Low Serum Methylglyoxal Levels Correlate with Psoriasis Severity and Inflammatory Response Indices
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nigro, C.; Leone, A.; Fiory, F.; Prevenzano, I.; Nicolò, A.; Mirra, P.; Beguinot, F.; Miele, C. Dicarbonyl Stress at the Crossroads of Healthy and Unhealthy Aging. Cells 2019, 8, 749. [Google Scholar] [CrossRef] [PubMed]
- Nowak, A.; Przywara-Chowaniec, B.; Damasiewicz-Bodzek, A.; Janoszka, B.; Szumska, M.; Waligóra, S.; Tyrpień-Golder, K. Women Suffering from Systemic Lupus Erythematosus Are Characterized by Low Blood Levels of α-Dicarbonyl Compounds. Arch. Med. Sci. 2024, 20, 743–750. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, R.; Desai, K.; Wu, L. Upregulation of Aldolase B and Overproduction of Methylglyoxal in Vascular Tissues from Rats with Metabolic Syndrome. Cardiovasc. Res. 2011, 92, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Qiang, D.; Delaney, S.; Mehta, R.; Bruce, W.R.; O’Brien, P.J. Differences in Glyoxal and Methylglyoxal Metabolism Determine Cellular Susceptibility to Protein Carbonylation and Cytotoxicity. Chem. Biol. Interact. 2011, 191, 322–329. [Google Scholar] [CrossRef]
- Van den Eynde, M.D.G.; Kusters, Y.H.A.M.; Houben, A.J.H.M.; Scheijen, J.L.J.M.; van Duynhoven, J.; Fazelzadeh, P.; Joris, P.J.; Plat, J.; Mensink, R.P.; Hanssen, N.M.J.; et al. Diet-Induced Weight Loss Reduces Postprandial Dicarbonyl Stress in Abdominally Obese Men: Secondary Analysis of a Randomized Controlled Trial. Clin. Nutr. 2021, 40, 2654–2662. [Google Scholar] [CrossRef]
- Islam, S.; Mir, A.R.; Abidi, M.; Talha, M.; Zafar, A.; Habib, S. Moinuddin Methylglyoxal Modified IgG Generates Autoimmune Response in Rheumatoid Arthritis. Int. J. Biol. Macromol. 2018, 118, 15–23. [Google Scholar] [CrossRef]
- Rufin, M.; Nalbach, M.; Rakuš, M.; Fuchs, M.; Poik, M.; Schitter, G.; Thurner, P.J.; Andriotis, O.G. Methylglyoxal Alters Collagen Fibril Nanostiffness and Surface Potential. Acta Biomater. 2024, 189, 208–216. [Google Scholar] [CrossRef]
- Yuen, A.; Laschinger, C.; Talior, I.; Lee, W.; Chan, M.; Birek, J.; Young, E.W.K.; Sivagurunathan, K.; Won, E.; Simmons, C.A.; et al. Methylglyoxal-Modified Collagen Promotes Myofibroblast Differentiation. Matrix Biol. 2010, 29, 537–548. [Google Scholar] [CrossRef]
- Raupbach, J.; Ott, C.; Koenig, J.; Grune, T. Proteasomal Degradation of Glycated Proteins Depends on Substrate Unfolding: Preferred Degradation of Moderately Modified Myoglobin. Free Radic. Biol. Med. 2020, 152, 516–524. [Google Scholar] [CrossRef]
- Alhujaily, M. Molecular Assessment of Methylglyoxal-Induced Toxicity and Therapeutic Approaches in Various Diseases: Exploring the Interplay with the Glyoxalase System. Life 2024, 14, 263. [Google Scholar] [CrossRef]
