Oxidative Stress Responses in Obese Individuals Undergoing Bariatric Surgery: Impact on Carcinogenesis
Abstract
:1. Introduction
2. Search Strategy
3. Oxidative Stress
4. Inflammatory Response
5. DNA Damage
6. Apoptosis
7. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bankoglu, E.E.; Arnold, C.; Hering, I.; Hankir, M.; Seyfried, F.; Stopper, H. Decreased chromosomal damage in lymphocytes of obese patients after bariatric surgery. Sci. Rep. 2018, 8, 29581–29586. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.M. Current Issues in Bariatric Surgery for Adolescents with Severe Obesity: Durability Complications and Timing of Intervention. J. Obes. Metab. Syndr. 2020, 2, 94–111. [Google Scholar] [CrossRef] [PubMed]
- Bray, G.A.; Ryan, D.H. Evidence-based weight loss interventions: Individualized treatment options to maximize patient outcomes. Diabetes Obes. Metab. 2021, 23 (Suppl. S1), 50–62. [Google Scholar] [CrossRef] [PubMed]
- Perdomo, C.M.; Cohen, R.V.; Sumithran, P.; Clément, K.; Frühbeck, G. Contemporary medical, device, and surgical therapies for obesity in adults. Lancet 2023, 401, 1116–1130. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yuan, J.; Lei, X.; Cheng, Y.; Wei, X. Metabolic status and vascular endothelial structure in obese hypertensive patients treated with non-pharmacological therapies: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0279582. [Google Scholar] [CrossRef] [PubMed]
- Courcoulas, A.P.; Yanovski, S.Z.; Bonds, D.; Eggerman, T.L.; Horlick, M.; Staten, M.A.; Arterburn, D.E. Long-term outcomes of bariatric surgery: A National Institutes of Health symposium. JAMA Surg. 2014, 149, 1323–1329. [Google Scholar] [CrossRef]
- Adams, T.D.; Davidson, L.E.; Litwin, S.E.; Kolotkin, R.L.; LaMonte, M.J.; Pendleton, R.C.; Strong, M.B.; Vinik, R.; Wanner, N.A.; Hopkins, P.N.; et al. Health benefits of gastric bypass surgery after 6 years. JAMA 2012, 308, 1122–1131. [Google Scholar] [CrossRef] [PubMed]
- Schauer, P.R.; Kashyap, S.R.; Wolski, K.; Brethauer, S.A.; Kirwan, J.P.; Pothier, C.E.; Thomas, S.; Abood, B.; Nissen, S.E.; Bhatt, D.L.; et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N. Engl. J. Med. 2012, 366, 1567–1576. [Google Scholar] [CrossRef] [PubMed]
- Mingrone, G.; Panunzi, S.; De Gaetano, A.; Guidone, C.; Iaconelli, A.; Leccesi, L.; Nanni, G.; Pomp, A.; Castagneto, M.; Ghirlanda, G.; et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N. Engl. J. Med. 2012, 366, 1577–1585. [Google Scholar] [CrossRef]
- Anveden, Å.; Taube, M.; Peltonen M Jacobson, P.; Andersson-Assarsson, J.C.; Sjöholm, K.; Svensson, P.A.; Carlsson, L.M.S. Long-term incidence of female-specific cancer after bariatric surgery or usual care in the Swedish Obese Subjects Study. Gynecol. Oncol. 2017, 145, 224–229. [Google Scholar] [CrossRef]
- Christou, N.V.; Lieberman, M.; Sampalis, F.; Sampalis, J.S. Bariatric surgery reduces cancer risk in morbidly obese patients. Surg. Obes. Relat. Dis. 2008, 4, 691–695. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Tang, H.; Huang, P.; Wang, J.; Deng, P.; Li, Y.; Zheng, J.; Weng, L. Assessment of causal effects of visceral adipose tissue on risk of cancers: A Mendelian randomization study. Int. J. Epidemiol. 2022, 51, 1204–1218. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.L.; Dive, C.; Renehan, A.G. Biological mechanisms linking obesity and cancer risk: New perspectives. Annu. Rev. Med. 2010, 61, 301–316. [Google Scholar] [CrossRef] [PubMed]
