Analyzing Financial Behavior in Undergraduate Students in Economics, Administration and Accounting Sciences
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Context
2.3. Instruments
2.4. Data Analysis and Processing Procedures
2.5. Ethical Procedures
3. Results
3.1. Sample Characterization
3.2. Validation by Exploratory and Confirmatory Factor Analysis
- The χ2/df in the proposed model (1.35) is within the expected values for a good fit, while in the contrast model it is excessively high (7.06).
- The RMSEA of the proposed model (0.067, ci 0.047–0.077) is within the acceptable range, in contrast to that of the 1-factor model (0.124, ci 0.109–0.133), which indicates a poor fit.
- The incremental and absolute fit indices (CFI, NNFI, GFI, AGFI) are consistently higher in the 3-factor model, exceeding 0.98 in most cases, while the contrast model remains at lower values, some just above the acceptable threshold of 0.95.
- The RMSR also favors the proposed model (0.032 vs. 0.091), showing a lower level of residuals.
- F1: “I take notes and keep track of my expenses (e.g., spreadsheet of expenses and income)” (FB1), “Before buying something, I compare prices of similar products” (FB2), “I have a spending plan or budget” (FB4), and “I am very competent in managing my finances” (FB5). Thus, F1 → Financial Planning and Control.
- F2: “I save part of the money I receive to cover future needs” (FB3), “I save at least a minimum percentage of my income every month” (FB7), “I save regularly to achieve long-term financial goals” (FB10), “I save more when I receive a pay raise” (FB11), “I have a financial reserve of at least three times my monthly income, which I can use in unexpected circumstances” (FB12), and “In the last 12 months, I have been able to save money” (FB13). Thus, F2 → Saving and Financial Preparation.
- F3: “I pay my bills without delay” (FB6), “I analyze my financial situation before making a major purchase” (FB8), and “I always pay my debts on time to avoid extra charges” (FB9). Thus, F3 → Compliance Financial Obligations.
3.3. Resulting Scale Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
FB1 | FB2 | FB3 | FB4 | FB5 | FB6 | FB7 | FB8 | FB9 | FB10 | FB11 | FB12 | FB13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FB1 | 0.912 * | −0.110 | 0.070 | −0.307 | −0.135 | −0.018 | −0.036 | 0.056 | 0.013 | −0.008 | −0.034 | −0.088 | −0.003 |
FB2 | −0.110 | 0.918 * | −0.188 | −0.091 | −0.081 | −0.057 | −0.006 | −0.258 | 0.001 | 0.105 | −0.094 | 0.099 | 0.007 |
FB3 | 0.070 | −0.188 | 0.944 * | −0.132 | −0.076 | 0.097 | −0.220 | −0.105 | −0.064 | −0.155 | 0.019 | −0.014 | −0.166 |
FB4 | −0.307 | −0.091 | −0.132 | 0.904 * | −0.323 | −0.003 | −0.015 | −0.069 | 0.021 | 0.068 | −0.127 | −0.143 | 0.068 |
FB5 | −0.135 | −0.081 | −0.076 | −0.323 | 0.942 * | −0.079 | −0.041 | −0.172 | −0.036 | −0.095 | 0.051 | −0.045 | −0.012 |
FB6 | −0.018 | −0.057 | 0.097 | −0.003 | −0.079 | 0.834 * | −0.130 | −0.040 | −0.588 | 0.030 | 0.064 | −0.011 | −0.037 |
FB7 | −0.036 | −0.006 | −0.220 | −0.015 | −0.041 | −0.130 | 0.931 * | −0.043 | 0.067 | −0.329 | −0.056 | −0.040 | −0.271 |
FB8 | 0.056 | −0.258 | −0.105 | −0.069 | −0.172 | −0.040 | −0.043 | 0.932 * | −0.251 | −0.101 | −0.092 | 0.092 | 0.031 |
FB9 | 0.013 | 0.001 | −0.064 | 0.021 | −0.036 | −0.588 | 0.067 | −0.251 | 0.848 * | −0.081 | −0.056 | 0.012 | −0.030 |
FB10 | −0.008 | 0.105 | −0.155 | 0.068 | −0.095 | 0.030 | −0.329 | −0.101 | −0.081 | 0.925 * | −0.269 | −0.099 | −0.161 |
FB11 | −0.034 | −0.094 | 0.019 | −0.127 | 0.051 | 0.064 | −0.056 | −0.092 | −0.056 | −0.269 | 0.947 * | −0.162 | −0.081 |
FB12 | −0.088 | 0.099 | −0.014 | −0.143 | −0.045 | −0.011 | −0.040 | 0.092 | 0.012 | −0.099 | −0.162 | 0.926 * | −0.303 |
FB13 | −0.003 | 0.007 | −0.166 | 0.068 | −0.012 | −0.037 | −0.271 | 0.031 | −0.030 | −0.161 | −0.081 | −0.303 | 0.929 * |
Items ID | Items (In Spanish) | Items (In English) |
---|---|---|
