Perspectives on Outpatient Delivery of Bispecific T-Cell Engager Therapies for Multiple Myeloma
Abstract
:1. Introduction
2. Efficacity and Safety of Bispecific T-Cell Engager Therapies in Multiple Myeloma
2.1. Teclistamab
2.2. Elranatamab
2.3. Talquetamab
3. Administration of T-Cell Engagers
3.1. Outpatient Bispecific T-Cell Engager Administration
3.2. Mitigation of Cytokine Release Syndrome Risk
4. Toxicity Management
4.1. Cytokine Release Syndrome
4.2. Immune Effector Cell-Associated Neurotoxicity Syndrome
4.3. Infections
4.4. Cytopenias
4.5. Other Complications
5. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASTCT | American Society for Transplantation and Cellular Therapy |
CMV | Cytomegalovirus |
CR | Complete response |
DoR | Duration of response |
EBV | Epstein–Barr virus |
EEG | Electroencephalogram |
EMA | European Medicines Agency |
FDA | US Food and Drug Administration |
HBV | Hepatitis B virus |
HCV | Hepatitis C virus |
HHV6 | Human herpes virus 6 |
HSV | Herpes simplex virus |
ICANS | Immune effector cell-associated neurotoxicity syndrome |
ICE | Immune effector cell-associated encephalopathy |
IMiD | Immunomodulator |
IVIG | Intravenous immunoglobulins |
MM | Multiple myeloma |
MoAb | Monoclonal antibody |
MRD | Minimal residual disease |
ORR | Overall response rate |
OS | Overall survival |
PI | Proteasome inhibitor |
PJP | Pneumocystis jirovecii |
PR | Partial response |
RRMM | Relapsed or refractory multiple myeloma |
TCE | T-cell engager |
VZV | Herpes zoster virus |
Appendix A
Eligibility Criteria for the Virtual Ward | ||
---|---|---|
Potential User Criteria | ||
YES | NO | |
1. Subjects starting a treatment with a T-cell redirected therapy | ◯ | ◯ |
2. Subjects residing or hosted in the territory of the delivering hospital and with the possibility of traveling to the designated site in less than an hour | ◯ | ◯ |
3. Presence of a caregiver 24/7 during the step-up dosing, including the stay in virtual care ward | ◯ | ◯ |
4. User is able to move independently by walking without support or with an assistive device | ◯ | ◯ |
5. User and/or the caregiver reads and understands language used for communication | ◯ | ◯ |
6. If needed, the caregiver is able to assist with communication between the user and the healthcare team | ◯ | ◯ |
7. User is able to follow and adhere to the healthcare team’s instructions, including self-administration of medications | ◯ | ◯ |
8. User and caregiver’s proficiency with devices enabling home hospitalization (including cellphones, tablets, and punctual monitoring device) | ◯ | ◯ |
9. No anticipated infections or severe complications during the medical course or assessment | ◯ | ◯ |
10. No drug or alcohol abuse by the user and the caregiver | ◯ | ◯ |
11. User has given their consent | ◯ | ◯ |
Criteria for Admission to Hospital From Virtual Ward | ||
---|---|---|
Criteria for Admission | ||
YES | NO | |
General condition deteriorating (clinical judgment) | ◯ | ◯ |
New episode of fever | ◯ | ◯ |
Hypotension or desaturation | ◯ | ◯ |
Side effects of a medication requiring readmission | ◯ | ◯ |
Neurotoxicity | ◯ | ◯ |
Biological blood abnormalities | ◯ | ◯ |
Transfusion needs, IV electrolytes, medical evaluation | ◯ | ◯ |
Other: | ◯ | ◯ |
Criteria for Virtual Ward Discharge | ||
---|---|---|
Criteria for Discharge | ||
YES | NO | |
48 h post-administration of day 8 cycle 1 | ◯ | ◯ |
Afebrile for at least 48 h | ◯ | ◯ |
No hypotension or desaturation or confusion | ◯ | ◯ |
No need for blood test within 72 h | ◯ | ◯ |
No anticipated need for transfusion for 7 days | ◯ | ◯ |
Appendix B
Orientation | 4 points |
Knows the year | 1 point |
Knows the month | 1 point |
Knows the city | 1 point |
Knows the name of the hospital | 1 point |
Obeys a simple command | 1 point |
Can write a legible sentence | 1 point |
Can identify three objects | 3 points (1 point each) |
Can count backwards from 100 by 10 s | 1 point |
References
- Ferlay, J.E.M.; Lam, F.; Laversanne, M.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Today. Available online: https://gco.iarc.who.int/today (accessed on 29 March 2025).