- Mengoni, M.; Braun, A.D.; Hinnerichs, M.S.; Aghayev, A.; Tüting, T.; Surov, A. Comprehensive analysis of body composition features in melanoma patients treated with tyrosine kinase inhibitors. J. Dtsch. Dermatol. Ges. 2024, 22, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Jin, Q.; Wang, H.; Li, Y. Progressive sarcopenia and myosteatosis predict prognosis of advanced HCC patients treated with immune checkpoint inhibitors. Front. Immunol. 2024, 15, 1396927. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Earp, J.E.; Riebe, D.; Delmonico, M.J.; Lofgren, I.E.; Greene, G.W. The relationship between fat distribution and diabetes in US adults by race/ethnicity. Front. Public Health 2024, 12, 1373544. [Google Scholar] [CrossRef] [PubMed]
- Furberg, H.; Bradshaw, P.T.; Knezevic, A.; Olsson, L.; Petruzella, S.; Stein, E.; Paris, M.; Scott, J.; Akin, O.; Hakimi, A.A.; et al. Skeletal muscle and visceral adipose radiodensities are pre-surgical, non-invasive markers of aggressive kidney cancer. J. Cachexia Sarcopenia Muscle 2024, 15, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Popovici, D.; Stanisav, C.; Saftescu, S.; Negru, S.; Dragomir, R.; Ciurescu, D.; Diaconescu, R. Exploring the Influence of Age, Gender and Body Mass Index on Colorectal Cancer Location. Medicina 2023, 59, 1399. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Morley, T.S.; Kim, M.; Clegg, D.J.; Scherer, P.E. Obesity and cancer-mechanisms underlying tumour progression and recurrence. Nat. Rev. Endocrinol. 2014, 10, 455–465. [Google Scholar] [CrossRef]
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress inflammation and cancer: How are they linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef]
- Uddin, M.S.; Kabir, M.T.; Jakaria, M.; Mamun, A.A.; Niaz, K.; Amran, M.S.; Barreto, G.E.; Ashraf, G.M. Endothelial PPARγ Is Crucial for Averting Age-Related Vascular Dysfunction by Stalling Oxidative Stressand ROCK. Neurotox. Res. 2019, 36, 583–601. [Google Scholar] [CrossRef] [PubMed]
- Noda, N.; Wakasugi, H. Cancer and oxidative stress. Jpn. Med. Assoc. J. 2001, 44, 535–539. [Google Scholar]
- Arfin, S.; Jha, N.K.; Jha, S.K.; Kesari, K.K.; Ruokolainen, J.; Roychoudhury, S.; Rathi, B.; Kumar, D. Oxidative Stress in Cancer Cell Metabolism. Antioxidants 2021, 10, 642. [Google Scholar] [CrossRef] [PubMed]
- Brownlee, I.A.; Allen, A.; Pearson, J.P.; Dettmar, P.W.; Havler, M.E.; Atherton, M.R.; Onsøyen, E. Alginate as a source of dietary fiber. Crit. Rev. Food Sci. Nutr. 2005, 45, 497–510. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, S.; Fujita, T.; Shimabukuro, M.; Iwaki, M.; Yamada, Y.; Nakajima, Y.; Nakayama, O.; Makishima, M.; Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Investig. 2004, 114, 1752–1761. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.S.; Hasana, S.; Ahmad, J.; Hossain, M.F.; Rahman, M.M.; Behl, T.; Rauf, A.; Ahmad, A.; Hafeez, A.; Perveen, A. Anti-neuroinflammatory potential of polyphenols by inhibiting NF-kappa B to halt Alzheimer’s disease. Curr. Pharm. Des. 2020, 27, 402–414. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.S.; Kabir, M.T.; Mamun, A.A.; Barreto, G.E.; Rashid, M.; Perveen, A.; Ashraf, G.M. Pharmacological approaches to mitigate neuroinflammation in Alzheimer’s disease. Int. Immunopharmacol. 2020, 84, 106479. [Google Scholar] [CrossRef] [PubMed]
- Korniluk, A.; Koper, O.; Kemona, H.; Dymicka-Piekarska, V. From inflammation to cancer. Ir. J. Med. Sci. 2017, 186, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Albini, M.B.; Malacarne, I.T.; Batista, T.B.D.; de Lima, A.A.S.; Machado, M.A.N.; Johann, A.C.B.R.; Rosa, E.A.R.; Azevedo-Alanis, L.R. Cytopathological Changes Induced by the Crack Use in Oral Mucosa. Eur. Addict. Res. 2017, 23, 77–86. [Google Scholar] [CrossRef]
- Lima, A.A.; Woyceichoski, I.E.; Batista, A.B.; Grégio, A.M.; Ignácio, S.A.; Machado, M.A.; Azevedo, L.R. Cytopathological changes in oral epithelium induced by crack cocaine smoking. Pharmacologyonline 2007, 1, 31–40. [Google Scholar]
- Coleman, J.W. Nitric oxide in immunity and inflammation. Int. Immunopharmacol. 2001, 1, 1397–1406. [Google Scholar] [CrossRef] [PubMed]