FB1 | Tomo notas y controlo mis gastos (por ejemplo, hoja de cálculo de gastos e ingresos). | I take notes and keep track of my expenses (e.g., spreadsheet of expenses and income). |
FB2 | Antes de comprar algo, comparo precios de productos similares. | Before buying something, I compare prices of similar products. |
FB3 | Guardo/Ahorro parte del dinero que recibo para cubrir necesidades futuras. | I save part of the money I receive to cover future needs. |
FB4 | Tengo un plan de gastos o presupuesto. | I have a spending plan or budget. |
FB5 | Soy muy competente en el manejo de mis finanzas. | I am very competent in managing my finances. |
FB6 | Pago mis facturas sin demora. | I pay my bills without delay. |
FB7 | Ahorro mensualmente al menos un porcentaje mínimo de mis ingresos. | I save at least a minimum percentage of my income every month. |
FB8 | Analizo mi situación financiera antes de una compra importante. | I analyze my financial situation before making a major purchase. |
FB9 | Siempre pago mis deudas a tiempo para evitar cargos extras. | I always pay my debts on time to avoid extra charges. |
FB10 | Ahorro regularmente para lograr objetivos financieros a largo plazo. | I save regularly to achieve long-term financial goals. |
FB11 | Ahorro más cuando recibo un aumento de sueldo. | I save more when I receive a pay raise. |
FB12 | Tengo una reserva financiera de al menos tres veces mis ingresos mensuales, que puedo utilizar en circunstancias inesperadas. | I have a financial reserve of at least three times my monthly income, which I can use in unexpected circumstances. |
FB13 | En los últimos 12 meses he podido ahorrar dinero. | In the last 12 months, I have been able to save money. |
References
- Abril-Teatin, A. J., Saavedra-Najar, R., Blanco-Mesa, F., & Romero, J. M. (2022). Financial education knowledge assessment index. Cuadernos del Cimbage, 24(2), 1–16. [Google Scholar]
- Albrecht, P. (1980). On the correct use of the chi-square goodness-of-fit test. Scandinavian Actuarial Journal, 1980(3), 149–160. [Google Scholar] [CrossRef]
- Álvarez-Padilla, Y., Loibl, C., & Boone, B. (2025). Money talks: Testing a series of financial literacy modules to encourage financial conversations in middle school families. Journal of Family and Economic Issues, 46, 1–20. [Google Scholar] [CrossRef]
- Bae, K., Jang, G. Y., Kang, H. G., & Tan, P. (2022). Early financial education, financial literacy, and gender equity in Finance. Asia-Pacific Journal of Financial Studies, 51(3), 372–400. [Google Scholar] [CrossRef]
- Beytollahi, A. (2020). Chemistry of financial behaviors: A mini review of hormones effect on financial behaviors (2010–2019). Eurasian Chemical Communications, 2(8), 916–937. [Google Scholar] [CrossRef]
- Bhatia, S., & Singh, S. (2024). Exploring financial well-being of working professionals in the Indian context. Journal of Financial Services Marketing, 29(2), 474–487. [Google Scholar] [CrossRef]
- Blay, M. W., Musah, A., Ayariga, C., & Okyere, D. O. (2024). Determinants of financial literacy and its effect on stock market participation among university students in Ghana. International Journal of Economics and Financial Issues, 14(2), 15–25. [Google Scholar] [CrossRef]
- Bonett, D. G., & Wright, T. A. (2015). Cronbach’s alpha reliability: Interval estimation, hypothesis testing, and sample size planning. Journal of Organizational Behavior, 36(1), 3–15. [Google Scholar] [CrossRef]
- Cedeño, D., Lannin, D. G., Russell, L., Yazedjian, A., Kanter, J. B., & Mimnaugh, S. (2021). The effectiveness of a financial literacy and job-readiness curriculum for youth from low-income households. Citizenship, Social and Economics Education, 20(3), 197–215. [Google Scholar] [CrossRef]
- Central Intelligence Agency. (2025). The world factbook: Honduras. Available online: https://www.cia.gov/the-world-factbook/countries/honduras/ (accessed on 2 September 2025).