- Gandhi, U.H.; Cornell, R.F.; Lakshman, A.; Gahvari, Z.J.; McGehee, E.; Jagosky, M.H.; Gupta, R.; Varnado, W.; Fiala, M.A.; Chhabra, S.; et al. Outcomes of patients with multiple myeloma refractory to CD38-targeted monoclonal antibody therapy. Leukemia 2019, 33, 2266–2275. [Google Scholar] [CrossRef]
- Mateos, M.-V.; Weisel, K.; De Stefano, V.; Goldschmidt, H.; Delforge, M.; Mohty, M.; Cavo, M.; Vij, R.; Lindsey-Hill, J.; Dytfeld, D.; et al. LocoMMotion: A prospective, non-interventional, multinational study of real-life current standards of care in patients with relapsed and/or refractory multiple myeloma. Leukemia 2022, 36, 1371–1376. [Google Scholar] [CrossRef]
- Visram, A.; De La Torre, A.; White, D.; Kardjadj, M.; Masih-Khan, E.; Chu, M.P.; Jimenez-Zepeda, V.H.; McCurdy, A.; Leblanc, R.; Song, K.; et al. Real World Data on Outcomes of Anti-CD38 Antibody Refractory, Including Triple Class Refractory, Patients with Multiple Myeloma: A Multi-Institutional Report from the Canadian Myeloma Research Group (CMRG) Database. Blood 2022, 140, 4287–4289. [Google Scholar] [CrossRef]
- Hosny, M.; Verkleij, C.P.M.; Van Der Schans, J.; Frerichs, K.A.; Mutis, T.; Zweegman, S.; Van De Donk, N.W.C.J. Current State of the Art and Prospects of T Cell-Redirecting Bispecific Antibodies in Multiple Myeloma. J. Clin. Med. 2021, 10, 4593. [Google Scholar] [CrossRef]
- Cho, S.-F.; Yeh, T.-J.; Anderson, K.C.; Tai, Y.-T. Bispecific antibodies in multiple myeloma treatment: A journey in progress. Front. Oncol. 2022, 12, 1032775. [Google Scholar] [CrossRef] [PubMed]
- Caraccio, C.; Krishna, S.; Phillips, D.J.; Schürch, C.M. Bispecific Antibodies for Multiple Myeloma: A Review of Targets, Drugs, Clinical Trials, and Future Directions. Front. Immunol. 2020, 11, 501. [Google Scholar] [CrossRef]
- Lancman, G.; Parsa, K.; Kotlarz, K.; Avery, L.; Lurie, A.; Lieberman-Cribbin, A.; Cho, H.J.; Parekh, S.S.; Richard, S.; Richter, J.; et al. IVIg Use Associated with Ten-Fold Reduction of Serious Infections in Multiple Myeloma Patients Treated with Anti-BCMA Bispecific Antibodies. Blood Cancer Discov. 2023, 4, 440–451. [Google Scholar] [CrossRef]
- Lee, L.; Bounds, D.; Paterson, J.; Herledan, G.; Sully, K.; Seestaller-Wehr, L.M.; Fieles, W.E.; Tunstead, J.; McCahon, L.; Germaschewski, F.M.; et al. Evaluation of B cell maturation antigen as a target for antibody drug conjugate mediated cytotoxicity in multiple myeloma. Br. J. Haematol. 2016, 174, 911–922. [Google Scholar] [CrossRef]
- Pillarisetti, K.; Edavettal, S.; Mendonça, M.; Li, Y.; Tornetta, M.; Babich, A.; Majewski, N.; Husovsky, M.; Reeves, D.; Walsh, E.; et al. A T-cell–redirecting bispecific G-protein–coupled receptor class 5 member D x CD3 antibody to treat multiple myeloma. Blood 2020, 135, 1232–1243. [Google Scholar] [CrossRef]
- Elkins, K.; Zheng, B.; Go, M.; Slaga, D.; Du, C.; Scales, S.J.; Yu, S.-F.; McBride, J.; De Tute, R.; Rawstron, A.; et al. FcRL5 as a Target of Antibody–Drug Conjugates for the Treatment of Multiple Myeloma. Mol. Cancer Ther. 2012, 11, 2222–2232. [Google Scholar] [CrossRef]
- Wang, L.; Li, L.-R.; Young, K.H. New agents and regimens for diffuse large B cell lymphoma. J. Hematol. Oncol. 2020, 13, 175. [Google Scholar] [CrossRef] [PubMed]
