Risk Premium and Fear of Investors in Crisis’ Periods: An Empirical Approach Based on Fama–French and Carhart Factor Models
Abstract
:1. Introduction
2. Literature Review and Hypothesis Development
2.1. The Size Factor
2.2. The Value Factor
2.3. The Momentum Factor
2.4. The Risk Factor
2.5. The VIX Index
3. Data Presentation
4. Results and Discussion
4.1. Correlations between Variables
4.2. Stationarity Tests: Augmented Dickey–Fuller Tests
4.3. Granger Causality Tests
- -
- For variables Yt
- -
- For variables Xt
4.4. Vector Autoregression (VAR) Estimates, before and after Crises
4.5. Results from Impulse Responses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Agarwal, Vineet, and Richard Taffler. 2008. Does Financial Distress Risk Drive the Momentum Anomaly? Financial Management 37: 461–84. [Google Scholar] [CrossRef]
- Ahmed, Mumtaz, Gulfam Haider, and Asad Zaman. 2017. Detecting structural change with heteroskedasticity. Communications in Statistics—Theory and Methods 46: 10446–55. [Google Scholar] [CrossRef]
- Andreou, Elena, and Aris Spanos. 2003. Statistical adequacy and the testing of trend versus difference stationarity. Econometric Reviews 22: 217–37. [Google Scholar] [CrossRef]
- Barberis, Nicholas, Andrei Shleifer, and Robert Vishny. 1998. Model of Investor Sentiment. Journal of Financial Economics 49: 307–43. [Google Scholar] [CrossRef]
- Basdekis, Charalambos, Apostolos Christopoulos, Evgenios Gakias, and Ioannis Katsampoxakis. 2023a. The effect of ECB unconventional monetary policy on firm’sperformance during the global financial crisis. Journal of Risk and Financial Management 16: 258. [Google Scholar] [CrossRef]
- Basdekis, Charalambos, Ioannis Katsampoxakis, and Konstantinos Anathreptakis. 2023b. Women’s Participation in Firms’ Management and Their Impact on Financial Performance: Pre-COVID-19 and COVID-19 Period Evidence. Sustainability 15: 8686. [Google Scholar] [CrossRef]
- Campello, Murillo, Long Chen, and Lu Zhang. 2008. Expected Returns, Yield Spreads, and Asset Pricing Tests. Review of Financial Studies 21: 1297–338. [Google Scholar] [CrossRef]
- Carhart, Mark M. 1997. On Persistence in Mutual Fund Performance. The Journal of Finance 52: 57–82. [Google Scholar] [CrossRef]
- Chaudhary, Rashmi, Priti Bakhshi, and Hemendra Gupta. 2020. Volatility in international stock markets: An empirical study during COVID-19. Journal of Risk and Financial Management 13: 208. [Google Scholar] [CrossRef]
- Durand, Robert B., Alex Juricev, and Gary W. Smith. 2007. SMB–Arousal, Disproportionate Reactions and the Size-Premium. Pacific-Basin Finance Journal 15: 315–28. [Google Scholar] [CrossRef]
- Durand, Robert B., Dominic Lim, and J. Kenton Zumwalt. 2011. Fear and the Fama-French Factors. Financial Management 40: 409–26. [Google Scholar] [CrossRef]
- Enders, Walter. 2015. Applied Econometric Time Series, 4th ed. Hoboken: John Wiley & Sons. [Google Scholar]
- Fama, Eugene F., and Kenneth R. French. 1993. Common Risk Factors in the Returns on Stocks and Bonds. Journal of Financial Economics 33: 3–57. [Google Scholar] [CrossRef]
- Fama, Eugene F., and Kenneth R. French. 2015. A five-factor asset pricing model. Journal of Financial Economics 116: 1–22. [Google Scholar] [CrossRef]
- Grinblatt, Mark, and Bing Han. 2005. Prospect Theory, Mental Accounting, and Momentum. Journal of Financial Economics 78: 311–39. [Google Scholar] [CrossRef]
- Guo, Zhaojun, Yajun Shen, Zheyi Tang, and Luyuan Wang. 2022. The Research of Fama-French Three-factor Model’s Applications in the Chinese Stock Market after the Financial Crisis. Paper presented at the 2022 7th International Conference on Financial Innovation and Economic Development (ICFIED 2022), Zhuhai, China, January 14–16; Berlin and Heidelberg: Atlantis Press, pp. 799–805. [Google Scholar] [CrossRef]
- Horvath, Dominik, and Yung-Lin Wang. 2021. The examination of fama-french model during the COVID-19. Finance Research Letters 41: 101848. [Google Scholar] [CrossRef] [PubMed]
- Houge, Todd, and Tim Lughran. 2006. Do Investors Capture the Value Premium? Financial Management 35: 5–19. [Google Scholar] [CrossRef]
- Jegadeesh, Narasimhan, and Sheridan Titman. 1993. Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency. Journal of Finance 48: 65–92. [Google Scholar] [CrossRef]
- Kim, Jae H., and Philip Inyeob Ji. 2015. Significance testing in empirical finance: A critical review and assessment. Journal of Empirical Finance 34: 1–14. [Google Scholar] [CrossRef]
- Konstantinov, Gueorgui S., and Frank J. Fabozzi. 2021. Towards a dead end? EMU bond market exposure and manager performance. Journal of International Money and Finance 116: 102433. [Google Scholar] [CrossRef]
- Kostin, Konstantin B., Philippe Runge, and Leyla E. Mamedova. 2022. Validity of the Fama-French Three-and Five-Factor Models in Crisis Settings at the Example of Select Energy-Sector Companies during the COVID-19 Pandemic. Mathematics 11: 49. [Google Scholar] [CrossRef]
- Kumar, Alok, and Charles MC Lee. 2003. Individual Investor Sentiment and Comovement in Small Stock Returns. Cornell University Department of Economics Working Paper. Available online: http://ssrn.com/abstract=328980 (accessed on 17 December 2023).