- Clayton, J., Gordon, J., Fabozzi, F., Giliberto, S. M., Liang, Y., & Hudson-Wilson, S. (2007). Real estate comes of age. Journal of Portfolio Management, 33, 15–26. [Google Scholar] [CrossRef]
- Collins, J. M., Halpern-Meekin, S., Harvey, M., & Hoiting, J. (2023). “I don’t like all those fees” pragmatism about financial services among low-income parents. Journal of Family and Economic Issues, 44, 807–820. [Google Scholar] [CrossRef]
- Contreras-Cristán, A., & González-Barrios, J. M. (2009). A nonparametric test for symmetry based on freeman and halton’s ideas on contingency tables. Communications in Statistics—Simulation and Computation, 38(9), 1856–1869. [Google Scholar] [CrossRef]
- Cwynar, A. (2021). Do women behave financially worse than men? Evidence from married and cohabiting couples. Central European Business Review, 10(5), 81–98. [Google Scholar] [CrossRef]
- Davis, L. E. (2016). Identifying the financialization of the nonfinancial corporation in the US economy: A decomposition of firm-level balance sheets. Journal of Post Keynesian Economics, 39(1), 115–141. [Google Scholar] [CrossRef]
- dos Santos, J. O., & Barros, C. A. S. (2011). What determines the financial decision-making: Reason or emotion? RBGN-Revista Brasileira de Gestao de Negocios, 13(38), 7–20. [Google Scholar] [CrossRef]
- Faturohman, T., Megananda, T. B., & Ginting, H. (2024). Improving financial wellbeing in Indonesia: The role of social media as a mediating factor in financial behavior. Cogent Social Sciences, 10(1), 2319374. [Google Scholar] [CrossRef]
- Fernández-Guadaño, J. (2015). Measuring the economic performance of socially responsible companies. Zbornik Radova Ekonomskog Fakulteta U Rijeci-Proceedings of Rijeka Faculty of Economics, 33(2), 207–233. [Google Scholar] [CrossRef]
- Ferrando, P. J., & Lorenzo-Seva, U. (2017). Program FACTOR at 10: Origins, development and future directions. Psicothema, 29(2), 236–240. [Google Scholar] [CrossRef]
- Ferrando, P. J., Lorenzo-Seva, U., Hernández-Dorado, A., & Muñiz, J. (2022). Decalogue for the factor analysis of test items. Psicothema, 34(1), 7–17. [Google Scholar] [CrossRef]
- Freeman, G. H., & Halton, J. H. (1951). Note on an exact treatment of contingency, goodness of fit and other problems of significance. Biometrika, 38(1/2), 141–149. [Google Scholar] [CrossRef]
- Garrison, S. T., Rampold, S. D., Vasquez, K., Gillen, M., & Baker, L. M. (2022). Parents’ employment, income, and finances before and during the COVID-19 pandemic. Journal of Consumer Affairs, 56(1), 276–291. [Google Scholar] [CrossRef] [PubMed]
- Ghazali, M. S., Idris, N. H., Alwi, S. F. S., Osman, I., & Mansor, F. (2025). Exploring financial well-being among emerging adults in the Malaysian workforce: A family resource management perspective. Journal of Nusantara Studies-Jonus, 10(2), 273–299. [Google Scholar] [CrossRef]
- Gudmunson, C. G., & Danes, S. M. (2011). Family financial socialization: Theory and critical review. Journal of Family and Economic Issues, 32(4), 644–667. [Google Scholar] [CrossRef]
- Hallsworth, M., List, J. A., Metcalfe, R. D., Rotaru, K., & Vlaev, I. (2024). The making of Homo Honoratus: From omission to commission. Journal of Consumer Psychology, 34(4), 588–600. [Google Scholar] [CrossRef]
- Herrador-Alcaide, T. C., Hernández-Solís, M., & Topa, G. (2021). A model for personal financial planning towards retirement. Journal of Business Economics and Management, 22(2), 482–502. [Google Scholar] [CrossRef]
- Ho, A. D., & Yu, C. C. (2015). Descriptive statistics for modern test score distributions: Skewness, kurtosis, discreteness, and ceiling effects. Educational and Psychological Measurement, 75(3), 365–388. [Google Scholar] [CrossRef]
- Hughes, D. J. (2018). Psychometric validity. In P. Irwing, T. Booth, & D. J. Hughes (Eds.), The Wiley handbook of psychometric testing (pp. 751–779). Wiley. [Google Scholar] [CrossRef]