- Moreau, P.; Garfall, A.L.; Van De Donk, N.W.C.J.; Nahi, H.; San-Miguel, J.F.; Oriol, A.; Nooka, A.K.; Martin, T.; Rosinol, L.; Chari, A.; et al. Teclistamab in Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2022, 387, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Tomasson, M.H.; Iida, S.; Niesvizky, R.; Mohty, M.; Bahlis, N.J.; Martinez-Lopez, J.; Koehne, G.; Rodriguez-Otero, P.; Miles Prince, H.; Viqueira, A.; et al. Long-term survival and safety of elranatamab in patients with relapsed or refractory multiple myeloma: Update from the MagnetisMM-3 study. HemaSphere 2024, 8, e136. [Google Scholar] [CrossRef]
- Bahlis, N.J.; Costello, C.L.; Raje, N.S.; Levy, M.Y.; Dholaria, B.; Solh, M.; Tomasson, M.H.; Damore, M.A.; Jiang, S.; Basu, C.; et al. Elranatamab in relapsed or refractory multiple myeloma: The MagnetisMM-1 phase 1 trial. Nat. Med. 2023, 29, 2570–2576. [Google Scholar] [CrossRef] [PubMed]
- Lesokhin, A.M.; Tomasson, M.H.; Arnulf, B.; Bahlis, N.J.; Miles Prince, H.; Niesvizky, R.; Rodrίguez-Otero, P.; Martinez-Lopez, J.; Koehne, G.; Touzeau, C.; et al. Elranatamab in relapsed or refractory multiple myeloma: Phase 2 MagnetisMM-3 trial results. Nat. Med. 2023, 29, 2259–2267. [Google Scholar] [CrossRef]
- Chari, A.; Minnema, M.C.; Berdeja, J.G.; Oriol, A.; Van De Donk, N.W.C.J.; Rodríguez-Otero, P.; Askari, E.; Mateos, M.-V.; Costa, L.J.; Caers, J.; et al. Talquetamab, a T-Cell–Redirecting GPRC5D Bispecific Antibody for Multiple Myeloma. N. Engl. J. Med. 2022, 387, 2232–2244. [Google Scholar] [CrossRef]
- Schinke, C.D.; Touzeau, C.; Minnema, M.C.; Van De Donk, N.W.C.J.; Rodríguez-Otero, P.; Mateos, M.-V.; Rasche, L.; Ye, J.C.; Vishwamitra, D.; Ma, X.; et al. Pivotal phase 2 MonumenTAL-1 results of talquetamab (tal), a GPRC5DxCD3 bispecific antibody (BsAb), for relapsed/refractory multiple myeloma (RRMM). J. Clin. Oncol. 2023, 41, 8036. [Google Scholar] [CrossRef]
- Usmani, S.Z.; Karlin, L.; Benboubker, L.; Nahi, H.; San-Miguel, J.; Trancucci, D.; Qi, K.; Stephenson, T.; Perales-Puchalt, A.; Chastain, K.; et al. Durability of responses with biweekly dosing of teclistamab in patients with relapsed/refractory multiple myeloma achieving a clinical response in the majesTEC-1 study. J. Clin. Oncol. 2023, 41, 8034. [Google Scholar] [CrossRef]
- Sandahl, T.B.; Soefje, S.A.; Fonseca, R.; Ailawadhi, S.; Parrondo, R.; Lin, D.; Wu, B.; Calay, E.S.; Silvert, E.; Kim, N.; et al. Real-World Safety and Health Care Resource Utilization of Teclistamab Under an Outpatient Model for Step-Up Dosing Administration. JCO Oncol. Pract. 2024, OP-24-00489. [Google Scholar] [CrossRef]
- Korst, C.; Groen, K.; Bosman, P.W.C.; van der Valk, F.; Verkleij, C.P.M.; Kruyswijk, S.; de Ruijter, M.E.M.; Heijink, D.M.; Kuipers, M.T.; Zweegman, S.; et al. Prophylactic tocilizumab reduces the incidence of cytokine release syndrome in relapsed/refractory myeloma patients treated with teclistamab: Implications for outpatient step-up dosing. Hemasphere 2024, 8, e132. [Google Scholar] [CrossRef]