- La Porta, Rafael, Josef Lakonishok, Andrei Shleifer, and Robert Vishny. 1997. Good News for Value Stocks: Further Evidence of Market Efficiency. Journal of Finance 52: 859–74. [Google Scholar] [CrossRef]
- Lu, Maozu, and Jan M. Podivinsky. 2003. The Robustness of Trend Stationarity: An Illustration with the Extended Nelson–Plosser Dataset. Econometric Reviews 22: 261–67. [Google Scholar] [CrossRef]
- Luehlfing, Michael S., William R. McCumber, and Huan Qiu. 2023. CEO Social Capital and the Value Relevance of Accounting Metrics. Risks 11: 78. [Google Scholar] [CrossRef]
- Lütkepohl, Helmut. 2005. New Introduction to Multiple Time Series Analysis. Berlin and Heidelberg: Springer. [Google Scholar]
- MacKinnon, J. G. 1996. Numerical distribution functions for unit root and cointegration tests. Journal of Applied Econometrics 11: 601–18. [Google Scholar] [CrossRef]
- Merton, Robert C. 1980. On Estimating the Expected Return on the Market: An Exploratory Investigation. Journal of Financial Economics 8: 323–61. [Google Scholar] [CrossRef]
- Michaelides, Michael. 2021. Large sample size bias in empirical finance. Finance Research Letters 41: 101835. [Google Scholar] [CrossRef]
- Mlawu, Lonwabo, Frank Ranganai Matenda, and Mabutho Sibanda. 2023. Linking Financial Performance with CEO Statements: Testing Impression Management Theory. Risks 11: 55. [Google Scholar] [CrossRef]
- Pástor, Ľuboš, and Robert F. Stambaugh. 2003. Liquidity risk and expected stock returns. Journal of Political Economy 111: 642–85. [Google Scholar] [CrossRef]
- Petkova, Ralitsa, and Lu Zhang. 2005. Is Value Riskier than Growth? Journal of Financial Economics 78: 187–202. [Google Scholar] [CrossRef]
- Roll, Richard. 1981. A Possible Explanation of the Small Firm Effect. Journal of Finance 36: 879–88. [Google Scholar] [CrossRef]
- Rozeff, Michael S., and Mir A. Zaman. 1998. Overreaction and insider trading: Evidence from growth and value portfolios. The Journal of Finance 53: 701–16. [Google Scholar] [CrossRef]
- Shumway, Tyler. 1997. The delisting bias in CRSP data. The Journal of Finance 52: 327–40. [Google Scholar] [CrossRef]
- Stock, James H., and Mark W. Watson. 2003. Forecasting output and inflation: The role of asset prices. Journal of Economic Literature 41: 788–829. [Google Scholar] [CrossRef]
- Vassalou, Maria, and Yuhang Xing. 2004. Default Risk in Equity Returns. Journal of Finance 59: 831–68. [Google Scholar] [CrossRef]
- Viippola, Valtteri. 2020. Corporate Social Responsibility’s Effect on Stock Returns during the COVID-19 Crisis: Evidence from US Markets. Bachelor’s thesis, Aalto University, Espoo, Finland. [Google Scholar]
Id | Periods | Dates | No of Observations |
---|---|---|---|
1 | Pre-Dot-Com crisis | January 1994–February 2001 | 2567 (1–2567) |
2 | During the Dot-Com crisis | March 2001–October 2001 | 167 (2568–2734) |
3 | Pre-Sub-Prime crisis | November 2001–December 2007 | 1551 (2735–4285) |
4 | During the Sub-Prime crisis | January 2008–May 2009 | 355 (4286–4640) |
5 | Post-Sub-Prime crisis | June 2009–February 2020 | 2706 (4641–7346) |
6 | During/After COVID-19 crisis | March 2020–February 2024 | 1007 (7347–8353) |
Coding | Name of the Variables | Source |
---|---|---|
MKT_RF | Market premium | K.R. French Data Library |
SMB | Size factor | K.R. French Data Library |
HML | Value factor | K.R. French Data Library |
WML | Momentum factor | K.R. French Data Library |
DVIX | Expected volatility index CBOE Volatility Index (VIX) (investor fear) | Chicago Board Options Exchange (CBOE) |
Period | Mkt_RF | SMB | HML | WML | VIX | |