- Arcidiacono, B.; Iiritano, S.; Nocera, A.; Possidente, K.; Nevolo, M.T.; Ventura, V.; Foti, D.; Chiefari, E.; Brunetti, A. Insulin resistance and cancer risk: An overview of the pathogenetic mechanisms. Exp. Diabetes Res. 2012, 2012, 789174. [Google Scholar] [CrossRef] [PubMed]
- Calle, E.E.; Kaaks, R. Overweigh to obesity and cancer: Epidemiological evidence and proposed mechanisms. Nat. Rev. Cancer 2004, 4, 579–599. [Google Scholar] [CrossRef] [PubMed]
- Casagrande, D.S.; Rosa, D.D.; Umpierre, D.; Sarmento, R.A.; Rodrigues, C.G.; Schaan, B.D. Incidence of Cancer Following Bariatric Surgery: Systematic Review and Meta-analysis. Obes. Surg. 2014, 24, 1499–1509. [Google Scholar] [CrossRef] [PubMed]
- Perri, A.; Lofaro, D.; La Russa, A.; Lupinacci, S.; Toteda, G.; Curti, A.; Urso, A.; Bonofiglio, R.; LARussa, D.; Pellegrino, D. Proinflammatory profile of visceral adipose tissue and oxidative stress in severe obese patients carrying the variants 4612666CofNLRP3 gene. Minerva Endocrinol. 2021, 46, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Billeter, A.T.; Vittas, S.; Israel, B.; Scheurlen, K.M.; Hidmark, A.; Fleming, T.H.; Kopf, S.; Bucheler, M.W.; Muller-Stich, B.P. Gastric bypass simultaneously improves adipose tissue function and insulin-dependent type 2 diabetes mellitus. Langenbecks Arch. Surg. 2017, 402, 901–910. [Google Scholar] [CrossRef] [PubMed]
- Horn, R.C.; Gelatti, G.T.; Mori, N.C.; Tissiani, A.C.; Mayer, M.S.; Pereira, E.A.; Ross, M.; Moreira, P.R.; Bortolotto, J.W.; Felippin, T. Obesity bariatric surgery and oxidative stress. Rev. Assoc. Med. Bras. 2017, 63, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Carmona-Maurici, J.; Amigó, N.; Cuello, E.; Bermúdez, M.; Baena-Fustegueras, J.A.; Peinado-Onsurbe, J.; Pardina, E. Bariatric surgery decrease soxidative stress and protein glycosylation in patients with morbidobesity. Eur. J. Clin. Investig. 2020, 50, e13320. [Google Scholar] [CrossRef] [PubMed]
- Min, T.; Prior, S.L.; Dunseath, G.; Churm, R.; Barry, J.D.; Stephens, J.W. Temporal Effects of Bariatric Surgery on Adipokines Inflammation and Oxidative Stress in Subjects with Impaired Glucose Homeostasis at 4 Years of Follow-up. Obes. Surg. 2020, 30, 1712–1718. [Google Scholar] [CrossRef]
- Nosso, G.; Lupoli, R.; Saldalamacchia, G.; Griffo, E.; Cotugno, M.; Costabile, G.; Riccardi, G.; Capaldo, B. Diabetes remission after bariatric surgery is characterized by high glycemic variability and high oxidative stress. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 949–955. [Google Scholar] [CrossRef]
- Lupoli, R.; Calcaterra, I.; Annunziata, G.; Tenore, G.; Rainone, C.; Schiavo, L.; Capaldo, B.; Di Minno, M.N.D. Post-Bariatric Hypoglycemia Is Associated with Endothelial Dysfunction and Increased Oxidative Stress. Biomedicines 2022, 10, 916. [Google Scholar] [CrossRef] [PubMed]
- Choromańska, D.C.; Vernon, A.; Foster, K.; Halperin, F.; Patti, M.E.; Goldfine, A.B. Adjustable gastric band surgery or medical management in patients with type 2 diabetes and obesity: Three-year results of a randomized trial. Surg. Obes. Relat. Dis. 2019, 15, 2052–2059. [Google Scholar]
- Choromańska, B.; Myśliwiec, P.; Łuba, M.; Wojskowicz, P.; Dadan, J.; Myśliwiec, H.; Choromańska, K.; Zalewska, A.; Maciejczyk, M.A. Longitudinal Study of the Antioxidant Barrier and Oxidative Stress in Morbidly Obese Patients after Bariatric Surgery Does the Metabolic Syndrome Affect the Redox Homeostasis of Obese People? J. Clin. Med. 2020, 9, 976. [Google Scholar] [CrossRef] [PubMed]
- Fariello, R.M.; de Carvalho, R.C.; Spaine, D.M.; Andretta, R.R.; Caetano, E.M., Jr.; Sá, G.P.D.; Cedenho, A.P.; Fraietta, R. Analysis of the Functional Aspects of Sperm and Testicular Oxidative Stress in Individuals Undergoing Metabolic Surgery. Obes. Surg. 2021, 31, 2887–2895. [Google Scholar] [CrossRef] [PubMed]