- Johan, I., Rowlingson, K., & Appleyard, L. (2021). The effect of personal finance education on the financial knowledge, attitudes and behaviour of university students in Indonesia. Journal of Family and Economic Issues, 42, 351–367. [Google Scholar] [CrossRef]
- Kaiser, H. F., & Cerny, B. A. (1979). Factor analysis of the image correlation matrix. Educational and Psychological Measurement, 39(4), 711–714. [Google Scholar] [CrossRef]
- Kalkan, Ö. K., & Kelecioğlu, H. (2016). The effect of sample size on parametric and nonparametric factor analytical methods. Educational Sciences: Theory & Practice, 16(1), 153–171. [Google Scholar] [CrossRef]
- Kislitsyn, D. V. (2020). Financial literacy training programs and financial behaviour: Why people do not become financially literate? Voprosy Ekonomiki, 9, 80–93. [Google Scholar] [CrossRef]
- Kreiner, C. T., Leth-Petersen, S., & Willerslev-Olsen, L. C. (2020). Financial trouble across generations: Evidence from the universe of personal loans in Denmark. Economic Journal, 130(625), 233–262. [Google Scholar] [CrossRef]
- Krijnen, W. P. (1996). Algorithms for unweighted least-squares factor analysis. Computational Statistics & Data Analysis, 21(2), 133–147. [Google Scholar] [CrossRef]
- Kumar, P., Ahlawat, P., Deveshwar, A., & Yadav, M. (2024). Do villagers’ financial socialization, financial literacy, financial attitude, and financial behavior predict their financial well-being? Evidence from an emerging India. Journal of Family and Economic Issues, 46, 802–820. [Google Scholar] [CrossRef]
- Kyriazos, T. A. (2018). Applied psychometrics: Sample size and sample power considerations in factor analysis (EFA, CFA) and SEM in general. Psychology, 9(8), 2207–2230. [Google Scholar] [CrossRef]
- Li, B., & Liu, Y. P. (2025). Household aging, commercial insurance participation, and risky asset allocation. International Review of Financial Analysis, 104, 104291. [Google Scholar] [CrossRef]
- Li, C.-H. (2016). The performance of ML, DWLS, and ULS estimation with robust corrections in structural equation models with ordinal variables. Psychological Methods, 21(3), 369–387. [Google Scholar] [CrossRef]
- Lloret-Segura, S., Ferreres-Traver, A., Hernández-Baeza, A., & Tomás-Marco, I. (2014). Exploratory item factor analysis: A practical guide revised and updated. Annals of Psychology, 30(3), 1151–1169. [Google Scholar] [CrossRef]
- Long, T. Q., & Tue, N. D. (2024). Financial knowledge and short- and long-term financial behavior across gender and generations: Evidence from Japan. Sage Open, 14(4), 21582440241295846. [Google Scholar] [CrossRef]
- Lorenzo-Seva, U. (2022). SOLOMON: A method for splitting a sample into equivalent subsamples in factor analysis. Behavior Research Methods, 54, 2665–2677. [Google Scholar] [CrossRef]
- Lorenzo-Seva, U., & Ferrando, P. J. (2021). MSA: The forgotten index for identifying inappropriate items before computing exploratory item factor analysis. Methodology, 17(4), 296–306. [Google Scholar] [CrossRef]
- Lorenzo-Seva, U., Timmerman, M. E., & Kiers, H. A. L. (2011). The Hull method for selecting the number of common factors. Multivariate Behavioral Research, 46(2), 340–364. [Google Scholar] [CrossRef]
- Méndez-Prado, S. M., Chiluiza, K., Everaert, P., & Valcke, M. (2022). Design and evaluation among young adults of a financial literacy scale focused on key financial decisions. Education Sciences, 12(7), 460. [Google Scholar] [CrossRef]
- Mielitz, K., & MacDonald, M. (2021). Post-release financial behavioral intentions of transitional center participants. Journal of Financial Counseling and Planning, 32(1), 173–186. [Google Scholar] [CrossRef]
- Morata-Ramírez, M. A., Holgado-Tello, F. P., Barbero-García, I., & Méndez, G. (2015). Confirmatory factor analysis: Recommendations for underweighted least squares method related to chi-square and RMSEA type I error. Acción Psicológica, 12(1), 79–90. [Google Scholar] [CrossRef]