---|---|---|---|---|---|---|
Pre-Dot-Com crisis, January 1994–February 2001 | Mean | 0.046 | −0.002 | 0.024 | 0.018 | 18.571 |
Median | 0.050 | 0.020 | 0.000 | 0.019 | 17.400 | |
Std. Deviation | 0.939 | 0.594 | 0.572 | 0.004 | 5.846 | |
Skewness | −0.287 | −0.445 | 0.209 | −0.431 | 1.043 | |
Std. Error of Skewness | 0.048 | 0.048 | 0.048 | 0.048 | 0.048 | |
Kurtosis | 5.526 | 4.633 | 5.098 | −0.721 | 1.400 | |
Std. Error of Kurtosis | 0.097 | 0.097 | 0.097 | 0.097 | 0.097 | |
Minimum | −6.720 | −4.670 | −4.330 | 0.010 | 9.310 | |
Maximum | 5.390 | 3.330 | 3.480 | 0.030 | 45.740 | |
Sum | 116.930 | −4.450 | 60.400 | 47.120 | 47,598.190 | |
During the Dot-Com crisis, March 2001–October 2001 | Mean | −0.092 | 0.047 | 0.033 | 0.015 | 26.253 |
Median | −0.090 | 0.110 | 0.090 | 0.014 | 24.290 | |
Std. Deviation | 1.463 | 0.635 | 0.845 | 0.003 | 5.467 | |
Skewness | −0.010 | −0.757 | −0.259 | 0.138 | 0.869 | |
Std. Error of Skewness | 0.188 | 0.188 | 0.188 | 0.188 | 0.188 | |
Kurtosis | 1.113 | 5.675 | 1.487 | −1.149 | 0.157 | |
Std. Error of Kurtosis | 0.374 | 0.374 | 0.374 | 0.374 | 0.374 | |
Minimum | −5.030 | −3.370 | −3.270 | 0.010 | 18.760 | |
Maximum | 4.680 | 2.520 | 2.420 | 0.020 | 43.740 | |
Sum | −15.380 | 7.890 | 5.560 | 2.510 | 4384.160 | |
Pre-Sub-Prime crisis, November 2001–December 2007 | Mean | 0.027 | 0.015 | 0.015 | 0.011 | 18.183 |
Median | 0.070 | 0.020 | 0.020 | 0.007 | 16.240 | |
Std. Deviation | 1.001 | 0.524 | 0.351 | 0.006 | 6.822 | |
Skewness | 0.168 | −0.205 | −0.188 | 0.406 | 1.223 | |
Std. Error of Skewness | 0.062 | 0.062 | 0.062 | 0.062 | 0.062 | |
Kurtosis | 2.429 | 0.559 | 3.222 | −1.394 | 1.044 | |
Std. Error of Kurtosis | 0.124 | 0.124 | 0.124 | 0.124 | 0.124 | |
Minimum | −3.950 | −2.470 | −2.110 | 0.000 | 9.890 | |
Maximum | 5.430 | 1.680 | 1.900 | 0.020 | 45.080 | |
Sum | 41.440 | 23.120 | 23.050 | 16.330 | 28,183.820 | |
During the Sub-Prime crisis, January 2008–May 2009 | Mean | −0.091 | 0.014 | 0.001 | 0.005 | 35.087 |
Median | −0.040 | 0.030 | −0.060 | 0.006 | 30.240 | |
Std. Deviation | 2.470 | 0.945 | 1.517 | 0.004 | 14.687 | |
Skewness | 0.125 | −0.131 | 0.449 | −0.107 | 0.911 | |
Std. Error of Skewness | 0.129 | 0.129 | 0.129 | 0.129 | 0.129 | |
Kurtosis | 2.879 | 2.800 | 1.565 | −1.654 | 0.023 | |
Std. Error of Kurtosis | 0.258 | 0.258 | 0.258 | 0.258 | 0.258 | |
Minimum | −8.950 | −3.790 | −4.380 | 0.000 | 16.300 | |
Maximum | 11.350 | 3.800 | 4.890 | 0.010 | 80.860 | |
Sum | −32.300 | 4.860 | 0.290 | 1.640 | 12,455.870 | |
Post-Sub-Prime crisis, June 2009–February 2020 | Mean | 0.054 | 0.001 | −0.010 | 0.002 | 17.307 |
Median | 0.080 | 0.000 | −0.030 | 0.000 | 15.770 | |
Std. Deviation | 0.972 | 0.522 | 0.526 | 0.003 | 5.836 | |
Skewness | −0.454 | 0.183 | 0.318 | 1.396 | 1.501 | |
Std. Error of Skewness | 0.047 | 0.047 | 0.047 | 0.047 | 0.047 | |
Kurtosis | 4.083 | 1.432 | 1.715 | 0.521 | 2.704 | |
Std. Error of Kurtosis | 0.094 | 0.094 | 0.094 | 0.094 | 0.094 | |
Minimum | −6.970 | −2.000 | −2.060 | 0.000 | 9.140 | |
Maximum | 5.060 | 3.590 | 3.060 | 0.010 | 48.000 | |
Sum | 147.010 | 1.380 | −27.040 | 5.470 | 46,832.480 | |
During/After COVID-19 crisis, March 2020–February 2024 | Mean | 0.062 | −0.001 | 0.010 | 0.007 | 22.738 |
Median | 0.070 | −0.030 | −0.030 | 0.001 | 21.330 | |
Std. Deviation | 1.471 | 0.802 | 1.229 | 0.009 | 8.496 | |
Skewness | −0.529 | 0.319 | 0.094 | 0.621 | 2.525 | |
Std. Error of Skewness | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | |
Kurtosis | 10.930 | 2.570 | 2.018 | −1.389 | 10.959 | |
Std. Error of Kurtosis | 0.154 | 0.154 | 0.154 | 0.154 | 0.154 | |