- Venâncio, F.A.; Almeida, L.A.; Zovico, P.V.; Barauna, V.G.; Miguel, G.P.S.; Pedrosa, R.G.; Haraguchi, F.K. Roux-en-Y Gastric bypass and Sleeve Gastrectomy Differently Affect Oxidative Damage Markers and their Correlations with Body Parameters. Obes. Surg. 2021, 31, 1680–1687. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, E.R.; Fenger, M.; Henriksen, T.; Kjaer, L.K.; Worm, D.; Hansen, D.L.; Madsbad, S.; Poulsen, H.E. Reduction of oxidative stress on DNA and RNA in obese patients after Roux-en-Y gastric bypass surgery—An observational cohort study of changes in urinary markers. PLoS ONE 2020, 15, e0243918. [Google Scholar] [CrossRef] [PubMed]
- Fejfer, K.; Buczko, P.; Niczyporuk, M.; Ładny, J.R.; Hady, H.R.; Knaś, M.; Waszkiel, D.; Klimiuk, A.; Zalewska, A.; Maciejczyk, M. Oxidative Modification of Biomolecules in the Nonstimulated and Stimulated Saliva of Patients with Morbid Obesity Treated with Bariatric Surgery. BioMed Res. Int. 2017, 2017, 4923769. [Google Scholar] [CrossRef] [PubMed]
- Banazadeh, V.; Nematy, M.; Ghayour Mobarhan, M.; Tavallaie, S.; Esmaily, H.; Jangjoo, A. The relation between pro-oxidant antioxidant balance and glycolipid profile 6 month after gastric bypass surgery. Surg. Obes. Relat. Dis. 2018, 14, 361–367. [Google Scholar] [CrossRef]
- Abad-Jiménez, Z.; López-Domènech, S.; Díaz-Rúa, R.; Iannantuoni, F.; Gómez-Abril, S.Á.; Periañez-Gómez, D.; Morillas, C.; Víctor, V.M.; Rocha, M. Systemic Oxidative Stress and Visceral Adipose Tissue Mediators of NLRP3 Inflammasome and Autophagy Are Reduced in Obese Type 2 Diabetic Patients Treated with Metformin. Antioxidants 2020, 9, 892. [Google Scholar] [CrossRef]
- Picu A Petcu, L.; Ştefan, D.S.; Grădișteanu Pîrcălăbioru, G.; Mitu, M.; Bajko, D.; Lixandru, D.; Guja, C.; Savu, O.; Stoian, A.P.; Constantin, A.; et al. Evolution of Inflammatory and Oxidative Stress Markers in Romanian Obese Male Patients with Type 2 Diabetes Mellitus after Laparoscopic Sleeve Gastrectomy: One Year Follow-up. Metabolites 2020, 10, 308. [Google Scholar] [CrossRef]
- Metere, A.; Graves, C.E.; Pietraforte, D.; Casella, G. The Effect of Sleeve Gastrectomy on Oxidative Stress in Obesity. Biomedicines 2020, 8, 168. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.W.; Zhou, Y.; Zhou, P.Y.; Zhang, T.Y.; Hu, J.Y.; Bai, X.T. Protective Effects of Bariatric Surgery on Kidney Functions by Inhibiting Oxidative Stress Responses through Activating PPARα in Rats with Diabetes. Front. Physiol. 2021, 12, 662666. [Google Scholar] [CrossRef] [PubMed]
- Ramalho, R.; Guimarães, C.; Gil, C.; Neves, C.; Guimarães, J.T.; Delgado, L. Morbid obesity and inflammation: A prospective study after adjustable gastric banding surgery. Obes. Surg. 2009, 19, 915–920. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.D.; Nicklas, B.J.; Fernandez, A. Serial changes in inflammatory biomarkers after Roux-en-Y gastric bypass surgery. Surg. Obes. Relat. Dis. 2011, 7, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Katsogiannos, P.; Kamble, P.G.; Pereira, M.J.; Sundbom, M.; Carlsson, P.O.; Eriksson, J.W.; Espes, D. Changes in circulating cytokines and adipokines after RYGB in patients with and without type 2 diabetes. Obesity 2021, 29, 535–542. [Google Scholar] [CrossRef]
- Illán-Gómez, F.; Gonzálvez-Ortega, M.; Orea-Soler, I.; Alcaraz-Tafalla, M.; Aragón-Alonso, A.; Pascual-Díaz, M.; Lozano-Almela, M. Obesity and inflammation: Change in adiponectin C-reactive protein tumour necrosis factor-alpha and interleukin-6 after bariatric surgery. Obes. Surg. 2012, 22, 950–955. [Google Scholar] [CrossRef]
- Sajid, S.; Zariwala, M.G.; Mackenzie, R.; Turner, M.; Nell, T.; Bellary, S.; Renshaw, D. Suppression of Anti-Inflammatory Mediators in Metabolic Disease May Be Driven by Overwhelming Pro-Inflammatory Drivers. Nutrients 2022, 14, 2360. [Google Scholar] [CrossRef]