- Shimabukuro-Vornhagen, A.; Gödel, P.; Subklewe, M.; Stemmler, H.J.; Schlößer, H.A.; Schlaak, M.; Kochanek, M.; Böll, B.; Von Bergwelt-Baildon, M.S. Cytokine release syndrome. J. Immunother. Cancer 2018, 6, 56. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.W.; Santomasso, B.D.; Locke, F.L.; Ghobadi, A.; Turtle, C.J.; Brudno, J.N.; Maus, M.V.; Park, J.H.; Mead, E.; Pavletic, S.; et al. ASTCT Consensus Grading for Cytokine Release Syndrome and Neurologic Toxicity Associated with Immune Effector Cells. Biol. Blood Marrow Transplant. 2019, 25, 625–638. [Google Scholar] [CrossRef] [PubMed]
- Martin, T.G.; Mateos, M.V.; Nooka, A.; Banerjee, A.; Kobos, R.; Pei, L.; Qi, M.; Verona, R.; Doyle, M.; Smit, J.; et al. Detailed overview of incidence and management of cytokine release syndrome observed with teclistamab in the MajesTEC-1 study of patients with relapsed/refractory multiple myeloma. Cancer 2023, 129, 2035–2046. [Google Scholar] [CrossRef]
- Khanam, R.; Faiman, B.; Batool, S.; Najmuddin, M.M.; Usman, R.; Kuriakose, K.; Ahmed, A.; Rehman, M.E.U.; Roksana, Z.; Syed, Z.; et al. Management of Adverse Reactions for BCMA-Directed Therapy in Relapsed Multiple Myeloma: A Focused Review. J. Clin. Med. 2023, 12, 5539. [Google Scholar] [CrossRef]
- Rodriguez-Otero, P.; Usmani, S.; Cohen, A.D.; Van De Donk, N.W.C.J.; Leleu, X.; Pérez-Larraya, J.G.; Manier, S.; Nooka, A.K.; Mateos, M.V.; Einsele, H.; et al. International Myeloma Working Group immunotherapy committee consensus guidelines and recommendations for optimal use of T-cell-engaging bispecific antibodies in multiple myeloma. Lancet Oncol. 2024, 25, e205–e216. [Google Scholar] [CrossRef] [PubMed]
- Gazeau, N.; Liang, E.C.; Wu, Q.V.; Voutsinas, J.M.; Barba, P.; Iacoboni, G.; Kwon, M.; Ortega, J.L.R.; López-Corral, L.; Hernani, R.; et al. Anakinra for Refractory Cytokine Release Syndrome or Immune Effector Cell-Associated Neurotoxicity Syndrome after Chimeric Antigen Receptor T Cell Therapy. Transpl. Cell Ther. 2023, 29, 430–437. [Google Scholar] [CrossRef]
- Jatiani, S.S.; Aleman, A.; Madduri, D.; Chari, A.; Cho, H.J.; Richard, S.; Richter, J.; Brody, J.; Jagannath, S.; Parekh, S. Myeloma CAR-T CRS Management With IL-1R Antagonist Anakinra. Clin. Lymphoma Myeloma Leuk. 2020, 20, 632–636.e1. [Google Scholar] [CrossRef]
- Frerichs, K.A.; Verkleij, C.P.M.; Mateos, M.V.; Martin, T.G.; Rodriguez, C.; Nooka, A.; Banerjee, A.; Chastain, K.; Perales-Puchalt, A.; Stephenson, T.; et al. Teclistamab impairs humoral immunity in patients with heavily pretreated myeloma: Importance of immunoglobulin supplementation. Blood Adv. 2024, 8, 194–206. [Google Scholar] [CrossRef]
- Nooka, A.K.; Rodriguez, C.; Mateos, M.V.; Manier, S.; Chastain, K.; Banerjee, A.; Kobos, R.; Qi, K.; Verona, R.; Doyle, M.; et al. Incidence, timing, and management of infections in patients receiving teclistamab for the treatment of relapsed/refractory multiple myeloma in the MajesTEC-1 study. Cancer 2024, 130, 886–900. [Google Scholar] [CrossRef]
- Raje, N.; Anderson, K.; Einsele, H.; Efebera, Y.; Gay, F.; Hammond, S.P.; Lesokhin, A.M.; Lonial, S.; Ludwig, H.; Moreau, P.; et al. Monitoring, prophylaxis, and treatment of infections in patients with MM receiving bispecific antibody therapy: Consensus recommendations from an expert panel. Blood Cancer J. 2023, 13, 116. [Google Scholar] [CrossRef]