Minimum | −12.000 | −3.560 | −5.020 | 0.000 | 12.070 | |
Maximum | 9.340 | 5.460 | 6.730 | 0.020 | 82.690 | |
Sum | 62.150 | −0.580 | 9.660 | 7.240 | 22,897.510 |
Period | VIX | Mkt_RF | SMB | HML | WML | ||
---|---|---|---|---|---|---|---|
Pre-Dot-Com crisis, January 1994–February 2001 | VIX | r | 1 | −0.111 ** | −0.044 * | 0.054 ** | 0.373 ** |
p | 0.000 | 0.026 | 0.006 | 0.000 | |||
Mkt_RF | r | −0.111 ** | 1 | −0.182 ** | −0.661 ** | −0.001 | |
p | 0.000 | 0.000 | 0.000 | 0.977 | |||
SMB | r | −0.044 * | −0.182 ** | 1 | −0.249 ** | −0.016 | |
p | 0.026 | 0.000 | 0.000 | 0.422 | |||
HML | r | 0.054 ** | −0.661 ** | −0.249 ** | 1 | 0.020 | |
p | 0.006 | 0.000 | 0.000 | 0.309 | |||
WML | r | 0.373 ** | −0.001 | −0.016 | 0.020 | 1 | |
p | 0.000 | 0.977 | 0.422 | 0.309 | |||
During the Dot-Com crisis, March 2001–October 2001 | VIX | r | 1 | −0.170 * | −0.091 | −0.026 | 0.185 * |
p | 0.028 | 0.240 | 0.738 | 0.017 | |||
Mkt_RF | r | −0.170 * | 1 | −0.078 | −0.675 ** | −0.012 | |
p | 0.028 | 0.319 | 0.000 | 0.874 | |||
SMB | r | −0.091 | −0.078 | 1 | −0.199 ** | −0.197 * | |
p | 0.240 | 0.319 | 0.010 | 0.011 | |||
HML | r | −0.026 | −0.675 ** | −0.199 ** | 1 | 0.080 | |
p | 0.738 | 0.000 | 0.010 | 0.305 | |||
WML | r | 0.185 * | −0.012 | −0.197 * | 0.080 | 1 | |
p | 0.017 | 0.874 | 0.011 | 0.305 | |||
Pre-Sub-Prime crisis, November 2001–December 2007 | VIX | r | 1 | −0.104 ** | −0.031 | −0.055 * | −0.433 ** |
p | 0.000 | 0.222 | 0.032 | 0.000 | |||
Mkt_RF | r | −0.104 ** | 1 | 0.049 | −0.232 ** | −0.006 | |
p | 0.000 | 0.052 | 0.000 | 0.804 | |||
SMB | r | −0.031 | 0.049 | 1 | −0.108 ** | −0.051 * | |
p | 0.222 | 0.052 | 0.000 | 0.043 | |||
HML | r | −0.055 * | −0.232 ** | −0.108 ** | 1 | −0.044 | |
p | 0.032 | 0.000 | 0.000 | 0.086 | |||
WML | r | −0.433 ** | −0.006 | −0.051 * | −0.044 | 1 | |
p | 0.000 | 0.804 | 0.043 | 0.086 | |||
During the Sub-Prime crisis, January 2008–May 2009 | VIX | r | 1 | −0.116 * | −0.020 | −0.115 * | −0.694 ** |
p | 0.029 | 0.708 | 0.030 | 0.000 | |||
Mkt_RF | r | −0.116 * | 1 | −0.157 ** | 0.541 ** | −0.023 | |
p | 0.029 | 0.003 | 0.000 | 0.662 | |||
SMB | r | −0.020 | −0.157 ** | 1 | −0.183 ** | 0.003 | |
p | 0.708 | 0.003 | 0.001 | 0.962 | |||
HML | r | −0.115 * | 0.541 ** | −0.183 ** | 1 | 0.050 | |
p | 0.030 | 0.000 | 0.001 | 0.349 | |||
WML | r | −0.694 ** | −0.023 | 0.003 | 0.050 | 1 | |
p | 0.000 | 0.662 | 0.962 | 0.349 | |||
Post-Sub-Prime crisis, June 2009–February 2020 | VIX | r | 1 | −0.171 ** | −0.021 | −0.034 | −0.181 ** |
p | 0.000 | 0.272 | 0.074 | 0.000 | |||
Mkt_RF | r | −0.171 ** | 1 | 0.315 ** | 0.176 ** | −0.011 | |
p | 0.000 | 0.000 | 0.000 | 0.571 | |||
SMB | r | −0.021 | 0.315 ** | 1 | −0.029 | −0.022 | |
p | 0.272 | 0.000 | 0.138 | 0.263 | |||
HML | r | −0.034 | 0.176 ** | −0.029 | 1 | −0.032 | |
p | 0.074 | 0.000 | 0.138 | 0.100 | |||
WML | r | −0.181 ** | −0.011 | −0.022 | −0.032 | 1 | |
p | 0.000 | 0.571 | 0.263 | 0.100 | |||
During/After COVID-19 crisis, March 2020–February 2024 | VIX | r | 1 | −0.149 ** | −0.013 | −0.052 | −0.395 ** |
p | 0.000 | 0.675 | 0.100 | 0.000 | |||
Mkt_RF | r | −0.149 ** | 1 | 0.237 ** | −0.048 | −0.006 | |
p | 0.000 | 0.000 | 0.126 | 0.852 | |||
SMB | r | −0.013 | 0.237 ** | 1 | 0.010 | −0.028 | |
p | 0.675 | 0.000 | 0.748 | 0.382 | |||
HML | r | −0.052 | −0.048 | 0.010 | 1 | −0.029 | |
p | 0.100 | 0.126 | 0.748 | 0.365 | |||
WML | r | −0.395 ** | −0.006 | −0.028 | −0.029 | 1 | |
p | 0.000 | 0.852 | 0.382 | 0.365 |
Null Hypothesis: Variable Has a Unit Root Exogenous: None Lag Length: 7 (Automatic—Based on SIC, max lag = 34) | t-Statistic | Prob. * | ||