- Yumnam, S.; Subedi, L.; Kim, S.Y. Glyoxalase System in the Progression of Skin Aging and Skin Malignancies. Int. J. Mol. Sci. 2020, 22, 310. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.W.T.; Lopez Gonzalez, E.D.J.; Zoukari, T.; Ki, P.; Shuck, S.C. Methylglyoxal and Its Adducts: Induction, Repair, and Association with Disease. Chem. Res. Toxicol. 2022, 35, 1720–1746. [Google Scholar] [CrossRef] [PubMed]
- Knani, I.; Bouzidi, H.; Zrour, S.; Bergaoui, N.; Hammami, M.; Kerkeni, M. Methylglyoxal: A Relevant Marker of Disease Activity in Patients with Rheumatoid Arthritis. Dis. Markers 2018, 2018, 8735926. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, C.E.M.; Armstrong, A.W.; Gudjonsson, J.E.; Barker, J.N.W.N. Psoriasis. Lancet 2021, 397, 1301–1315. [Google Scholar] [CrossRef]
- Boehncke, W.-H.; Schön, M.P. Psoriasis. Lancet 2015, 386, 983–994. [Google Scholar] [CrossRef]
- Kaur, S.; Zilmer, K.; Leping, V.; Zilmer, M. Serum Methylglyoxal Level and Its Association with Oxidative Stress and Disease Severity in Patients with Psoriasis. Arch. Dermatol. Res. 2013, 305, 489–494. [Google Scholar] [CrossRef]
- Armstrong, A.W.; Voyles, S.V.; Armstrong, E.J.; Fuller, E.N.; Rutledge, J.C. Angiogenesis and Oxidative Stress: Common Mechanisms Linking Psoriasis with Atherosclerosis. J. Dermatol. Sci. 2011, 63, 1–9. [Google Scholar] [CrossRef]
- Rocha-Pereira, P.; Santos-Silva, A.; Rebelo, I.; Figueiredo, A.; Quintanilha, A.; Teixeira, F. Dislipidemia and Oxidative Stress in Mild and in Severe Psoriasis as a Risk for Cardiovascular Disease. Clin. Chim. Acta 2001, 303, 33–39. [Google Scholar] [CrossRef]
- Ma, R.; Cui, L.; Cai, J.; Yang, N.; Wang, Y.; Chen, Q.; Chen, W.; Peng, C.; Qin, H.; Ding, Y.; et al. Association between Systemic Immune Inflammation Index, Systemic Inflammation Response Index and Adult Psoriasis: Evidence from NHANES. Front. Immunol. 2024, 15, 1323174. [Google Scholar] [CrossRef]
- Zhao, X.; Li, J.; Li, X. Association between Systemic Immune-Inflammation Index and Psoriasis: A Population-Based Study. Front. Immunol. 2024, 15, 1305701. [Google Scholar] [CrossRef]
- Tiucă, O.M.; Morariu, S.H.; Mariean, C.R.; Tiucă, R.A.; Nicolescu, A.C.; Cotoi, O.S. Impact of Blood-Count-Derived Inflammatory Markers in Psoriatic Disease Progression. Life 2024, 14, 114. [Google Scholar] [CrossRef] [PubMed]
- Tamer, F.; Edek, Y.C.; Aksakal, A.B. Effect of Treatment with Biologic Agents on the Novel Inflammatory Biomarkers Systemic Immune Inflammation Index and Systemic Inflammation Response Index for Psoriasis. Dermatol. Pract. Concept. 2024, 14, e2024065. [Google Scholar] [CrossRef] [PubMed]
- Albayrak, H. Neutrophil-to-Lymphocyte Ratio, Neutrophil-to-Monocyte Ratio, Platelet-to-Lymphocyte Ratio, and Systemic Immune-Inflammation Index in Psoriasis Patients: Response to Treatment with Biological Drugs. J. Clin. Med. 2023, 12, 5452. [Google Scholar] [CrossRef]