- Jouan, Y.; Blasco, H.; Bongrani, A.; Couet, C.; Dupont, J.; Maillot, F. Preoperative chemerin level is predictive of inflammatory status 1 year after bariatric surgery. Obes. Surg. 2020, 30, 3852–3861. [Google Scholar] [CrossRef]
- Hagman, D.K.; Larson, I.; Kuzma, J.N.; Cromer, G.; Makar, K.; Rubinow, K.B.; Kratz, M. The short-term and long-term effects of bariatric/metabolic surgery on subcutaneous adipos tissue inflammation in humans. Metabolism 2017, 70, 12–22. [Google Scholar] [CrossRef]
- Chung, M.Y.; Hong, S.J.; Lee, J.Y. The influence of obesity on post-operative inflammatory cytokine levels. J. Int. Med. Res. 2011, 39, 2370–2378. [Google Scholar] [CrossRef]
- Nance, S.A.; Muir, L.; Lumeng, C. Adipose tissue macrophages: Regulators of adipose tissue immunometabolism during obesity. Mol. Metab. 2022, 66, 101642. [Google Scholar] [CrossRef] [PubMed]
- Wentworth, J.M.; Naselli, G.; Brown, W.A.; Doyle, L.; Phipson, B.; Smyth, G.K.; Wabitsch, M.; O’Brien, P.E.; Harrison, L.C. Pro-inflammatory CD11c+ CD206+ adipose tissue macrophages are associated within inresistance in human obesity. Diabetes 2010, 59, 1648–1656. [Google Scholar] [CrossRef] [PubMed]
- Lumeng, C.N.; Bodzin, J.L.; Saltiel, A.R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Investig. 2007, 117, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Pardina, E.; Ferrer, R.; Baena-Fustegueras, J.A.; Rivero, J.; Lecube, A.; Fort, J.M.; Peinado-Onsurbe, J. Only C-reactive protein but not TNF-α or IL6 reflects the improvement in inflammation after bariatric surgery. Obes. Surg. 2012, 22, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Lasselin, J.; Magne, E.; Beau, C.; Ledaguenel, P.; Dexpert, S.; Aubert, A.; Capuron, L. Adipose inflammation in obesity: Relationship with circulating levels of inflammatory markers and association with surgery-induced weight loss. J. Clin. Endocrinol. Metab. 2014, 99, E53–E61. [Google Scholar] [CrossRef] [PubMed]
- Ritt, M.; Piza, H.; Rhomberg, M.; Aigner, F.; Lechleitner, M. Metabolic risk factors in formerly obese women–effects of a pronounced weight loss by gastric band operation compared with weight loss by diet alone. Diabetes Obes. Metab. 2005, 7, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Kopp, H.P.; Kopp, C.W.; Festa, A.; Kriwanek, S.; Minar, E.; Roka, R.; Schernthaner, G. Impact of weight loss on inflammatory proteins and their association with the insulin resistance syndrome in morbidly obese patients. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 1042–1047. [Google Scholar] [CrossRef] [PubMed]
- Manna, P.; Jain, S.K. Obesity Oxidative Stress Adipose Tissue Dysfunction and the Associated Health Risks: Causes and Therapeutic Strategies. Metab. Syndr. Relat. Disord. 2015, 13, 423–444. [Google Scholar] [CrossRef] [PubMed]
- Włodarczyk, M.; Nowicka, G. DNA damage, obesity and obesity-related health complications: What are new data telling us? Curr. Opin. Clin. Nutr. Metab. Care 2024, 27, 325–330. [Google Scholar] [CrossRef]
- Martins, S.G.; Zilhão, R.; Thorsteinsdóttir, S.; Carlos, A.R. Linking Oxidative Stress and DNA Damage to Changes in the Expression of Extracellular Matrix Components. Front. Genet. 2021, 12, 673002. [Google Scholar] [CrossRef]
- Iourova, I.Y.; Vorsanova, S.G.; Kurinnaia, O.S.; Zelenova, M.A.; Vasina, K.S.; Yurov, Y.B. Causes and Consequences of Genome Instability in Psychiatric and Neurodegenerative Diseases. Mol. Biol. 2021, 55, 37–46. [Google Scholar] [CrossRef]
- Moon, J.J.; Lu, A.; Moon, C. Role of genomic instability in human carcinogenesis. Exp. Biol. Med. 2019, 244, 227–240. [Google Scholar] [CrossRef] [PubMed]
- Tenorio, N.M.; Ribeiro, D.A.; Alvarenga, T.A.; Fracalossi, A.C.; Carlin, V.; Hirotsu, C.; Tufik, S.; Andersen, M.L. The influence of sleep deprivation and obesity on DNA damage in female Zucker rats. Clinics 2013, 68, 385–389. [Google Scholar] [CrossRef]