---|---|---|---|---|
MKT_RF | Augmented Dickey–Fuller test statistic | −60.55642 | 0.0001 | |
Test critical values: | 1% level | −2.565315 | ||
5% level | −1.940873 | |||
10% level | −1.616667 | |||
SMB | Augmented Dickey–Fuller test statistic | −77.682 | 0.0001 | |
Test critical values: | 1% level | −2.5653 | ||
5% level | −1.9409 | |||
10% level | −1.6167 | |||
HML | Augmented Dickey–Fuller test statistic | −74.126 | 0 | |
Test critical values: | 1% level | −2.5653 | ||
5% level | −1.9409 | |||
10% level | −1.6167 | |||
WML | Augmented Dickey–Fuller test statistic | −67.3309 | 0.0001 | |
Test critical values: | 1% level | −2.565315 | ||
5% level | −1.940873 | |||
10% level | −1.616667 | |||
DVIX | Augmented Dickey–Fuller test statistic | −35.2346 | 0 | |
Test critical values: | 1% level | −2.5653 | ||
5% level | −1.9409 | |||
10% level | −1.6167 |
Dot-Com Crisis | Sub-Prime Crisis | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Pre-Dot-Com Crisis | During Dot-Com Crisis | Pre-Sub-Prime Crisis | During Sub-Prime Crisis | Post Sub-Prime Crisis | ||||||
Null Hypothesis: | F-Stat. | Prob. | F-Stat. | Prob. | F-Stat. | Prob. | F-Stat. | Prob. | F-Stat. | Prob. |
SMB does not Granger Cause MKT_RF | 2.03704 | 0.1536 | 0.168 | 0.6824 | 2.32889 | 0.0978 | 4.96125 | 0.0074 | 0.03686 | 0.8478 |
MKT_RF does not Granger Cause SMB | 202.179 | 3.00 × 10−44 | 1.3473 | 0.2474 | 2.17377 | 1.14 × 10−1 | 7.61124 | 0.0006 | 0.00013 | 0.9909 |
HML does not Granger Cause MKT_RF | 0.40723 | 0.5234 | 0.49672 | 0.4819 | 3.33797 | 0.0358 | 0.56125 | 0.5709 | 1.57056 | 0.2103 |
MKT_RF does not Granger Cause HML | 14.6422 | 0.0001 | 0.00864 | 0.9261 | 17.7738 | 2.00 × 10−8 | 0.37887 | 0.6848 | 3.45884 | 0.0631 |
WML does not Granger Cause MKT_RF | 3.91524 | 0.048 | 0.70384 | 0.4027 | 0.71409 | 0.4898 | 1.5611 | 0.211 | 0.28721 | 0.5921 |
MKT_RF does not Granger Cause WML | 2.05442 | 0.1519 | 0.20318 | 0.6528 | 3.85625 | 0.0214 | 0.39047 | 0.677 | 1.94082 | 0.1638 |
DVIX does not Granger Cause MKT_RF | 3.25383 | 0.0714 | 1.06453 | 0.3037 | 1.319 | 0.2677 | 1.68176 | 0.1872 | 0.52303 | 0.4697 |
MKT_RF does not Granger Cause DVIX | 0.00672 | 0.9347 | 0.94374 | 0.3327 | 0.59003 | 0.5544 | 0.13736 | 0.8717 | 1.01732 | 0.3133 |
HML does not Granger Cause SMB | 154.408 | 2.00 × 10−34 | 1.2244 | 0.2701 | 7.63682 | 5.00 × 10−4 | 1.20804 | 0.2997 | 1.81863 | 0.1777 |
SMB does not Granger Cause HML | 0.47727 | 0.4897 | 0.8519 | 0.3574 | 2.32525 | 0.0981 | 0.05139 | 0.9499 | 0.0099 | 0.9208 |
WML does not Granger Cause SMB | 47.7717 | 6.00 × 10−12 | 3.02568 | 0.0838 | 16.0027 | 1.00 × 10−7 | 3.42855 | 0.0333 | 1.9924 | 0.1583 |
SMB does not Granger Cause WML | 8.67764 | 0.0033 | 0.13298 | 0.7158 | 0.01582 | 0.9843 | 0.19993 | 0.8189 | 0.00314 | 0.9553 |
DVIX does not Granger Cause SMB | 60.1522 | 1.00 × 10−14 | 0.00027 | 0.987 | 0.29371 | 7.46 × 10−1 | 3.75023 | 0.0242 | 0.01105 | 0.9163 |
SMB does not Granger Cause DVIX | 6.33582 | 0.0119 | 0.01135 | 0.9153 | 1.8337 | 0.1602 | 1.98848 | 0.1381 | 0.84942 | 0.3569 |
WML does not Granger Cause HML | 1.28149 | 0.2577 | 3.56933 | 0.0606 | 0.47494 | 0.622 | 0.06721 | 0.935 | 0.03425 | 0.8532 |
HML does not Granger Cause WML | 0.45577 | 0.4997 | 1.9941 | 0.1598 | 1.5008 | 0.2233 | 0.36307 | 0.6957 | 1.21137 | 0.2712 |
DVIX does not Granger Cause HML | 1.21922 | 0.2696 | 0.13064 | 0.7182 | 7.65397 | 0.0005 | 0.01375 | 0.9863 | 5.50326 | 0.0191 |
HML does not Granger Cause DVIX | 0.00016 | 0.99 | 0.05702 | 0.8116 | 1.83058 | 0.1607 | 0.0888 | 0.915 | 0.83003 | 0.3624 |