- Salgado-Boquete, L.; Carrascosa, J.M.; Llamas-Velasco, M.; Ruiz-Villaverde, R.; de la Cueva, P.; Belinchón, I. A New Classification of the Severity of Psoriasis: What’s Moderate Psoriasis? Life 2021, 11, 627. [Google Scholar] [CrossRef]
- Akoglu, H. User’s Guide to Correlation Coefficients. Turk. J. Emerg. Med. 2018, 18, 91–93. [Google Scholar] [CrossRef]
- Reischl, J.; Schwenke, S.; Beekman, J.M.; Mrowietz, U.; Stürzebecher, S.; Heubach, J.F. Increased Expression of Wnt5a in Psoriatic Plaques. J. Investig. Dermatol. 2007, 127, 163–169. [Google Scholar] [CrossRef]
- Kang, H.; Li, X.; Zhou, Q.; Quan, C.; Xue, F.; Zheng, J.; Yu, Y. Exploration of Candidate Biomarkers for Human Psoriasis Based on Gas Chromatography-Mass Spectrometry Serum Metabolomics. Br. J. Dermatol. 2017, 176, 713–722. [Google Scholar] [CrossRef]
- Aaren, V.; Paddaiah, G.; Sudhakar, G.; Ramesh, M. Association of Various Genetic Markers in Psoriasis and Vitiligo. Int. J. Bioassays 2013, 2, 1062–1065. [Google Scholar]
- Prussick, R.; Prussick, L.; Gutman, J. Psoriasis Improvement in Patients Using Glutathione-Enhancing, Nondenatured Whey Protein Isolate: A Pilot Study. J. Clin. Aesthetic Dermatol. 2013, 6, 23–26. [Google Scholar]
- Kamleh, M.A.; Snowden, S.G.; Grapov, D.; Blackburn, G.J.; Watson, D.G.; Xu, N.; Ståhle, M.; Wheelock, C.E. LC-MS Metabolomics of Psoriasis Patients Reveals Disease Severity-Dependent Increases in Circulating Amino Acids That Are Ameliorated by Anti-TNFα Treatment. J. Proteome Res. 2015, 14, 557–566. [Google Scholar] [CrossRef]
- Ottas, A.; Fishman, D.; Okas, T.-L.; Kingo, K.; Soomets, U. The Metabolic Analysis of Psoriasis Identifies the Associated Metabolites While Providing Computational Models for the Monitoring of the Disease. Arch. Dermatol. Res. 2017, 309, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Broshtilova, V.; Lozanov, V.; Miteva, L. Polyamine Metabolism Changes in Psoriasis. Indian J. Dermatol. 2013, 58, 306–309. [Google Scholar] [CrossRef] [PubMed]
- Proctor, M.S.; Fletcher, H.V.; Shukla, J.B.; Rennert, O.M. Elevated Spermidine and Spermine Levels in the Blood of Psoriasis Patients. J. Investig. Dermatol. 1975, 65, 409–411. [Google Scholar] [CrossRef] [PubMed]
- Sakakibara, S.; Yoshikawa, K. Urinary Polyamine Levels in Patients with Psoriasis. Arch. Dermatol. Res. 1979, 265, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Lowe, N.J.; Kaplan, R.; Breeding, J. Etretinate Treatment for Psoriasis Inhibits Epidermal Ornithine Decarboxylase. J. Am. Acad. Dermatol. 1982, 6, 697–698. [Google Scholar] [CrossRef]
- Grekin, R.C.; Ellis, C.N.; Goldstein, N.G.; Swanson, N.A.; Anderson, T.F.; Duell, E.A.; Voorhees, J.J. Decreased Urinary Polyamines in Patients with Psoriasis Treated with Etretinate. J. Investig. Dermatol. 1983, 80, 181–184. [Google Scholar] [CrossRef]
- Gugliucci, A.; Menini, T. The Polyamines Spermine and Spermidine Protect Proteins from Structural and Functional Damage by AGE Precursors: A New Role for Old Molecules? Life Sci. 2003, 72, 2603–2616. [Google Scholar] [CrossRef]
