Placental Macrovascular Pattern from Pregnancies with Maternal Hypertensive and Fetal Growth Capacity Complications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population Selection
2.2. Placenta Specimen Examination
2.3. Histomorphometrical Analyses
2.4. Ethics Statement
2.5. Statistical Analysis
3. Results
3.1. Histomorphometric Measurements of Vessel Wall Thickness
3.2. Histomorphometric Measurements of the Internal Diameter of Vessels
4. Discussion
- The histophenotype of diffuse (proximal and distal) ectatic macroangiopathy, characterized by an expansion of the lumen of both distal and proximal macrovessels of the placenta and accompanied by a relatively thin vascular wall with a decrease in the thickness of the muscle layer.
- The histophenotype of proximal fibromuscular sclerosis with vascular obliteration/spasm and distal ectatic macroangiopathy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brain, K.L.; Allison, B.J.; Niu, Y.; Cross, C.M.; Itani, N.; Kane, A.D.; Herrera, E.A.; Skeffington, K.L.; Botting, K.J.; Giussani, D.A. Intervention against hypertension in the next generation programmed by developmental hypoxia. PLoS Biol. 2019, 17, e2006552. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Qi, L.; Fan, X.; Tao, H.; Zhang, M.; Gao, Q.; Liu, Y.; Xu, T.; Zhang, P.; Su, H.; et al. Prenatal hypoxia affected endothelium-dependent vasodilation in mesenteric arteries of aged offspring via increased oxidative stress. Hypertens. Res. 2019, 42, 863–875. [Google Scholar] [CrossRef] [PubMed]
- Hula, N.; Spaans, F.; Vu, J.; Quon, A.; Kirschenman, R.; Cooke, C.M.; Phillips, T.J.; Case, C.P.; Davidge, S.T. Placental treatment improves cardiac tolerance to ischemia/reperfusion insult in adult male and female offspring exposed to prenatal hypoxia. Pharmacol. Res. 2021, 165, 105461. [Google Scholar] [CrossRef] [PubMed]
- Sławek-Szmyt, S.; Kawka-Paciorkowska, K.; Ciepłucha, A.; Lesiak, M.; Ropacka-Lesiak, M. Preeclampsia and Fetal Growth Restriction as Risk Factors of Future Maternal Cardiovascular Disease-A Review. J. Clin. Med. 2022, 11, 6048. [Google Scholar] [CrossRef] [PubMed]
- de Martelly, V.A.; Dreixler, J.; Tung, A.; Mueller, A.; Heimberger, S.; Fazal, A.A.; Naseem, H.; Lang, R.; Kruse, E.; Yamat, M.; et al. Long-Term Postpartum Cardiac Function and Its Association with Preeclampsia. J. Am. Heart Assoc. 2021, 10, e018526. [Google Scholar] [CrossRef]
- Brandt, Y.; Ghossein-Doha, C.; Gerretsen, S.C.; Spaanderman, M.E.A.; Kooi, M.E. Noninvasive Cardiac Imaging in Formerly Preeclamptic Women for Early Detection of Subclinical Myocardial Abnormalities: A 2022 Update. Biomolecules 2022, 12, 415. [Google Scholar] [CrossRef]
- Dash, P.R.; Whitley, G.S.; Ayling, L.J.; Johnstone, A.P.; Cartwright, J.E. Trophoblast apoptosis is inhibited by hepatocyte growth factor through the Akt and beta-catenin mediated up-regulation of inducible nitric oxide synthase. Cell. Signal. 2005, 17, 571–580. [Google Scholar] [CrossRef]
- Gill, J.S.; Salafia, C.M.; Grebenkov, D.; Vvedensky, D.D. Modeling oxygen transport in human placental terminal villi. J. Theor. Biol. 2011, 291, 33–41. [Google Scholar] [CrossRef]
- Junaid, T.O.; Brownbill, P.; Chalmers, N.; Johnstone, E.D.; Aplin, J.D. Fetoplacental vascular alterations associated with fetal growth restriction. Placenta 2014, 5, 808–815. [Google Scholar] [CrossRef]