- Bankoglu, E.E.; Seyfried, F.; Rotzinger, L.; Nordbeck, A.; Corteville, C.; Jurowich, C.; Germer, C.T.; Otto, C.; Stopper, H. Impact of weight loss induced by gastric bypass or caloric restriction on oxidative stress and genomic damage in obese Zucker rats. Free Radic. Biol. Med. 2016, 94, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Bankoglu, E.E.; Seyfried, F.; Arnold, C.; Soliman, A.; Jurowich, C.; Germer, C.T.; Otto, C.; Stopper, H. Reduction of DNA damage in peripheral lymphocytes of obese patients after bariatric surgery-mediated weight loss. Mutagenesis 2018, 33, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Boesing, F.; Moreira, E.A.; Wilhelm-Filho, D.; Vigil, S.V.; Parizotto, E.B.; Inacio, D.B.; Portari, G.V.; Trindade, E.B.; Jordão-Junior, A.A.; Frode, T.S. Roux-en-Y bypass gastroplasty: Markers of oxidative stress 6 months after surgery. Obes. Surg. 2010, 20, 1236–1244. [Google Scholar] [CrossRef]
- Dadalt, C.; Fagundes, R.L.; Moreira, E.A.; Wilhelm-Filho, D.; de Freitas, M.B.; Jordao Junior, A.A.; Biscaro, F.; Pedrosa, R.C.; Vannucchi, H. Oxidative stress markers in adults 2 years after Roux-en-Y gastric bypass. Eur. J. Gastroenterol. Hepatol. 2013, 25, 580–586. [Google Scholar] [CrossRef]
- da Silva, V.R.; Moreira, E.A.; Wilhelm-Filho, D.; Miranda, J.X.; Benica, J.P.; Vigil, V.G.; Moratelli, M.B.; Garlet, T.R.; de Souza, M.S.; Vannucchi, H.; et al. Proinflammatory and oxidative stress markers in patients submitted to Roux-en-Y gastric by pass after 1 year of follow-up. Eur. J. Clin. Nutr. 2012, 66, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Archer, N.; Shaw, J.; Cochet-Broch, M.; Bunch, R.; Poelman, A.; Badendse, W.; Duesing, K. Obesity is associated with altered gene expression in human taste buds. Int. J. Obes. 2019, 43, 1475–1484. [Google Scholar] [CrossRef]
- Metere, A.; Graves, C.E. Factors Influencing Epigenetic Mechanisms: Is There A Role for Bariatric Surgery? High Throughput 2020, 9, 6. [Google Scholar] [CrossRef]
- Brunelli, D.T.; Boldrini, V.O.; Bonfante, I.L.P.; Duft, R.G.; Mateus, K.; Costa, L.; Chacon-Mikahil, M.P.T.; Teixeira, A.M.; Farias, A.S.; Cavaglieri, C.R. Obesity Increases Gene Expression of Markers Associated with Immunosenescence in Obese Middle-Aged Individuals. Front. Immunol. 2022, 12, 806400. [Google Scholar] [CrossRef] [PubMed]
- Silveira, M.A.D.; Marcondesa, J.P.C.; Lara, J.R.; Scarano, W.; Calderón, I.M.P.; Rudge, M.V.C.; Salvadori, D.M.F. Mitochondrial-related gene associated to obesity can be modulated by in utero hyperglycemic environment. Reprod. Toxicol. 2019, 85, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, A.G.; Crujeiras, A.B. Obesity-Related Epigenetic Changes after Bariatric Surgery. Front. Endocrinol. 2019, 10, 232. [Google Scholar] [CrossRef] [PubMed]
- Fraszczyk, E.; Luijten, M.; Spijkerman, A.M.W.; Snieder, H.; Wackers, P.F.K.; Bloks, V.W.; Nicoletti, C.F.; Nonino, C.B.; Crujeiras, A.B.; Buurman, W.A.; et al. The Jana effects of bariatric surgery on clinical profile DNA methylation and ageing in severely obese patients. Clin. Epigenet. 2020, 12, 14. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, E.K.; Ernst, B.; Voisin, S.; Almén, M.S.; Benedict, C.; Mwinyi, J.; Fredriksson, R.; Schultes, B.; Schiöth, H.B. Roux-en-Y gastric bypass surgery induces genome-wide promoter-specific changes in DNA methylation in whole blood of obese patients. PLoS ONE 2015, 10, e0115186. [Google Scholar] [CrossRef] [PubMed]
- Barres, R.; Kirchner, H.; Rasmussen, M.; Yan, J.; Kantor, F.R.; Krook, A.; Naslund, E.; Zierath, J.R. Weight loss after gastric bypass surgery in human obesity remodels promoter methylation. Cell Rep. 2013, 3, 1020–1027. [Google Scholar] [CrossRef] [PubMed]