DVIX does not Granger Cause WML | 0.43501 | 0.5096 | 0.02901 | 0.865 | 1.40364 | 0.246 | 0.39559 | 0.6735 | 2.22384 | 0.1361 |
WML does not Granger Cause DVIX | 1.04228 | 0.3074 | 1.13511 | 0.2883 | 0.89678 | 0.4081 | 0.46421 | 0.6289 | 0.00014 | 0.9904 |
A. Dot-Com | |||||||||||
Pre-Dot-Com Crisis * | During the Dot-Com Crisis * | ||||||||||
MKT_RF | SMB | HML | WML | DVIX | MKT_RF | SMB | HML | WML | DVIX | ||
MKT_RF(-1) | 0.01232 | 0.15388 | 0.12127 | −0.083898 | 0.003814 | 0.01469 | 0.09232 | 0.11331 | 0.10724 | 0.008392 | |
[0.31863] | [6.62734] | [4.72484] | [−3.18781] | [1.71540] | [0.07746] | [1.14721] | [0.96045] | [0.55315] | [1.17374] | ||
SMB(-1) | −0.0392 | 0.14537 | 0.07753 | −0.100533 | 0.005517 | 0.18138 | −0.0424 | 0.10126 | 0.01143 | −0.00287 | |
[−1.01522] | [6.26873] | [3.02426] | [−3.82469] | [2.48434] | [0.92449] | [−0.50916] | [0.82948] | [0.05698] | [−0.38792] | ||
HML(-1) | −0.0237 | −0.0559 | 0.29779 | −0.084606 | 0.004692 | 0.06759 | 0.11643 | −0.0937 | −0.3682 | 0.011685 | |
[−0.47598] | [−1.87485] | [9.02949] | [−2.50193] | [1.64240] | [0.26004] | [1.05532] | [−0.57944] | [−1.38534] | [1.19217] | ||
WML(-1) | −0.0524 | 0.03674 | 0.00309 | 0.315125 | 0.001152 | 0.0706 | −0.1027 | 0.23281 | 0.40211 | −0.00796 | |
[−1.71009] | [1.99730] | [0.15197] | [15.1136] | [0.65378] | [0.41787] | [−1.43203] | [2.21456] | [2.32778] | [−1.24902] | ||
DVIX(-1) | −0.8046 | 0.45005 | 0.40081 | −0.28851 | −0.0336 | −45.715 | 272.574 | 103.195 | 209.498 | 0.26109 | |
[−1.69180] | [1.57631] | [1.26991] | [−0.89149] | [−1.22879] | [−1.15663] | [1.62479] | [0.41960] | [0.51841] | [1.75175] | ||
C | 0.02916 | 0.0865 | −0.0064 | 0.045764 | −0.01508 | −0.2542 | 0.2611 | 0.11099 | 0.16147 | −0.0057 | |
[0.68993] | [3.40949] | [−0.22868] | [1.59129] | [−6.20774] | [−0.97740] | [2.36489] | [0.68575] | [0.60714] | [−0.58068] | ||
JAN | 0.02832 | 0.05907 | −0.0329 | −0.086597 | −0.00356 | −0.1032 | −0.3884 | 0.11562 | 0.17679 | 0.039911 | |
[0.41391] | [1.43823] | [−0.72400] | [−1.86006] | [−0.90405] | [−0.28090] | [−2.49001] | [0.50564] | [0.47050] | [2.87996] | ||
MON | 0.03067 | −0.2601 | 0.06362 | −0.011751 | 0.035272 | 0.30529 | −0.2989 | 0.01393 | 0.08212 | −0.00927 | |
[0.51051] | [−7.21276] | [1.59564] | [−0.28742] | [10.2122] | [0.80328] | [−1.85320] | [0.05891] | [0.21134] | [−0.64683] | ||
TUE | 0.01842 | −0.157 | 0.03855 | 0.058006 | 0.012163 | 0.02878 | −0.1819 | −0.1644 | −0.1097 | 0.006845 | |
[0.30710] | [−4.36027] | [0.96809] | [1.42079] | [3.52631] | [0.07811] | [−1.16328] | [−0.71693] | [−0.29117] | [0.49260] | ||
WED | 0.0144 | −0.0574 | 0.01486 | −0.038312 | 0.009802 | 0.47692 | −0.1216 | −0.4015 | −0.5422 | −0.00432 | |
[0.24423] | [−1.62098] | [0.37985] | [−0.95495] | [2.89200] | [1.31413] | [−0.78932] | [−1.77779] | [−1.46112] | [−0.31540] | ||
THU | −0.0073 | −0.0307 | −0.0278 | 0.001157 | 0.011963 | ||||||
[−0.12345] | [−0.86816] | [−0.71108] | [0.02883] | [3.52714] | |||||||
R2 | 0.00564 | 0.12211 | 0.03985 | 0.098507 | 0.050822 | 0.03758 | 0.08348 | 0.08618 | 0.07083 | 0.102295 | |
Adj. R2 | 0.00168 | 0.11862 | 0.03602 | 0.094918 | 0.047043 | −0.017593 | 0.030937 | 0.033793 | 0.017563 | 0.050834 | |
F-statistic | 1.42397 | 34.9405 | 10.4246 | 27.44873 | 13.44994 | 0.68112 | 1.58884 | 1.64509 | 1.32974 | 1.98782 | |
Loglikelihood | −4048.7 | −398.93 | |||||||||
AIC | 3.25302 | 5.37638 | |||||||||
B. Sub-Prime | |||||||||||
Pre-Sub-Prime Crisis * | During the Sub-Prime Crisis * | ||||||||||
MKT_RF | SMB | HML | WML | DVIX | MKT_RF | SMB | HML | WML | DVIX | ||