- Ludwig, H.; Terpos, E.; Van De Donk, N.; Mateos, M.-V.; Moreau, P.; Dimopoulos, M.-A.; Delforge, M.; Rodriguez-Otero, P.; San-Miguel, J.; Yong, K.; et al. Prevention and management of adverse events during treatment with bispecific antibodies and CAR T cells in multiple myeloma: A consensus report of the European Myeloma Network. Lancet Oncol. 2023, 24, e255–e269. [Google Scholar] [CrossRef] [PubMed]
- Kamboj, M.; Bohlke, K.; Baptiste, D.M.; Dunleavy, K.; Fueger, A.; Jones, L.; Kelkar, A.H.; Law, L.Y.; Lefebvre, K.B.; Ljungman, P.; et al. Vaccination of Adults With Cancer: ASCO Guideline. J. Clin. Oncol. 2024, 42, 1699–1721. [Google Scholar] [CrossRef]
- Goldsmith, R.; Cornax, I.; Ma, J.Y.; Yao, X.; Peng, P.; Carreira, V. P-095: Normal human tissue expression of G-protein coupled receptor 5D (GPRC5D), a promising novel target for Multiple Myeloma, is restricted to plasma cells and hard keratinized tissues. Clin. Lymphoma Myeloma Leuk. 2021, 21, S91. [Google Scholar] [CrossRef]
- Lery, M.; Perrot, A.; Ortiz-Brugués, A.; Vigarios, E.; Anghel, D.; Bories, P.; Sibaud, V. Dermatological toxicities induced by T-cell-redirecting G protein-coupled receptor family C class 5 member D bispecific antibody talquetamab. J. Am. Acad. Dermatol. 2024, 90, 376–377. [Google Scholar] [CrossRef]
- Narayan, N.; Williams, B.; Lipe, B.; De Benedetto, A. Onychomadesis and palmoplantar keratoderma associated with talquetamab therapy for relapsed and refractory multiple myeloma. JAAD Case Rep. 2023, 31, 66–68. [Google Scholar] [CrossRef]
- Laheij, A.M.G.A.; Van De Donk, N.W.C.J. Characterization of dysgeusia and xerostomia in patients with multiple myeloma treated with the T-cell redirecting GPRC5D bispecific antibody talquetamab. Support. Care Cancer 2024, 32, 20. [Google Scholar] [CrossRef]
- Chari, A.; Oriol, A.; Krishnan, A.; Martinez Chamorro, M.D.C.; Costa, L.; Mateos, M.V.; Minnema, M.C.; Campagna, M.; Masterson, T.J.; Hilder, B.W.; et al. Efficacy and Safety of Less Frequent/Lower Intensity Dosing of Talquetamab in Patients with Relapsed/Refractory Multiple Myeloma: Results from the Phase 1/2 MonumenTAL-1 Study. Blood 2023, 142, 1010. [Google Scholar] [CrossRef]
Cycle, Day | Teclistamab (mg/kg) | Elranatamab (mg) | Talquetamab (mg/kg) |
---|---|---|---|
C1D1 † | 0.06 | 12 | 0.01 |
C1D3 † | 0.3 | 32 | 0.06 |
C1D5 | 1.5 | - | 0.4 |
C1D7 | - | 76 | - |
Cycle 2+ | 1.5 q 1 week * | C2-C24: 76 q 1 weeks C25 et +: 76 q 2 weeks ** | 0.4 q 1 week OR D10 onwards: 0.8 q 2 weeks |
Grade 1 | Grade 2 | Grade 3 | Grade 4 | |
---|---|---|---|---|
Criteria | Fever ≥ 38 °C WITHOUT hypotension AND hypoxia | Fever ≥ 38 °C WITH hypotension not requiring vasopressors AND/OR hypoxia requiring ≤6 L/min O2 | Fever ≥ 38 °C WITH hypotension requiring a vasopressor AND/OR hypoxia requiring >6 L/min O2 | Fever ≥ 38 °C WITH hypotension requiring multiple vasopressors AND/OR hypoxia requiring positive pressure (CPAP, BiPAP, or mechanical ventilation) |
Investigations and non-pharmaceutical | Blood cultures, chest X-ray, and urinalysis If outpatient, consider patient admission | Consider intensive care unit transfer Blood cultures, chest X-ray, and urine analysis Close monitoring of ferritin, fibrinogen, and INR Vital signs q 2–4 h Continuous cardiac monitoring | Intensive care unit transfer Hemocultures, chest X-ray, and urine analysis Close monitoring of ferritin, fibrinogen, and INR Serial vital signs Continuous cardiac monitoring | Intensive care unit transfer Hemocultures, pulmonary X-ray, and urine analysis Close monitoring of ferritin, fibrinogen, and INR Serial vital signs Continuous cardiac monitoring |