- Cañas, D.; Herrera, E.A.; García-Herrera, C.; Celentano, D.; Krause, B.J. Fetal Growth Restriction Induces Heterogeneous Effects on Vascular Biomechanical and Functional Properties in Guinea Pigs (Cavia porcellus). Front. Physiol. 2017, 8, 144. [Google Scholar] [CrossRef]
- Poon, L.C.; Shennan, A.; Hyett, J.A.; Kapur, A.; Hadar, E.; Divakar, H.; McAuliffe, F.; da Silva Costa, F.; von Dadelszen, P.; McIntyre, H.D.; et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: A pragmatic guide for first-trimester screening and prevention. Int. J. Gynaecol. Obstet. 2019, 145 (Suppl. S1), 1–33. [Google Scholar] [CrossRef] [PubMed]
- Las Heras, J.; Baskerville, J.C.; Harding, P.G.; Haust, M.D. Morphometric studies of fetal placental stem arteries in hypertensive disorders (‘toxaemia’) of pregnancy. Placenta 1985, 6, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Salih, M.M.; Ali, L.E.; Eed, E.M.; Siniyeh, A.A. Histomorphometric study of placental blood vessels of chorion and chorionic villi vascular area among women with preeclampsia. Placenta 2022, 124, 44–47. [Google Scholar] [CrossRef] [PubMed]
- Akhlaq, M.; Nagi, A.H.; Yousaf, A.W. Placental morphology in pre-eclampsia and eclampsia and the likely role of NK cells. Indian. J. Pathol. Microbiol. 2012, 55, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, D.; Mansmann, U.; Neudeck, H.; Matejevic, D.; Vetter, K.; Graf, R. Increase of segments of elastic-type blood vessel walls in fetal placental stem villi during pre-eclampsia at term. Anat. Embryol. 1999, 200, 597–605. [Google Scholar] [CrossRef]
- Baran, Ö.; Tuncer, M.; Nergiz, Y.; Akkuş, M.; Erdemoğlu, M.; Büyükbayram, H. An increase of elastic tissue fibers in blood vessel walls of placental stem villi and differences in the thickness of blood vessel walls in third trimester pre-eclampsia pregnancies. Open Med. 2010, 5, 227–234. [Google Scholar] [CrossRef]
- Shen, X.; Wang, C.; Yue, X.; Wang, Q.; Xie, L.; Huang, Z.; Huang, X.; Li, J.; Xu, Y.; Chen, L.; et al. Preeclampsia associated changes in volume density of fetoplacental vessels in Chinese women and mouse model of preeclampsia. Placenta 2022, 121, 116–125. [Google Scholar] [CrossRef]
- Martins, J.G.; Biggio, J.R.; Abuhamad, A. Society for Maternal-Fetal Medicine Consult Series #52: Diagnosis and management of fetal growth restriction: (Replaces Clinical Guideline Number 3, April 2012). Am. J. Obstet. Gynecol. 2020, 223, B2–B17. [Google Scholar] [CrossRef]
- Salafia, C.M.; Pezzullo, J.C.; Minior, V.K.; Divon, M.Y. Placental pathology of absent and reversed end-diastolic flow in growth-restricted fetuses. Obstet. Gynecol. 1997, 90, 830–836. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.C.; Seshan, S.V.; Riachi, L.E. Placental vessel morphometry in growth retardation and increased resistance of the umbilical artery Doppler flow. J. Matern. Fetal Med. 2000, 9, 282–286. [Google Scholar] [CrossRef]
- Guiot, C.; Todros, T.; Pianta, P.; Sciarrone, A.; Kosanke, G.; Kaufan, P. The diameter distribution of the stem villi arteries does not discriminate between normal and intra uterine growth restricted placentas. J. Theor. Med. 1999, 1, e263–e273. [Google Scholar] [CrossRef]
- Brown, M.A.; Magee, L.A.; Kenny, L.C.; Karumanchi, S.A.; McCarthy, F.P.; Saito, S.; Hall, D.R.; Warren, C.E.; Adoyi, G.; Ishaku, S. Hypertensive Disorders of Pregnancy: ISSHP Classification, Diagnosis, and Management Recommendations for International Practice. Hypertension 2018, 72, 24–43. [Google Scholar] [CrossRef] [PubMed]