MKT_RF(-1) | −0.0996 | 0.03961 | 0.06987 | 0.047042 | 0.002658 | −0.1518 | −0.0134 | 0.04758 | −0.06 | 0.0012 | |
[−2.24876] | [1.70252] | [4.09363] | [1.54866] | [1.10598] | [−1.58195] | [−0.37269] | [0.99675] | [−0.69075] | [0.37199] | ||
MKT_RF(-2) | 0.04219 | 0.03317 | 0.04045 | −0.055771 | 2.01× 10−3 | −0.1239 | 0.08322 | 0.02917 | 0.04588 | 7.49 × 10−5 | |
[0.95682] | [1.43242] | [2.38088] | [−1.84464] | [0.84139] | [−1.31851] | [2.35626] | [0.62426] | [0.53944] | [0.02371] | ||
SMB(-1) | 0.04054 | 0.01088 | 0.01604 | −0.000198 | −0.00108 | 0.30361 | −0.1377 | 0.00194 | −0.0369 | −0.00491 | |
[0.75616] | [0.38645] | [0.77654] | [−0.00540] | [−0.37142] | [2.43131] | [−2.93411] | [0.03125] | [−0.32655] | [−1.16873] | ||
SMB(-2) | −0.0931 | −0.0063 | 0.04258 | −0.015631 | 0.006529 | 0.20694 | −0.1936 | 0.01039 | 0.04238 | −0.00755 | |
[−1.74754] | [−0.22701] | [2.07553] | [−0.42812] | [2.26047] | [1.64212] | [−4.08677] | [0.16577] | [0.37151] | [−1.78278] | ||
HML(-1) | −0.1783 | 0.08686 | 0.10004 | 0.037551 | 0.004832 | −0.029 | −0.0598 | −0.0359 | 0.09002 | 0.003206 | |
[−2.22056] | [2.05985] | [3.23365] | [0.68204] | [1.10942] | [−0.19368] | [−1.06119] | [−0.48225] | [0.66366] | [0.63655] | ||
HML(-2) | 0.01176 | 0.11676 | 0.01304 | −0.1342 | 0.002844 | 0.03609 | −0.0777 | −0.0012 | 0.00386 | 0.00236 | |
[0.14682] | [2.77691] | [0.42255] | [−2.44437] | [0.65487] | [0.24338] | [−1.39387] | [−0.01572] | [0.02871] | [0.47361] | ||
WML(-1) | −0.0108 | 0.08951 | 0.01441 | 0.165167 | 0.001536 | −0.1039 | −0.0227 | −0.0013 | 0.17003 | 0.004391 | |
[−0.23032] | [3.63333] | [0.79726] | [5.13501] | [0.60372] | [−1.08256] | [−0.62902] | [−0.02763] | [1.95709] | [1.36133] | ||
WML(-2) | 0.08226 | −0.0984 | −0.0222 | 0.058921 | −0.00328 | −0.0179 | −0.0301 | −0.0003 | 0.01827 | −0.00053 | |
[1.75763] | [−4.00238] | [−1.23312] | [1.83605] | [−1.29063] | [−0.19197] | [−0.86119] | [−0.00606] | [0.21691] | [−0.16816] | ||
DVIX(-1) | −10.239 | 0.3576 | 0.21964 | 0.161224 | −0.05309 | 223.671 | −0.0774 | 0.95576 | −19.983 | −0.24161 | |
[−1.34587] | [0.89506] | [0.74933] | [0.30906] | [−1.28660] | [0.95415] | [−0.08787] | [0.81985] | [−0.94169] | [−3.06671] | ||
DVIX(-2) | 0.661 | 0.32964 | 0.39283 | −0.084533 | −0.0691 | 189.253 | 0.66737 | 0.62997 | −0.1445 | −0.11246 | |
[0.87428] | [0.83024] | [1.34860] | [−0.16306] | [−1.68494] | [0.81507] | [0.76469] | [0.54556] | [−0.06875] | [−1.44108] | ||
C | 0.01079 | −0.0028 | 0.09781 | 0.038517 | −0.01055 | −0.0179 | 0.04852 | 0.11291 | −0.1298 | 0.000693 | |
[0.18458] | [−0.09190] | [4.34151] | [0.96071] | [−3.32540] | [−0.07720] | [0.55789] | [0.98134] | [−0.61967] | [0.08916] | ||
JAN | −0.0314 | 0.04637 | 0.0392 | 0.104229 | −2.93 × 10−5 | −0.4321 | −0.0996 | −0.1726 | −0.1753 | 0.01146 | |
[−0.33699] | [0.94874] | [1.09328] | [1.63346] | [−0.00580] | [−1.18101] | [−0.72427] | [−0.94839] | [−0.52928] | [0.93191] | ||
MON | 0.01826 | −0.0173 | −0.0765 | −0.022993 | 0.026241 | −0.3891 | −0.124 | −0.2945 | 0.57267 | 0.015234 | |
[0.21866] | [−0.39453] | [−2.37772] | [−0.40160] | [5.79399] | [−1.18280] | [−1.00282] | [−1.80009] | [1.92285] | [1.37769] | ||
TUE | 0.0055 | 0.07036 | −0.099 | −0.007577 | 0.007635 | 0.30531 | −0.1039 | −0.0182 | −0.1342 | −0.02756 | |
[0.06684] | [1.62884] | [−3.12403] | [−0.13434] | [1.71110] | [0.94356] | [−0.85437] | [−0.11299] | [−0.45816] | [−2.53410] | ||
WED | 0.09081 | −0.0027 | −0.1282 | −0.077395 | 0.000529 | −0.0697 | 0.03484 | −0.0825 | 0.0626 | −0.00486 | |
[1.09281] | [−0.06119] | [−4.00479] | [−1.35830] | [0.11744] | [−0.21505] | [0.28612] | [−0.51216] | [0.21346] | [−0.44599] | ||