- Okamoto, S., & Komamura, K. (2021). Age, gender, and financial literacy in Japan. PLoS ONE, 16(11), e0259393. [Google Scholar] [CrossRef] [PubMed]
- Patrisia, D., Abror, A., Dastgir, S., & Rahayu, R. (2023). Generation Z’s financial behaviour: The role of Islamic financial literacy. Isra International Journal of Islamic Finance, 15(2), 20–37. [Google Scholar] [CrossRef]
- Pham, K. D., & Le, V. L. T. (2023). Nexus between financial education, literacy, and financial behavior: Insights from Vietnamese young generations. Sustainability, 15(20), 14854. [Google Scholar] [CrossRef]
- Rabadan, E. J. G. (2025). Assessment on financial practices among teachers in the District of Bacuag, Division of Surigao Del Norte: Bases for intervention. International Journal of Science and Research Archive, 16(02), 808–825. [Google Scholar] [CrossRef]
- Rahman, M., Isa, C. R., Masud, M. M., Sarker, M., & Chowdhury, N. T. (2021). The role of financial behaviour, financial literacy, and financial stress in explaining the financial well-being of B40 group in Malaysia. Future Business Journal, 7(1), 52. [Google Scholar] [CrossRef]
- Ramli, Z., Muhamad Yusof, N., Md. Sum, S., & Awang, A. H. (2023). Hubungan pengetahuan dan tingkah laku kewangan dengan perancangan kewangan persaraan dalam kalangan generasi milenial. Akademika, 93(1), 373–387. [Google Scholar] [CrossRef]
- Ruxton, G. D., & Neuhäuser, M. (2010). Good practice in testing for an association in contingency tables. Behavioral Ecology and Sociobiology, 64, 1505–1513. [Google Scholar] [CrossRef]
- Sabri, M. F., Anthony, M., Law, S. H., Rahim, H. A., Burhan, N. A. S., & Ithnin, M. (2024). Impact of financial behaviour on financial well-being: Evidence among young adults in Malaysia. Journal of Financial Services Marketing, 29(3), 788–807. [Google Scholar] [CrossRef]
- Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of Psychological Research, 8(2), 23–74. [Google Scholar] [CrossRef]
- Sun, J. (2005). Assessing goodness of fit in confirmatory factor analysis. Measurement and Evaluation in Counseling and Development, 37(4), 240–256. [Google Scholar] [CrossRef]
- Van Gunten, T., & Navot, E. (2018). Varieties of indebtedness: Financialization and mortgage market institutions in Europe. Social Science Research, 70, 90–106. [Google Scholar] [CrossRef] [PubMed]
- Velicer, W. F., & Fava, J. L. (1998). Affects of variable and subject sampling on factor pattern recovery. Psychological Methods, 3(2), 231–251. [Google Scholar] [CrossRef]
- Vijaykumar, J. H. (2022). The association of financial socialization with financial self-efficacy and autonomy: A study of young students in India. Journal of Family and Economic Issues, 43(2), 397–414. [Google Scholar] [CrossRef]
- Viktorovna, B. T., & Mikhailovna, Z. E. (2020). Field dependence/field independence as a factor of financial decision making with varying degrees of risk among students. International Journal of Cognitive Research in Science Engineering and Education-IJCRSEE, 8, 113–120. [Google Scholar] [CrossRef]
- Warchlewska, A. (2024). Interdisciplinary approach to consumer financial behavior: Developing a conceptual framework. International Journal of Consumer Studies, 48(6), e13091. [Google Scholar] [CrossRef]
- Weissberger, G. H., Nguyen, A. L., Lim, A. C., Fenton, L., Mosqueda, L., & Han, S. D. (2025). The cognitive correlates of financial literacy in older adults. Clinical Gerontologist, 48(3), 459–467. [Google Scholar] [CrossRef]
- West, S., Banerjee, M., Phipps, B., & Friedline, T. (2017). Coming up short: Family composition, income, and household savings. Journal of the Society for Social Work and Research, 8(3), 355–377. [Google Scholar] [CrossRef]
- Williams, C. A. (1950). The choice of the number and width of classes for the chi-square test of goodness of fit. Journal of the American Statistical Association, 45(249), 77–86. [Google Scholar] [CrossRef]
