock markets to the outbreak of COVID-19. Applied Economics, 52(53), 5859–5872. [Google Scholar] [CrossRef]
- Liu, S., & Yamamoto, T. (2022). Role of stay-at-home requests and travel restrictions in preventing the spread of COVID-19 in Japan. Transportation Research Part A: Policy and Practice, 159, 1–16. [Google Scholar] [CrossRef]
- Lo, G.-D., Marcelin, I., Bassène, T., & Sène, B. (2022). The Russo-Ukrainian war and financial markets: The role of dependence on Russian commodities. Finance Research Letters, 50, 103194. [Google Scholar] [CrossRef]
- Marconatto, D. A. B., Teixeira, E. G., Peixoto, G. A., & Faccin, K. (2022). Weathering the storm: What successful SMEs are doing to beat the pandemic. Management Decision, 60(5), 1369–1386. [Google Scholar] [CrossRef]
- Mendez, A., Forcadell, F. J., & Horiachko, K. (2022). Russia–Ukraine crisis: China’s Belt Road Initiative at the crossroads. Asian Business & Management, 21(4), 488–496. [Google Scholar]
- Osiichuk, M., & Shepotylo, O. (2020). Conflict and well-being of civilians: The case of the Russian-Ukrainian hybrid war. Economic Systems, 44(1), 100736. [Google Scholar] [CrossRef]
- Panwar, R., Pinkse, J., & De Marchi, V. (2022). The future of global supply chains in a post-COVID-19 world. California Management Review, 64(2), 5–23. [Google Scholar] [CrossRef]
- Rhee, C., & Posen, A. S. (2013). Responding to financial crisis: Lessons from Asia then, the United States and Europe now. Columbia University Press. [Google Scholar]
- Robertson, J., Botha, E., Walker, B., Wordsworth, R., & Balzarova, M. (2022). Fortune favours the digitally mature: The impact of digital maturity on the organisational resilience of SME retailers during COVID-19. International Journal of Retail & Distribution Management, 50(8/9), 1182–1204. [Google Scholar] [CrossRef]
- Rossouw, S., & Greyling, T. (2022). Collective emotions and macro-level shocks: COVID-19 vs. the Ukrainian war. Global Labor Organization (GLO). [Google Scholar]
- Saâdaoui, F., Jabeur, S. B., & Goodell, J. W. (2022). Causality of geopolitical risk on food prices: Considering the Russo–Ukrainian conflict. Finance Research Letters, 49, 103103. [Google Scholar] [CrossRef]
- Sarker, M. R., Rahman, S. A., Islam, A. H., Bhuyan, M. F. F., Supra, S. E., Ali, K., & Noor, K. A. (2022). Impact of COVID-19 on Small-and Medium-sized Enterprises. Available online: https://sage.cnpereading.com/paragraph/article/?doi=10.1177/09721509221093489 (accessed on 13 November 2025).
- Shahzad, U., Mohammed, K. S., Tiwari, S., Nakonieczny, J., & Nesterowicz, R. (2023). Connectedness between geopolitical risk, financial instability indices and precious metals markets: Novel findings from Russia Ukraine conflict perspective. Resources Policy, 80, 103190. [Google Scholar] [CrossRef]
- Singh, R. K., Garg, S. K., & Deshmukh, S. (2010). The competitiveness of SMEs in a globalized economy: Observations from China and India. Management Research Review, 33(1), 54–65. [Google Scholar] [CrossRef]
- Smith, H., Discetti, R., Bellucci, M., & Acuti, D. (2022). SMEs engagement with the Sustainable Development Goals: A power perspective. Journal of Business Research, 149, 112–122. [Google Scholar] [CrossRef]
- Sohal, A., Nand, A. A., Goyal, P., & Bhattacharya, A. (2022). Developing a circular economy: An examination of SME’s role in India. Journal of Business Research, 142, 435–447. [Google Scholar] [CrossRef]
- Sun, Y., Wu, M., Zeng, X., & Peng, Z. (2021). The impact of COVID-19 on the Chinese stock market: Sentimental or substantial? Finance Research Letters, 38, 101838. [Google Scholar] [CrossRef]
- Vo, T. P. T., Ngo, H. H., Guo, W., Turney, C., Liu, Y., Nguyen, D. D., Bui, X. T., & Varjani, S. (2023). Influence of the COVID-19 pandemic on climate change summit negotiations from the climate governance perspective. Science of the Total Environment, 878, 162936. [Google Scholar] [CrossRef]