Treatment | Supportive care (acetaminophen, broad spectrum antibiotics if neutropenic, IV fluids) Consider one dose of Tocilizumab 8 mg/kg IV or dexamethasone 10 mg if grade 1 or if fever persists for >24–48 h | Supportive care (acetaminophen, antibiotics, IV fluids) Tocilizumab 8 mg/kg IV and repeat q 8 h if no improvement (max. three doses) If no improvement, consider adding dexamethasone 10 mg IV q 6 h and/or anakinra 100 mg SC/IV q 12 h | Supportive care (acetaminophen, antibiotics, IV fluids, vasopressor) Tocilizumab 8 mg/kg IV and repeat q 8 h if (max. three doses) AND dexamethasone 10 mg IV q 6 h with anakinra 100 mg SC/IV q 12 h | Supportive care (acetaminophen, antibiotics, IV fluids, vasopressors) Tocilizumab 8 mg/kg IV and repeat q 8 h if (max. three doses) AND methylprednisolone 1000 mg IV DIE with anakinra 100 mg SC/IV q 12 h |
Grade 1 | Grade 2 | Grade 3 | Grade 4 | |
---|---|---|---|---|
Criteria | ICE 7–9 Spontaneous awakening | ICE 3–6 Awakening on verbal stimulation | ICE 0–2 OR any clinical seizures, focal or generalized, that resolve rapidly OR non-convulsive seizures on EEG that resolve with intervention OR focal/local edema on neuroimaging | Unconscious patient OR life-threatening prolonged seizures (>5 min) OR status epilepticus OR deep focal motor weakness OR diffuse cerebral edema on neuroimaging or clinical sign of elevated intracranial pressure |
Investigations and non-pharmaceutical | ICE score and neuro signs q 4 h Evaluate and treat for other causes of AMS Delirium precautions | ICE score and neuro signs q 2–4 h Consider neurology consultation Evaluate and treat for other causes of AMS Delirium precautions Perform CT and consider MRI if not done in previous 24 h Consider EEG | ICE score and neuro signs q 2 h Intensive care unit transfer Evaluate and treat for other causes of AMS Delirium precautions Neurology consultation Perform CT and MRI imaging if not done in previous 24 h Consider EEG Consider lumbar puncture with pressure measurement | ICE score and neuro signs q 1 h Intensive care unit transfer Evaluate and treat for other causes of AMS Delirium precautions Neurology consultation Perform CT and MRI imaging if not done in previous 24 h Consider continuous EEG Consider lumbar puncture with pressure measurement |
Treatment | Consider dexamethasone 10 mg IV × 1 Consider adding levetiracetam 500 mg PO BID for prophylaxis | Dexamethasone 10 mg IV q 6–12 h Levetiracetam 500 mg PO BID | Dexamethasone 10 mg IV q 6 h, if no improvement after 24 h, consider 20 mg IV q 6 h or methylprednisolone 1000 mg/kg IV q 12–24 h with anakinra 100 mg SC/IV q 12 h Levetiracetam 500 mg PO BID | Dexamethasone 10 mg IV q 6 h, if no improvement, consider high dose methylprednisolone 1000–2000 mg/kg IV q 12–24 h with anakinra 100 mg SC/IV q 12 h Levetiracetam 500 mg PO BID |
Indication | Agent | Duration | |
---|---|---|---|