- Wolf, E. J., Harrington, K. M., Clark, S. L., & Miller, M. W. (2013). Sample size requirements for structural equation models: An evaluation of power, bias, and solution propriety. Educational and Psychological Measurement, 73(6), 913–934. [Google Scholar] [CrossRef]
- Wuensch, K. L. (2025). Chi-square tests. In M. Lovric (Ed.), International encyclopedia of statistical science (pp. 466–468). Springer. [Google Scholar] [CrossRef]
- Xiao, J. J., & Meng, K. X. (2024). Financial capability and financial anxiety: Comparison before and during the COVID-19 pandemic. International Journal of Bank Marketing, 42(6), 1348–1369. [Google Scholar] [CrossRef]
- Xiao, J. J., & Porto, N. (2022). Financial capability and wellbeing of vulnerable consumers. Journal of Consumer Affairs, 56(2), 1004–1018. [Google Scholar] [CrossRef]
- Ximénez, M. C., & García, A. G. (2005). Comparison of maximum likelihood and unweighted least squares estimation methods in confirmatory factor analysis by Monte Carlo simulation. Psicothema, 17(3), 528–535. Available online: https://www.psicothema.com/pii?pii=3140 (accessed on 10 October 2025).
- Xiong, T. L., Ma, Z. S., Li, Z. Z., & Dai, J. Q. Y. (2022). The analysis of influence mechanism for internet financial fraud identification and user behavior based on machine learning approaches. International Journal of System Assurance Engineering and Management, 13(Suppl. 3), 996–1007. [Google Scholar] [CrossRef]
- Yang-Wallentin, F., Jöreskog, K. G., & Luo, H. (2010). Confirmatory factor analysis of ordinal variables with misspecified models. Structural Equation Modeling: A Multidisciplinary Journal, 17(3), 392–423. [Google Scholar] [CrossRef]
Items | FB-1 | FB-2 | FB-3 | FB-4 | FB-5 | FB-6 | FB-7 | FB-8 | FB-9 | FB-10 | FB-11 | FB-12 | FB-13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Factor Loading | 0.520 | 0.510 | 0.740 | 0.610 | 0.650 | 0.570 | 0.750 | 0.640 | 0.560 | 0.750 | 0.400 | 0.270 | 0.690 |
Sample | Level | Cronbach’s Alpha | MIF | χ2/df | RMSEA | AGFI | GFI | CFI | NNFI | RMSR |
---|---|---|---|---|---|---|---|---|---|---|
≥200 | Good fit | [0.70, 0.80) | NR | [0, 2] | [0.00, 0.05] | [0.90, 1.00] | [0.95, 1.00] | [0.97, 1.00] | [0.97,1.00] | [0.00, 0.05) ++ |
Acceptable fit | [0.80, 0.95) | ≥3 | (2, 3] | (0.05, 0.08] | [0.85, 0.90) | [0.90, 0.95) | [0.95, 0.97) | [0.95,0.97) | [0.05, 0.08] ++ |
Sociodemographic Variables | Level | n | n% |
---|---|---|---|
Gender | Female (1) * | 448 | 63% |
Male (2) | 266 | 37% | |
Age (years old) | 16–24 (1) | 470 | 66% |
25–34 (2) | 169 | 24% | |
35–44 (3) | 58 | 8% | |
45 or more (4) | 17 | 2% | |
Residential area (RSD) | Urban (1) | 578 | 81% |
Rural (2) | 136 | 19% | |
Marital status (MAS) | Single (1) | 608 | 85% |
Not single (2) | 106 | 15% | |
Parental status (PAS) | With children (1) | 117 | 16% |
Without children (2) | 597 | 84% | |
Work experience (WEP) | None (1) | 281 | 39% |
Less than one year (2) | 157 | 22% | |
1 to 10 years (3) | 189 | 27% | |
More than 10 years (4) | 87 | 12% | |
Employed (EMP) | Unemployed (1) | 459 | 64% |
Employed (2) | 255 | 36% | |
Undergraduate level (UGL) | 1° | 86 | 12% |
2° | 170 | 24% | |
3° | 180 | 25% | |
4° | 142 | 20% | |
5° | 136 | 19% |
Variables | Sig | Decision |
---|---|---|
FB1 | 0.391 | Retain the null hypothesis |
FB2 | 0.787 | Retain the null hypothesis |
FB3 | 0.501 | Retain the null hypothesis |
FB4 | 0.604 | Retain the null hypothesis |
FB5 | 0.518 | Retain the null hypothesis |
FB6 | 0.081 | Retain the null hypothesis |
FB7 | 0.107 | Retain the null hypothesis |
FB8 | 0.514 | Retain the null hypothesis |
FB9 | 0.053 | Retain the null hypothesis |
FB10 | 0.385 | Retain the null hypothesis |
FB11 | 0.234 | Retain the null hypothesis |
FB12 | 0.837 | Retain the null hypothesis |
FB13 | 0.412 | Retain the null hypothesis |
Variables | N | Mean | Variance | Skewness | Kurtosis | ||
---|---|---|---|---|---|---|---|
Statistic | Statistic | Statistic | Statistic | Std. Error | Statistic | Std. Error | |