- Gordijn, S.J.; Beune, I.M.; Thilaganathan, B.; Papageorghiou, A.; Baschat, A.A.; Baker, P.N.; Silver, R.M.; Wynia, K.; Ganzevoort, W. Consensus definition of fetal growth restriction: A Delphi procedure. Ultrasound Obstet. Gynecol. 2016, 48, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, F.C.; Lubchenco, L.O. A practical classification of newborn infants by weight and gestational age. J. Pediatr. 1967, 71, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Khong, T.Y.; Mooney, E.E.; Ariel, I.; Balmus, N.C.; Boyd, T.K.; Brundler, M.A.; Derricott, H.; Evans, M.J.; Faye-Petersen, O.M.; Gillan, J.E.; et al. Sampling and Definitions of Placental Lesions: Amsterdam Placental Workshop Group Consensus Statement. Arch. Pathol. Lab. Med. 2016, 140, 698–713. [Google Scholar] [CrossRef]
- Turdybekova, Y.G.; Kopobayeva, I.L.; Kamyshanskiy, Y.K.; Turmukhambetova, A.A. Comparative clinical and placental pathologic characteristics in pregnancies with and without SARS-CoV-2 infection. J. Perinat. Med. 2023, 51, 1179–1188. [Google Scholar] [CrossRef]
- Imanbayev, N.M.; Iztleuov, Y.M.; Kamyshanskiy, Y.K.; Zhumasheva, A.V. Diagnostic and prognostic significance of keloid-like collagen remodeling patterns in the extracellular matrix of colorectal cancer. Pathol. Oncol. Res. 2024, 30, 1611789. [Google Scholar] [CrossRef]
- Vogel, M. Pathologie der Plazenta: Spätschwangerschaft und fetoplazentare Einheit. In Pathologie; Klöppel, G., Kreipe, H., Remmele, W., Dietel, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 541–632. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Sharony, R.; Eran, K.; Biron-Shental, T.; Kidron, D. Morphometric characteristics of the umbilical cord and vessels in fetal growth restriction and pre-eclampsia. Early Hum. Dev. 2016, 92, 57–62. [Google Scholar] [CrossRef]
Parameter | PE n = 59 | FGR n = 24 | PE + FGR n = 41 | Control n = 70 | |
---|---|---|---|---|---|
Gravidity | Median | 2 | 2 | 2 | 2 |
25–75% | 1.5–3 | 2–3 | 1–3 | 2–3 | |
Range | 1–4 | 1–4 | 1–3 | 1–5 | |
p = 0.885 | p = 0.223 | p = 0.530 | |||
Parity | Median | 1 | 2 | 2 | 2 |
25–75% | 1–2 | 1–2 | 1–2 | 1–2 | |
Range | 1–3 | 1–3 | 1–3 | 1–4 | |
p = 0.438 | p = 0.601 | p = 0.905 | |||
Gestational age, (weeks) | Average | 32.8 | 33.5 | 33.6 | 33.0 |
SD | 1.3 | 2.2 | 2.2 | 1.4 | |
Range | 32–37 | 32–38 | 32–39 | 32–40 | |
p = 0.395 | p = 0.506 | p = 0.382 | |||
Maternal age, (years) | Average | 28.8 | 27.1 | 29.0 | 28.1 |
SD | 4.9 | 4.6 | 4.9 | 5.2 | |
Range | 18–41 | 20–34 | 19–38 | 18–39 | |
p = 0.066 | p = 0.597 | p = 0.103 | |||
Race, n (%) | Asian | 47 (79.7) | 17 (70.8) | 30 (73.2) | 50 (71.4) |
White | 12 (20.3) | 7 (29.2) | 11 (26.8) | 20 (28.6) | |
Other | - | - | - | - | |
Unknown | - | - | - | - | |
p = 0.536 | p = 0.956 | p = 0.844 | |||
Drugs, n (%) | Cigarettes | 2 (3.4) | - | - | 2 (2.9) |
Alcohol | - | - | - | - | |
Other | - | - | - | - | |
Unknown | 4 (6.8) | - | 2 (4.9) | 2 (2.9) | |
p = 0.561 | - | p = 0.481 | |||
Previous prenatal admission(s), n (%) | Yes | 48 (81.4) | 18 (75.0) | 37 (90.2) | 10 (14.3) |
No | 11 (18.6) | 6 (25.0) | 4 (9.8) | 60 (85.7) | |
Unknown | - | - | - | - | |
p = 0.001 | p = 0.001 | p = 0.001 | |||
Delivery mode n (%) | Vaginal delivery | 21 (35.6) | 9 (37.5) | 10 (24.4) | 54 (77.1) |
Scheduled Cesarean delivery | 26 (44.1) | 10 (41.7) | 20 (48.8) | 10 (14.3) | |
emergency Cesarean delivery | 12 (20.3) | 5 (20.8) | 11 (26.8) | 6 (8.6) | |
p = 0.001 | p = 0.002 | p = 0.001 | |||
Maternal oxygen given at delivery | Yes | 43 (72.9) | 17 (70.8) | 35 (85.4) | 30 (42.9) |
No | 16 (27.1) | 7 (29.2) | 6 (14.6) | 40 (57.1) | |