THU | 0.01731 | 0.01097 | −0.0925 | −0.060563 | 0.007272 | −0.035 | 0.03652 | −0.1645 | 0.07336 | −0.00282 | |
[0.21165] | [0.25549] | [−2.93630] | [−1.08002] | [1.63923] | [−0.10784] | [0.29922] | [−1.01860] | [0.24957] | [−0.25822] | ||
Adj.R2 | 0.00326 | 0.02973 | 0.03629 | 0.031326 | 0.044573 | 0.04861 | 0.06737 | −0.0174 | 0.00542 | 0.075464 | |
F-statistic | 1.31453 | 3.94751 | 4.62298 | 4.111062 | 5.487932 | 2.57038 | 3.2202 | 0.47459 | 1.16733 | 3.508584 | |
Loglikelihood | −1961.2 | −2051 | |||||||||
AIC | 2.82717 | 9.22522 | |||||||||
B. Post Sub-Prime | |||||||||||
Post Sub-Prime Crisis * | |||||||||||
MKT_RF | SMB | HML | WML | DVIX | |||||||
MKT_RF(−1) | −0.0426 | −0.0115 | −0.0031 | −0.003096 | 0.002377 | ||||||
[−0.90864] | [−0.47983] | [−0.14814] | [−0.10036] | [0.73805] | |||||||
SMB(−1) | −0.0119 | −0.0125 | 0.01452 | 0.00753 | 2.20 × 10−3 | ||||||
[−0.22055] | [−0.45165] | [0.60194] | [0.21259] | [0.59488] | |||||||
HML(−1) | −0.0723 | 0.06166 | 0.01329 | −0.026673 | 0.004394 | ||||||
[−1.18793] | [1.97324] | [0.48706] | [−0.66589] | [1.05050] | |||||||
WML(−1) | −0.0033 | 0.03966 | 0.00756 | 0.107274 | 0.001087 | ||||||
[−0.08228] | [1.93226] | [0.42190] | [4.07777] | [0.39566] | |||||||
DVIX(−1) | −0.4272 | −0.0525 | 0.38152 | 0.313784 | −0.02977 | ||||||
[−0.67940] | [−0.16261] | [1.35375] | [0.75844] | [−0.68899] | |||||||
C | 0.02629 | 0.02532 | −0.0504 | 0.022308 | −0.01088 | ||||||
[0.45433] | [0.85241] | [−1.94411] | [0.58583] | [−2.73609] | |||||||
JAN | −0.0454 | 0.00735 | −0.0323 | −0.116587 | 0.003376 | ||||||
[−0.46153] | [0.14559] | [−0.73242] | [−1.80115] | [0.49944] | |||||||
MON | 0.00091 | −0.0306 | 0.05544 | 0.086206 | 0.020474 | ||||||
[0.01104] | [−0.72433] | [1.50376] | [1.59279] | [3.62272] | |||||||
TUE | 0.07017 | 0.00876 | 0.04896 | −0.007859 | 0.008083 | ||||||
[0.86740] | [0.21104] | [1.35049] | [−0.14765] | [1.45444] | |||||||
WED | 0.04893 | −0.054 | 0.05619 | 0.027188 | 0.005774 | ||||||
[0.60856] | [−1.30746] | [1.55910] | [0.51387] | [1.04519] | |||||||
THU | 0.07595 | −0.0224 | 0.08711 | −0.072387 | 0.003706 | ||||||
[0.93951] | [−0.53901] | [2.40423] | [−1.36085] | [0.66722] | |||||||
Adj.R2 | −0.0029 | −0.0002 | 0.00162 | 0.015782 | 0.009073 | ||||||
F-statistic | 0.52766 | 0.96344 | 1.26888 | 3.660196 | 2.518911 | ||||||
Loglikelihood | −3213.5 | ||||||||||
AIC | 3.93795 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pentsas, A.; Boufounou, P.; Toudas, K.; Katsampoxakis, I. Risk Premium and Fear of Investors in Crisis’ Periods: An Empirical Approach Based on Fama–French and Carhart Factor Models. J. Risk Financial Manag. 2024, 17, 268. https://doi.org/10.3390/jrfm17070268
Pentsas A, Boufounou P, Toudas K, Katsampoxakis I. Risk Premium and Fear of Investors in Crisis’ Periods: An Empirical Approach Based on Fama–French and Carhart Factor Models. Journal of Risk and Financial Management. 2024; 17(7):268. https://doi.org/10.3390/jrfm17070268
Chicago/Turabian StylePentsas, Antonios, Paraskevi Boufounou, Kanellos Toudas, and Ioannis Katsampoxakis. 2024. "Risk Premium and Fear of Investors in Crisis’ Periods: An Empirical Approach Based on Fama–French and Carhart Factor Models" Journal of Risk and Financial Management 17, no. 7: 268. https://doi.org/10.3390/jrfm17070268
APA StylePentsas, A., Boufounou, P., Toudas, K., & Katsampoxakis, I. (2024). Risk Premium and Fear of Investors in Crisis’ Periods: An Empirical Approach Based on Fama–French and Carhart Factor Models. Journal of Risk and Financial Management, 17(7), 268. https://doi.org/10.3390/jrfm17070268