FB1 * | 714 | 2.75 | 1.450 * | 0.190 * | 0.091 | −0.852 * | 0.183 |
FB2 * | 714 | 3.84 | 1.130 * | −0.628 * | 0.091 | −0.368 * | 0.183 |
FB3 * | 714 | 3.61 | 1.298 * | −0.380 * | 0.091 | −0.753 * | 0.183 |
FB4 * | 714 | 3.08 | 1.592 * | −0.103 * | 0.091 | −0.967 * | 0.183 |
FB5 * | 714 | 3.33 | 1.244 * | −0.189 * | 0.091 | −0.626 * | 0.183 |
FB6 * | 714 | 4.07 | 1.220 * | −1.101 * | 0.091 | 0.442 * | 0.183 |
FB7 * | 714 | 3.37 | 1.569 * | −0.287 * | 0.091 | −0.949 * | 0.183 |
FB8 * | 714 | 3.99 | 1.143 * | −0.849 * | 0.091 | −0.087 * | 0.183 |
FB9 * | 714 | 4.19 | 1.001 * | −1.189 * | 0.091 | 0.798 * | 0.183 |
FB10 * | 714 | 3.44 | 1.445 * | −0.298 * | 0.091 | −0.825 * | 0.183 |
FB11 * | 714 | 3.28 | 1.685 * | −0.336 * | 0.091 | −0.935 * | 0.183 |
FB12 * | 714 | 2.58 | 1.769 * | 0.371 * | 0.091 | −1.025 * | 0.183 |
FB13 * | 714 | 3.14 | 1.828 * | −0.089 * | 0.091 | −1.202 * | 0.183 |
Valid N (listwise) | 714 |
KMO and Bartlett’s Test | |||
---|---|---|---|
Kaiser–Meyer–Olkin Measure of Sampling Adequacy. | 0.917 | ||
Bartlett’s Test of Sphericity | Approx. Chi-Square | 5247.199 | |
Degree of freedom | 78 | ||
Significance | 0.000 | ||
Pattern Matrix a | |||
ID | Factor 1: Saving and Financial Preparation | Factor 2: Compliance Financial Obligations | Factor 3: Financial Planning and Control |
FB1 | 0.607 | ||
FB2 | 0.486 | ||
FB3 | 0.549 | ||
FB4 | 0.834 | ||
FB5 | 0.584 | ||
FB6 | 0.732 | ||
FB7 | 0.798 | ||
FB8 | 0.464 | ||
FB9 | 0.873 | ||
FB10 | 0.845 | ||
FB11 | 0.591 | ||
FB12 | 0.693 | ||
FB13 | 0.899 | ||
Eigenvalue | 6.145 | 0.919 | 0.700 |
% of Variance | 47.267 | 7.067 | 5.381 |
Cumulative % | 47.267 | 54.334 | 59.715 |
Factor Correlation Matrix b | |||
Factor | 1 | 2 | 3 |
1 | 1.000 | 0.515 | 0.643 |
2 | 0.515 | 1.000 | 0.481 |
3 | 0.643 | 0.481 | 1.000 |
KMO and Bartlett’s Test | |||
---|---|---|---|
Kaiser–Meyer–Olkin Measure of Sampling Adequacy. (confidence interval 90%) | 0.916 (0.890; 0.917) | ||
Bartlett’s Test of Sphericity | Approx. Chi-Square | 6726.4 | |
Degree of freedom | 78 | ||
Significance | 0.000010 | ||
Rotated Loading Matrix | |||
Variable (Item) | Factor 1 (F1) | Factor 2 (F2) | Factor 3 (F3) |
Factor Name | Financial Planning and Control | Saving and Financial Preparation | Compliance Financial Obligations |
FB1 | 0.637 | ||
FB2 | 0.500 | ||
FB3 | 0.574 | ||
FB4 | 0.860 | ||
FB5 | 0.586 | ||
FB6 | 0.769 | ||
FB7 | 0.810 | ||
FB8 | 0.508 | ||
FB9 | 0.908 | ||
FB10 | 0.874 | ||
FB11 | 0.630 | ||
FB12 | 0.760 | ||
FB13 | 0.925 | ||
Explained Variance | 0.556 | 0.100 | 0.082 |
Cumulative Variance | 0.556 | 0.655 | 0.737 |
Eigenvalue | 7.224 | 1.293 | 1.072 |
% Eigenvalue | 75.336% | 13.484% | 11.179% |
Inter Factor Correlation Matrix | |||
Factor | F1 | F2 | F3 |
F1 | 1.000 | ||
F2 | 0.640 | 1.000 | |
F3 | 0.502 | 0.534 | 1.000 |
Model | Sample | Level | Cronbach’s Alpha | MIF | χ2/df | RMSEA | AGFI | GFI | CFI | NNFI | RMSR |
---|---|---|---|---|---|---|---|---|---|---|---|
Proposed (3 Factors) | 714 | - | 0.915 ** | 3 | 1.35 **,+ | 0.067 * ci (0.047 0.077) | 0.995 ** ci (0.994 0.997) | 0.997 ** ci (0.997 0.998) | 0.991 ** ci (0.988 0.995) | 0.984 ** ci (0.978 0.991) | 0.032 ** ci (0.025 0.035) |
Contrast (1 Factor) | 714 | - | 0.915 ** | 13 | 7.06 + | 0.124 ci (0.109 0.133) | 0.973 ** ci (0.966 0.979) | 0.977 ** ci (0.972 0.982) | 0.954 * ci (0.942 0.965) | 0.945 ci (0.930 0.958) | 0.0909 ci (0.081 0.097) |
Parameters | ≥200 | ** | [0.80, 0.95) | NR | [0, 2] | [0.00, 0.05] | [0.90, 1.00] | [0.95, 1.00] | [0.97, 1.00] | [0.97, 1.00] | [0.00, 0.05) ++ |
* | [0.70, 0.80) | ≥3 | (2, 3] | (0.05, 0.08] | [0.85, 0.90) | [0.90, 0.95) | [0.95, 0.97) | [0.95, 0.97) | [0.05, 0.08] ++ |
Scale | Variance | Skewness | Kurtosis | Valid Cases | Number of Items | Cronbach’s Alpha |
---|---|---|---|---|---|---|
Factor 1 | 0.909 | −0.068 | −0.645 | 714 | 4 | 0.789 * |
Factor 2 | 1.134 | −0.086 | −0.758 | 714 | 6 | 0.899 ** |
Factor 3 | 0.889 | −0.887 | 0.045 | 714 | 3 | 0.814 ** |