Herpes simplex virus and varicella zoster virus | All patients | Valacyclovir 500 mg PO BID | Through treatment and until 6–12 months after the end |
Pneumocystis jirovecii | All patients | Trimethoprim-sulfamethoxazole 800–160 mg one CO three times a week OR Atovaquone 1500 mg PO daily OR Pentamidine 300 mg inhaled q 4 weeks | Through treatment and until 6–12 months after the end |
Bacterial | Optional, recommended if prolonged neutropenia, high infectious risk, or history of recurrent bacterial infections | Levofloxacin 500 mg PO daily OR Moxifloxacin 400 mg PO daily OR Doxycycline 200 mg PO daily | At least for the first 3 months of treatment and consider if persistent neutropenia or prolonged glucocorticoid use |
Fungal | Consider in all patients Initiate if prolonged neutropenia | Fluconazole 400 mg PO daily | Until resolution of neutropenia |
Immunoglobulins | Patients with IgG levels < 4 g/L | 400 mg/kg every 2–4 weeks | Through treatment |
G-CSF | Patients with neutrophils < 1.0 × 109/L | Filgrastim 300–480 mcg SC daily or weekly | Target neutrophils > 1.0 × 109/L |
Grade | Intervention | |
---|---|---|
Anemia | Grade 3 (hemoglobin < 80 g/L) or symptoms | Continue treatment Consider transfusion |
Neutropenia | Grade 3 (ANC 0.5–1.0 × 109/L) without fever | Continue treatment Consider G-CSF use until ANC > 1.0 × 109/L |
Grade 4 (ANC < 0.5 × 109/L) or febrile neutropenia | Hold treatment until ANC > 1.0 × 109/L Use G-CSF until ANC > 1.0 × 109/L Consider extending dosing interval if desired response is achieved and myeloma is in good control Consider prophylactic G-CSF when restarting medication | |
Thrombocytopenia | Grade 4 (platelets < 25,000) | Hold treatment until platelets > 50,000 |
Grade 3 (platelets 25,000–50,000) with bleeding |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pelland, A.-A.; Dumas, M.; Lemieux-Blanchard, É.; LeBlanc, R.; Côté, J.; Boudreault, J.-S.; Duquette, D.; Kaedbey, R.; Lalancette, M.; Larose, F.; et al. Perspectives on Outpatient Delivery of Bispecific T-Cell Engager Therapies for Multiple Myeloma. Curr. Oncol. 2025, 32, 238. https://doi.org/10.3390/curroncol32040238
Pelland A-A, Dumas M, Lemieux-Blanchard É, LeBlanc R, Côté J, Boudreault J-S, Duquette D, Kaedbey R, Lalancette M, Larose F, et al. Perspectives on Outpatient Delivery of Bispecific T-Cell Engager Therapies for Multiple Myeloma. Current Oncology. 2025; 32(4):238. https://doi.org/10.3390/curroncol32040238
Chicago/Turabian StylePelland, Andrée-Anne, Mathilde Dumas, Émilie Lemieux-Blanchard, Richard LeBlanc, Julie Côté, Jean-Samuel Boudreault, Dominic Duquette, Rayan Kaedbey, Marc Lalancette, Frédéric Larose, and et al. 2025. "Perspectives on Outpatient Delivery of Bispecific T-Cell Engager Therapies for Multiple Myeloma" Current Oncology 32, no. 4: 238. https://doi.org/10.3390/curroncol32040238
APA StylePelland, A.-A., Dumas, M., Lemieux-Blanchard, É., LeBlanc, R., Côté, J., Boudreault, J.-S., Duquette, D., Kaedbey, R., Lalancette, M., Larose, F., Nikonova, A., Pavic, M., Shamy, A., Roy, J., Sebag, M., Trudel, S., & Claveau, J.-S. (2025). Perspectives on Outpatient Delivery of Bispecific T-Cell Engager Therapies for Multiple Myeloma. Current Oncology, 32(4), 238. https://doi.org/10.3390/curroncol32040238