- Kwak, M.; Lee, M.; Park, S.; Shin, S.; Liu, R.; Kang, S. Polyamines Regulate Cell Growth and Cellular Methylglyoxal in High-glucose Medium Independently of Intracellular Glutathione. FEBS Lett. 2016, 590, 739–749. [Google Scholar] [CrossRef]
- Lou, F.; Sun, Y.; Xu, Z.; Niu, L.; Wang, Z.; Deng, S.; Liu, Z.; Zhou, H.; Bai, J.; Yin, Q.; et al. Excessive Polyamine Generation in Keratinocytes Promotes Self-RNA Sensing by Dendritic Cells in Psoriasis. Immunity 2020, 53, 204–216.e10. [Google Scholar] [CrossRef]
- Bartyik, K.; Turi, S.; Orosz, F.; Karg, E. Methotrexate Inhibits the Glyoxalase System in Vivo in Children with Acute Lymphoid Leukaemia. Eur. J. Cancer 2004, 40, 2287–2292. [Google Scholar] [CrossRef]
- Namazi, M. Increase of Intracellular Methylglyoxal Levels as a Mode of Action of Retinoids against Psoriasis. Dermatol. Online J. 2007, 13, 30. [Google Scholar] [CrossRef] [PubMed]
- Russell, D.H.; Combest, W.L.; Duell, E.A.; Stawiski, M.A.; Anderson, T.F.; Voorhees, J.J. Glucocorticoid Inhibits Elevated Polyamine Biosynthesis in Psoriasis. J. Investig. Dermatol. 1978, 71, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Paul-Samojedny, M.; Łasut, B.; Pudełko, A.; Fila-Daniłow, A.; Kowalczyk, M.; Suchanek-Raif, R.; Zieliński, M.; Borkowska, P.; Kowalski, J. Methylglyoxal (MGO) Inhibits Proliferation and Induces Cell Death of Human Glioblastoma Multiforme T98G and U87MG Cells. Biomed. Pharmacother. 2016, 80, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Tezuka, Y.; Nakaya, I.; Nakayama, K.; Nakayama, M.; Yahata, M.; Soma, J. Methylglyoxal as a Prognostic Factor in Patients with Chronic Kidney Disease. Nephrology 2019, 24, 943–950. [Google Scholar] [CrossRef]
- Ogawa, S.; Nakayama, K.; Nakayama, M.; Mori, T.; Matsushima, M.; Okamura, M.; Senda, M.; Nako, K.; Miyata, T.; Ito, S. Methylglyoxal Is a Predictor in Type 2 Diabetic Patients of Intima-Media Thickening and Elevation of Blood Pressure. Hypertension 2010, 56, 471–476. [Google Scholar] [CrossRef]
- Papagrigoraki, A.; Giglio, M.; Cosma, C.; Maurelli, M.; Girolomoni, G.; Lapolla, A. Advanced Glycation End Products Are Increased in the Skin and Blood of Patients with Severe Psoriasis. Acta Derm.-Venereol. 2017, 97, 782–787. [Google Scholar] [CrossRef]
- Damasiewicz-Bodzek, A.; Nowak, A. Concentrations of N6-Carboxymethyllysine (CML), N6-Carboxyethyllysine (CEL), and Soluble Receptor for Advanced Glycation End-Products (SRAGE) Are Increased in Psoriatic Patients. Biomolecules 2022, 12, 1870. [Google Scholar] [CrossRef]
- Wetzels, S.; Vanmierlo, T.; Scheijen, J.L.J.M.; van Horssen, J.; Amor, S.; Somers, V.; Schalkwijk, C.G.; Hendriks, J.J.A.; Wouters, K. Methylglyoxal-Derived Advanced Glycation Endproducts Accumulate in Multiple Sclerosis Lesions. Front. Immunol. 2019, 10, 855. [Google Scholar] [CrossRef]