- Zhang, M., Wang, S., Hu, T., Fu, X., Wang, X., Hu, Y., Nguyen, D. D., Bui, X. T., & Liu, H. (2022). Human mobility and COVID-19 transmission: A systematic review and future directions. Annals of GIS, 28(4), 501–514. [Google Scholar] [CrossRef]
- Zhang, Y., & Choudhry, T. (2017). Forecasting the daily time--varying beta of European banks during the crisis period: Comparison between GARCH models and the Kalman Filter. Journal of Forecasting, 36(8), 956–973. [Google Scholar] [CrossRef]
- Zhang, Z., He, M., Zhang, Y., & Wang, Y. (2022). Geopolitical risk trends and crude oil price predictability. Energy, 258, 124824. [Google Scholar] [CrossRef]



| Name | Ecpi Italy Sme Daily Return | Shenzhen Stock Exchange Sme Prime Market Daily Return | Geopolitical Risk Daily Change | Ecpi Italy Sme Weekly Return | Shenzhen Stock Exchange Sme Prime Market Weekly Return | Geopolitical Risk Weekly Change |
|---|---|---|---|---|---|---|
| PANEL A: Descriptive Statistics | ||||||
| Starting Date | 1 January 2003 | 30 December 2005 | 1 January 1985 | 1 January 2003 | 30 December 2005 | 1 January 1985 |
| Symbol | ECAISME | CHZSMEP | GRP | ECAISME | CHZSMEP | GRP |
| Mean | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 |
| Standard Deviation | 0.010 | 0.016 | 0.430 | 0.020 | 0.033 | 0.468 |
| Sample Variance | 0.000 | 0.000 | 0.185 | 0.000 | 0.001 | 0.219 |
| Kurtosis | 11.486 | 6.919 | 4.518 | 8.798 | 7.280 | 4.172 |
| Skewness | −0.614 | −0.775 | −0.021 | −0.636 | −0.824 | 0.082 |
| Jarque–Bera | 10,639.147 | 2570.451 | 333.761 | 5098.933 | 3043.531 | 202.537 |
| p-Value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| ADF | −55.887 | −55.729 | −95.765 | −21.928 | −21.281 | −51.328 |
| p-Value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| Count | 3473 | 3473 | 3473 | 3473 | 3473 | 3473 |
| PANEL B: Pearson Correlation | ||||||
| ECPI ITALY SME DAILY RETURN | 1.000 | |||||
| SHENZHEN STOCK EXCHANGE SME PRIME MARKET DAILY RETURN | 0.082 | 1.000 | ||||
| GEOPOLITICAL RISK DAILY CHANGE | −0.011 | 0.039 | 1.000 | |||
| ECPI ITALY SME WEEKLY RETURN | 0.488 | 0.051 | −0.008 | 1.000 | ||
| SHENZHEN STOCK EXCHANGE SME PRIME MARKET WEEKLY RETURN | 0.045 | 0.513 | 0.002 | 0.108 | 1.000 | |
| GEOPOLITICAL RISK WEEKLY CHANGE | −0.009 | 0.043 | 0.475 | −0.023 | 0.046 | 1.000 |
| Panel A: DCC-AR(n)-GARCH(p,q) Correlation | ||||
|---|---|---|---|---|
| Daily Return | Weekly Return | |||
| Ecpi Italy SME | Shenzhen Stock Exchange SME Prime Market | Ecpi Italy SME | Shenzhen Stock Exchange SME Prime Market | |
| Overall | −0.017 | 0.046 | −0.017 | 0.046 |
| COVID-19 | −0.018 | 0.046 | −0.019 | 0.046 |
| WAR | −0.018 | 0.046 | −0.021 | 0.017 |
| Panel B: Model Specification | ||||
| Log Likelihood | 11,039.890 | 8312.383 | 9381.775 | 6653.871 |
| AIC | −22,045.770 | −16,592.770 | −18,733.550 | −13,275.740 |
| BIC | −21,941.180 | −16,494.330 | −18,641.260 | −13,177.300 |
| Archlm test stat | 0.732 | 0.702 | 0.479 | 0.481 |
| Durbin–Watson d-statistic | 2.239 | 2.247 | 1.997 | 1.988 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choudhury, T.; Al Fadli, A.; Butros, N.; Fadul, A. SME, Crisis and Geopolitical Risk: Lessons from COVID-19 and War. J. Risk Financial Manag. 2025, 18, 645. https://doi.org/10.3390/jrfm18110645
Choudhury T, Al Fadli A, Butros N, Fadul A. SME, Crisis and Geopolitical Risk: Lessons from COVID-19 and War. Journal of Risk and Financial Management. 2025; 18(11):645. https://doi.org/10.3390/jrfm18110645
Chicago/Turabian StyleChoudhury, Tonmoy, Amer Al Fadli, Nataly Butros, and Abubaker Fadul. 2025. "SME, Crisis and Geopolitical Risk: Lessons from COVID-19 and War" Journal of Risk and Financial Management 18, no. 11: 645. https://doi.org/10.3390/jrfm18110645
APA StyleChoudhury, T., Al Fadli, A., Butros, N., & Fadul, A. (2025). SME, Crisis and Geopolitical Risk: Lessons from COVID-19 and War. Journal of Risk and Financial Management, 18(11), 645. https://doi.org/10.3390/jrfm18110645