Unknown | - | - | - | - | |
p = 0.001 | p = 0.019 | p = 0.001 | |||
Chronic diseases in pregnant women 1 | Yes | 34 (57.6) | 0 (0) | 41 (100) | 11 (15.7) |
No | 25 (42.4) | 24 (100) | 0 | 59 (84.3) | |
Unknown | - | - | - | ||
p = 0.001 | p = 0.039 | p = 0.001 | |||
Placental weight (g) | Average | 346.2 | 331.3 | 339.9 | 377.3 |
SD | 51.9 | 43.9 | 46.9 | 49.9 | |
Unknown | - | - | - | - | |
p = 0.01 | p = 0.001 | p = 0.001 | |||
The pathology of the umbilical cord | Yes | 6 (10.2) | 3 (12.5) | 4 (9.8) | 8 (11.4) |
No | 53 (89.8) | 21 (87.5) | 37 (90.2) | 62 (88.6) | |
Unknown | - | - | - | - | |
p = 0.819 | p = 0.757 | p = 0.946 | |||
Baby’s sex, n (%) | Female | 29 (49.2) | 11 (45.8) | 19 (46.3) | 33 (47.1) |
Male | 30 (50.8) | 13 (54.2) | 22 (53.7) | 37 (52.9) | |
Unknown | - | - | - | - | |
p = 0.820 | p = 0.912 | p = 0.935 | |||
Birth weight, gram | Average | 2207.0 | 1708.1 | 1881.4 | 2391.0 |
SD | 326.5 | 153.6 | 271.1 | 217.4 | |
Unknown | - | - | - | - | |
p = 0.001 | p = 0.0001 | p = 0.0001 | |||
Delivery to processing (min) | Average | 604.4 | 648.5 | 618.8 | 688.3 |
SD | 275.9 | 296.1 | 317.7 | 348.8 | |
Unknown | - | - | - | - | |
p = 0.250 | p = 0.541 | p = 0.327 |
PE n = 59 | FGR n = 24 | PE + FGR n = 41 | Control n = 70 | ||
---|---|---|---|---|---|
Proximal macrovessels | |||||
Wall thickness | Median | 8.4 | 15.5 | 23.3 | 13.9 |
25–75% | 6.9–10.7 | 9.9–23.2 | 17.6–34.3 | 10.2–18.4 | |
Range | 2.5–28.1 | 4.1–39.3 | 5.1–44.3 | 7.5–37.5 | |
p1 = 0.001 | p1 = 0.353 | p1 = 0.001 | |||
Lumen | Median | 156.1 | 124.1 | 100.8 | 130.2 |
25–75% | 115.2–188.5 | 100.8–149.5 | 56.9–135.8 | 97.9–154.4 | |
Range | 35.5–252.7 | 45.5–171.7 | 24.6–241.9 | 33.0–272.9 | |
p1 = 0.025 | p1 = 0.138 | p1 = 0.008 | |||
Distal macrovessels | |||||
Wall thickness | Median | 8.1 | 17.7 | 7.8 | 14.2 |
25–75% | 6.3–9.5 | 9.9–20.9 | 6.3–9.5 | 10.1–17.3 | |
Range | 2.7–41.3 | 5.4–26.5 | 2.6–23.8 | 7.4–42.5 | |
p1 = 0.001 | p1 = 0.499 | p1 = 0.467 | |||
Lumen | Median | 143.4 | 115.5 | 161.6 | 129.4 |
25–75% | 104.9–192.9 | 105.8–130.4 | 110.5–185.2 | 82.3–156.4 | |
Range | 60.2–251.7 | 63.9–171.9 | 42.6–326.2 | 40.3–245.5 | |
p1 = 0.012 | p1 = 0.504 | p1 = 0.026 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makhambetova, K.; Kamyshanskiy, Y.; Ponamareva, O.; Amirbekova, Z.; Oshakhtiyeva, N.; Kunanbaeva, S. Placental Macrovascular Pattern from Pregnancies with Maternal Hypertensive and Fetal Growth Capacity Complications. Pathophysiology 2024, 31, 699-708. https://doi.org/10.3390/pathophysiology31040050
Makhambetova K, Kamyshanskiy Y, Ponamareva O, Amirbekova Z, Oshakhtiyeva N, Kunanbaeva S. Placental Macrovascular Pattern from Pregnancies with Maternal Hypertensive and Fetal Growth Capacity Complications. Pathophysiology. 2024; 31(4):699-708. https://doi.org/10.3390/pathophysiology31040050
Chicago/Turabian StyleMakhambetova, Kamilya, Yevgeniy Kamyshanskiy, Olga Ponamareva, Zhanna Amirbekova, Nazerke Oshakhtiyeva, and Saule Kunanbaeva. 2024. "Placental Macrovascular Pattern from Pregnancies with Maternal Hypertensive and Fetal Growth Capacity Complications" Pathophysiology 31, no. 4: 699-708. https://doi.org/10.3390/pathophysiology31040050
APA StyleMakhambetova, K., Kamyshanskiy, Y., Ponamareva, O., Amirbekova, Z., Oshakhtiyeva, N., & Kunanbaeva, S. (2024). Placental Macrovascular Pattern from Pregnancies with Maternal Hypertensive and Fetal Growth Capacity Complications. Pathophysiology, 31(4), 699-708. https://doi.org/10.3390/pathophysiology31040050