- Maurelli, M.; Gisondi, P.; Girolomoni, G. Advanced Glycation End Products and Psoriasis. Vaccines 2023, 11, 617. [Google Scholar] [CrossRef]
- Sultana, R.; Parveen, A.; Kang, M.-C.; Hong, S.-M.; Kim, S.Y. Glyoxal-Derived Advanced Glycation End Products (GO-AGEs) with UVB Critically Induce Skin Inflammaging: In Vitro and in Silico Approaches. Sci. Rep. 2024, 14, 1843. [Google Scholar] [CrossRef]
- Maurelli, M.; Bellinato, F.; Gisondi, P.; Girolomoni, G. Reduction of Cutaneous Advanced Glycation End Products Levels after Effective Psoriasis Treatment. J. Eur. Acad. Dermatol. Venereol. 2022, 36, e629–e631. [Google Scholar] [CrossRef]
Examined Parameter | Mean ± SD | Median (Min–Max Range) |
---|---|---|
Body Surface Area (BSA) [%] | 24.3 ± 17.5 | 19.0 (2.0–71.0) |
Psoriasis Area and Severity Index (PASI) | 13.8 ± 9.2 | 11.4 (3.2–43.8) |
Dermatology Life Quality Index (DLQI) | 14.2 ± 6.8 | 13.5 (2.0–26.0) |
C-reactive protein (CRP) [mg/L] | 5.8 ± 7.6 | 3.5 (0.5–35.2) |
Leukocyte count [×109/L] | 7.9 ± 1.9 | 7.8 (4.6–11.6) |
The Systemic Inflammation Response Index (SIRI) | 2.1 ± 1.3 | 1.5 (0.3–5.9) |
The Systemic Immuno-inflammation Index (SII) | 843.5 ± 637.6 | 660.1 (187.9–3988.4) |
The Aggregate Index of Systemic Inflammation (AISI) | 556.9 ± 377.7 | 406.7 (73.3–1920.1) |
Pair of Variables | R | p |
---|---|---|
MG [μg/mL] and BSA [%] 2 | −0.32 | 0.02 |
MG [μg/mL] and PASI 2 | −0.32 | 0.02 |
MG [μg/mL] and DLQI 1 | −0.15 | 0.30 |
MG [μg/mL) and CRP [mg/L] 2 | −0.45 | 0.002 |
MG [μg/mL) and Leukocyte Count [×109/L] 1 | −0.16 | 0.28 |
MG [μg/mL] and SIRI 2 | −0.26 | 0.08 |
MG [μg/mL] and SII 2 | −0.43 | 0.003 |
MG [μg/mL] and AISI 2 | −0.37 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damasiewicz-Bodzek, A.; Nowak, A.; Maciejczyk, M.; Waligóra, S.; Przywara-Chowaniec, B. Low Serum Methylglyoxal Levels Correlate with Psoriasis Severity and Inflammatory Response Indices. Pathophysiology 2025, 32, 8. https://doi.org/10.3390/pathophysiology32010008
Damasiewicz-Bodzek A, Nowak A, Maciejczyk M, Waligóra S, Przywara-Chowaniec B. Low Serum Methylglyoxal Levels Correlate with Psoriasis Severity and Inflammatory Response Indices. Pathophysiology. 2025; 32(1):8. https://doi.org/10.3390/pathophysiology32010008
Chicago/Turabian StyleDamasiewicz-Bodzek, Aleksandra, Agnieszka Nowak, Maciej Maciejczyk, Sławomir Waligóra, and Brygida Przywara-Chowaniec. 2025. "Low Serum Methylglyoxal Levels Correlate with Psoriasis Severity and Inflammatory Response Indices" Pathophysiology 32, no. 1: 8. https://doi.org/10.3390/pathophysiology32010008
APA StyleDamasiewicz-Bodzek, A., Nowak, A., Maciejczyk, M., Waligóra, S., & Przywara-Chowaniec, B. (2025). Low Serum Methylglyoxal Levels Correlate with Psoriasis Severity and Inflammatory Response Indices. Pathophysiology, 32(1), 8. https://doi.org/10.3390/pathophysiology32010008