- Liang, H. Ward WFPGC-1: A key regulator of energy metabolism. Adv. Physiol. Educ. 2006, 30, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Townsend, L.K.; Weber, A.J.; Barbeau, P.A.; Holloway, G.P.; Wright, D.C. Reactive oxygen species-dependent regulation of pyruvate dehydrogenase kinase-4 in white adipose tissue. Am. J. Physiol. Cell Physiol. 2020, 318, C137–C149. [Google Scholar] [CrossRef] [PubMed]
- Leclerc, D.; Pham, D.N.; Levesque, N.; Truongcao, M.; Foulkes, W.D.; Sapienza, C.; Rosen, R. Oncogenic role of PDK4in human colon cancer cells. Br. J. Cancer 2017, 116, 930–936. [Google Scholar] [CrossRef]
- Oberhuber, M.; Pecoraro, M.; Rusz, M.; Oberhuber, G.; Wieselberg, M.; Haslinger, P.; Gurnhofer, E.; Schlederer, M.; LImberger, T.; Lagger, S.; et al. STAT3-dependent analysis reveals PDK4 as independent predictor of recurrence in prostate cancer. Mol. Syst. Biol. 2020, 16, e9247. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, Y.; Suo, J. Increased Expression of PDK4W as Displayed in Gastric Cancer and Exhibited an Association with Glucose Metabolism. Front. Genet. 2021, 12, 689585. [Google Scholar]
- Kirchner, H.; Nylen, C.; Laber, S.; Barres, R.; Yan, J.; Krook, A.; Zierath, J.R.; Naslund, E. Altered promoter methylation of PDK4IL1BIL6 and TNF after Roux-en-Y gastric bypass. Surg. Obes. Relat. Dis. 2014, 10, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, C.F.; Nonino, C.B.; De Oliveira, B.A.; Pinhel, M.A.; Mansego, M.L.; Milagro, F.I.; Zulet, M.A.; Martinez, J.A. DNA methylation and hydroxymethylation levels in relation to two weight loss strategies: Energy-restricted diet or bariatric surgery. Obes. Surg. 2016, 26, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Macias-Gonzalez, M.; Martin-Nunez, G.M.; Garrido-Sanchez, L.; Garcia-Fuentes, E.; Tinahones, F.J.; Morcillo, S. Decreased blood pressure is related to changes in NF-kB promoter methylation levels after bariatric surgery. Surg. Obes. Relat. Dis. 2018, 14, 1327–1334. [Google Scholar] [CrossRef] [PubMed]
- Cerqueira, E.M.; Gomes-Filho, I.S.; Trindade, S.; Lopes, M.A.; Passos, J.S.; Machado-Santelli, G.M. Genetic damage in exfoliated cells from oral mucosa of individuals exposed to X-rays during panoramic dental radiographies. Mutat. Res. 2004, 562, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Civera, M.; Urios, A.; Garcia-Torres, M.L.; Ortega, J.; Martinez-Valls, J.; Cassinello, N.; del Olmo, J.A.; Ferrandez, A.; Rodrigo, J.M.; Montoliu, C. Relationship between insulin resistance, inflammation and liver cell apoptosis in patients with severe obesity. Diabetes Metab. Res. Rev. 2010, 26, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, S.; Zhang, G.; Zhong, M.; Liu, T.; Wei, M.; Wu, D.; Huang, X.; Cheng, Y.; Wu, Q.; et al. Bariatric Surgery Ameliorates Diabetic Cardiac Dysfunction by Inhibiting ER Stress in a Diabetic Rat Model. Obes. Surg. 2017, 27, 1324–1334. [Google Scholar] [CrossRef] [PubMed]
- Keshava, H.B.; Mowla, A.; Heinberg, L.J.; Schauer, P.R.; Brethauer, S.A.; Aminian, A. Bariatric surgery may reduce the risk of Alzheimer’s diseases through GLP-1 mediated neuroprotective effects. Med. Hypotheses 2017, 104, 4–9. [Google Scholar] [CrossRef]
- Alfayez, O.M.; Almohammed, O.A.; Alkhezi, O.S.; Almutairi, A.R.; Al Yami, M.S. Indirect comparison of glucagon like peptide-1 receptor agonists regarding cardiovascular safety and mortality in patients with type 2 diabetes mellitus: Network meta-analysis. Cardiovasc. Diabetol. 2020, 19, 96. [Google Scholar] [CrossRef]
- Alkhezi, O.S.; Alahmed, A.A.; Alfayez, O.M.; Alzuman, O.A.; Almutairi, A.R.; Almohammed, O.A. Comparative effectiveness of glucagon-like peptide-1 receptor agonists for the management of obesity in adults without diabetes: A network meta-analysis of randomized clinical trials. Obes. Rev. 2022, 29, e13543. [Google Scholar] [CrossRef]