Factor Total | 0.894 | −0.070 | −0.601 | 714 | 13 | 0.915 ** |
Variable 1 | Variable 2 | N of Valid Cases | Expected Counts Less Than 5 (%) | χ2 Test Validity | Value χ2 | df | Asymp. Sig. (2-Sided) | Value F-H | Exact Sig. (2-Sided) | Correlation Evidence |
---|---|---|---|---|---|---|---|---|---|---|
F1 | GND | 714 | 10% * | Yes | 2.282 | 4 | 0.684 | 2.154 | 0.712 | No |
AGE | 714 | 25% | No | 24.291 | 12 | 0.019 ** | 23.834 + | 0.014 +,** | Yes: F-H | |
RSD | 714 | 10% * | Yes | 2.369 | 4 | 0.668 | 2.617 | 0.622 | No | |
MAS | 714 | 10% * | Yes | 7.472 | 4 | 0.113 | 7.471 | 0.100 | No | |
PAS | 714 | 10% * | Yes | 7.634 | 4 | 0.106 | 7.460 | 0.102 | No | |
WEP | 714 | 20% * | Yes | 26.110 | 12 | 0.010 ** | 24.625 + | 0.013 +,** | Yes: both | |
EMP | 714 | 10% * | Yes | 4.849 | 4 | 0.303 | 4.732 | 0.313 | No | |
UGL | 714 | 20% * | Yes | 18.146 | 16 | 0.315 | 17.975 + | 0.292 + | No | |
F2 | GND | 714 | 0% * | Yes | 7.969 | 4 | 0.093 | 8.111 | 0.087 | No |
AGE | 714 | 20% * | Yes | 17.628 | 12 | 0.127 | 14.671 + | 0.230 + | No | |
RSD | 714 | 10% * | Yes | 6.044 | 4 | 0.196 | 5.889 | 0.203 | No | |
MAS | 714 | 10% * | Yes | 7.496 | 4 | 0.112 | 7.170 | 0.122 | No | |
PAS | 714 | 10% * | Yes | 9.887 | 4 | 0.042 ** | 9.385 | 0.049 ** | Yes: both | |
WEP | 714 | 5% * | Yes | 12.408 | 12 | 0.413 | 12.025 + | 0.432 + | No | |
EMP | 714 | 0% * | Yes | 9.426 | 4 | 0.051 | 9.209 | 0.055 | No | |
UGL | 714 | 12% * | Yes | 18.651 | 16 | 0.287 | 18.154 + | 0.305 + | No | |
F3 | GND | 714 | 20% * | Yes | 3.875 | 4 | 0.423 | 3.878 | 0.420 | No |
AGE | 714 | 35% | No | 11.113 | 12 | 0.519 | 10.797 + | 0.509 + | No | |
RSD | 714 | 20% * | Yes | 6.593 | 4 | 0.159 | 6.909 | 0.126 | No | |
MAS | 714 | 20% * | Yes | 3.369 | 4 | 0.498 | 4.141 | 0.359 | No | |
PAS | 714 | 20% * | Yes | 7.252 | 4 | 0.123 | 7.606 | 0.095 | No | |
WEP | 714 | 20% * | Yes | 13.108 | 12 | 0.361 | 12.601 + | 0.360 + | No | |
EMP | 714 | 20% * | Yes | 1.731 | 4 | 0.785 | 1.738 | 0.798 | No | |
UGL | 714 | 20% * | Yes | 13.434 | 16 | 0.641 | 13.336 + | 0.609 + | No | |
FT | GND | 714 | 10% * | Yes | 1.833 | 4 | 0.766 | 1.708 | 0.797 | No |
AGE | 714 | 25% | No | 23.491 | 12 | 0.024 ** | 22.916 + | 0.022 +,** | Yes: F-H | |
RSD | 714 | 10% * | Yes | 3.000 | 4 | 0.558 | 3.228 | 0.513 | No | |
MAS | 714 | 10% * | Yes | 7.317 | 4 | 0.120 | 7.307 | 0.107 | No | |
PAS | 714 | 10% * | Yes | 7.581 | 4 | 0.108 | 7.405 | 0.104 | No | |
WEP | 714 | 20% * | Yes | 28.382 | 12 | 0.005 *** | 27.081 + | 0.005 +,*** | Yes: both | |
EMP | 714 | 10%* | Yes | 4.644 | 4 | 0.326 | 4.515 | 0.338 | No | |
UGL | 714 | 20%* | Yes | 17.746 | 16 | 0.339 | 17.579 + | 0.310 + | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendoza-Ávila, I.; Vega-Muñoz, A.; Salazar-Sepúlveda, G.; Contreras-Barraza, N.; Castillo, D. Analyzing Financial Behavior in Undergraduate Students in Economics, Administration and Accounting Sciences. J. Risk Financial Manag. 2025, 18, 581. https://doi.org/10.3390/jrfm18100581
Mendoza-Ávila I, Vega-Muñoz A, Salazar-Sepúlveda G, Contreras-Barraza N, Castillo D. Analyzing Financial Behavior in Undergraduate Students in Economics, Administration and Accounting Sciences. Journal of Risk and Financial Management. 2025; 18(10):581. https://doi.org/10.3390/jrfm18100581
Chicago/Turabian StyleMendoza-Ávila, Isabel, Alejandro Vega-Muñoz, Guido Salazar-Sepúlveda, Nicolás Contreras-Barraza, and Dante Castillo. 2025. "Analyzing Financial Behavior in Undergraduate Students in Economics, Administration and Accounting Sciences" Journal of Risk and Financial Management 18, no. 10: 581. https://doi.org/10.3390/jrfm18100581
APA StyleMendoza-Ávila, I., Vega-Muñoz, A., Salazar-Sepúlveda, G., Contreras-Barraza, N., & Castillo, D. (2025). Analyzing Financial Behavior in Undergraduate Students in Economics, Administration and Accounting Sciences. Journal of Risk and Financial Management, 18(10), 581. https://doi.org/10.3390/jrfm18100581