- González-Plaza, J.J.; Gutiérrez-Repiso, C.; García-Serrano, S.; Rodriguez-Pacheco, F.; Garrido-Sánchez, L.; Santiago-Fernández, C.; García-Arnés, J.; Moreno-Ruiz, F.J.; Rodríguez-Cañete, A.; García-Fuentes, E. Effect of Roux-en-Y gastric bypass-induced weight loss on the transcriptomic profiling of subcutaneous adipose tissue. Surg. Obes. Relat. Dis. 2016, 12, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Feng, X.; Zhong, S.; Wang, Y.; Liu, J. Gastric bypass surgery may improve beta cell apoptosis with ghrelin overexpression in patients with BMI ≥ 325 kg/m2. Obes. Surg. 2014, 24, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Ezquerro, S.; Mocha, F.; Frühbeck, G.; Guzmán-Ruiz, R.; Valentí, V.; Mugueta, C.; Becerril, S.; Catalán, V.; Gómez-Ambrosi, J.; Silva, C.; et al. Ghrelin Reduces TNF-α-Induced Human Hepatocyte Apoptosis, Autophagy, and Pyroptosis: Role in Obesity-Associated NAFLD. J. Clin. Endocrinol. Metab. 2019, 104, 21–37. [Google Scholar] [CrossRef] [PubMed]
Author(s) | Casuistics (n) | Surgical Procedure | Time of Evaluation | Main Biochemical and Molecular Findings after Bariatric Surgery |
---|---|---|---|---|
Perri et al. [35] | 23 | Sleeve-gastrectomy | 3 months after surgery |
|
Carmona-Maurici et al. [38] | 24 | Roux-en-Y gastric bypass or sleeve-gastrectomy | 12 months after surgery |
|
Min et al. [39] | 19 | Sleeve gastrectomy, biliopancreatic diversion, Roux-en-Y gastric bypass, and laparoscopic adjustable gastric banding | 1, 6 and 48 months after surgery |
|
Choromańska et al. [42] | 40 | Laparoscopic adjustable gastric band | 36 months after surgery |
|
Choromańska et al. [43] | 65 | Sleeve gastrectomy. | 1, 3, 6, and 12 months after surgery |
|
Fariello et al. [44] | 15 | Roux-en-Y gastric bypass | 12 months after surgery |
|
Carlsson et al. [46] | 356 | Roux-en-Y gastric bypass surgery | 12 months after surgery |
|
Picu et al. [50] | 41 | Sleeve gastrectomy | 6 and 12 months after surgery |
|
Metere et al. [51] | 20 | Sleeve gastrectomy | 1, 3, 6, and 12 months after surgery |
|
Katsogiannos et al. [55] | 34 ng | Roux-en-Y gastric bypass (RYGB) | 6 months after surgery |
|
Jouan et al. [58] | 87 | Gastric bypasses, or sleeve gastrectomy | 12 months after surgery |
|
Bankoglu et al. [74] | 56 | Not informed | 6 and 12 months after surgery |
|
Fraszczyk et al. [84] | 40 | Roux and Y Gastric Bypass | 3, 6, and 12 months after surgery. |
|
Lap | ||||
Biliopancreatic diversion | ||||
Gastric sleeve | ||||
Ezquerro et al. [103] | 30 | Roux-en-Y gastric bypass | 6 months after surgery |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, D.A.; da Silva, G.N.; Malacarne, I.T.; Pisani, L.P.; Salvadori, D.M.F. Oxidative Stress Responses in Obese Individuals Undergoing Bariatric Surgery: Impact on Carcinogenesis. Pathophysiology 2024, 31, 352-366. https://doi.org/10.3390/pathophysiology31030026
Ribeiro DA, da Silva GN, Malacarne IT, Pisani LP, Salvadori DMF. Oxidative Stress Responses in Obese Individuals Undergoing Bariatric Surgery: Impact on Carcinogenesis. Pathophysiology. 2024; 31(3):352-366. https://doi.org/10.3390/pathophysiology31030026
Chicago/Turabian StyleRibeiro, Daniel Araki, Glenda Nicioli da Silva, Ingra Tais Malacarne, Luciana Pellegrini Pisani, and Daisy Maria Favero Salvadori. 2024. "Oxidative Stress Responses in Obese Individuals Undergoing Bariatric Surgery: Impact on Carcinogenesis" Pathophysiology 31, no. 3: 352-366. https://doi.org/10.3390/pathophysiology31030026
APA StyleRibeiro, D. A., da Silva, G. N., Malacarne, I. T., Pisani, L. P., & Salvadori, D. M. F. (2024). Oxidative Stress Responses in Obese Individuals Undergoing Bariatric Surgery: Impact on Carcinogenesis. Pathophysiology, 31(3), 352-366. https://doi.org/10.3390/pathophysiology31030026