Is There (Still) a Place for Sequential Conditioning?
Abstract
:1. Introduction
2. Introduction of Sequential Conditioning
“Next-Generation” Sequential Conditioning Regimens
Authors | Patients | Cytoreduction—Conditioning | Underlying Disease | Disease Status | CR at D + 30 | OS | NRM | LFS/DFS—EFS—RFS—GRFS | Relapse | GvHD | Patients Receiving pDLI (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
Schmid et al. (2005) [18] | N = 75 Median age: 52.3 (range: (18.5–65.8)) | Original FLAMSA + RIC | AML, MDS |
| 88% | 42% at 2 years | 33% at 1 year | LFS at 2 years: 40% | n = 15 at a median of 149 days (range, 65–770 days) | aGvHD: n = 46 (61%) (G III n = 12, Grade IV n = 6) cGvHD: n = 26 (45%) (extensive n = 11) | n = 12 |
Mohty et al. (2017) [24] | N = 24 Median age: 47 (range: 20–57) | Clofarabine, cytarabine + RIC (Bu/Cy, ATG) | AML | Primary refractory | 75% | 38% at 2 years | 12% at 2 years | LFS at 2 years: 29% | 54.2% at 2 years | aGvHD: n = 4 (G III n = 1, Grade IV n = 0) cGvHD: n = 9 (extensive n = 4) | n = 6 (25) |
Bourgeois et al. (2020) [25] | N = 131 Median age: 52.6 (range: 18–71) | Clofarabine, cytarabine + RIC (Bu/Cy, ATG) | AML, MDS, MPN |
| 63% | 22% at 2 years | 35.1% at 2 years |
| 45.4% at 2 years | Grade II–IV aGvHD: 29.7% Grade III–IV aGvHD: 10.4% cGvHD: 21.4% Moderate/severe cGvHD: 6.2% | NM |
Zoellner et al. (2015) [27] | N = 16 Median age: 53 (range: 23–66) | Clofarabine + RIC (Flu/Cy/Mel) + PTCy | B- or T-cell Non-Hodgkin’s lymphoma |
| CR: n = 4 PR: n = 11 | 68.8% at 2 years | 18.75% at 1 year | PFS at 2 years: 50% | Unclear | aGvHD: n = 10 (G I n = 4, G II n = 5, G III n = 1) cGvHD: n = 4 (mild) | 0 |
Duléry et al. (2018) [26] | N = 72 Median age: 54 years (range: 16.5–72) | Thiotepa, etoposide, cyclophosphamide + RIC (Flu/Bu, ATG) ± PTCy | AML, ALL, MDS, MPN, CMML, lymphoma |
| 95.7% | 46.4% at 2 years AML patients: 41.5% at 2 years | 23.7% at 2 years AML patients: 15.9% at 2 years | EFS at 2 years: 38.9% GRFS at 2 years: 28.7% AML patients:
| At 2 years:
| Grade II–IV aGvHD: 23.6% Grade III–IV aGvHD: 13.9%
| n = 13 (18) |
Tischer et al. (2013) [28] | N = 18 Median age: 39 (range: 20–69) | Clofarabine + RIC (Flu/Cy) + Mel or Treo or Eto or TBI + PTCy | AML or ALL | Active disease:
| 77.8% | 55.5% at 1 year | 23% at 1 year | RFS at 1 year: 39% (95% CI, 18–60) | 44.4% at a median time of 5.6 months | aGvHD
| NM |
Fraccaroli et al. (2018) [29] | N = 33 Median age: 58 (range: 32–71) | FLAMSA + RIC (Flu/Cy +Mel or TBI4) + PTCy Clofarabine + RIC (Flu/Cy + Mel or TBI4) + PTCy | High-risk and R/R AML, high-risk MDS | Active disease:
| 97% |
|
| DFS:
|
| aGvHD:
| 0 |
Doppelhammer et al. (2019) [30] | N = 68 Median age: 54 (range: 28–71) | HLA-matched (n = 34) FLAMSA + RIC (unspecified with ATG) Haplo (n = 34) Clofarabine or FLAMSA + RIC (unspecified) + PTCy | High-risk AML |
| 91% for HLA-matched 94% for Haplo | 56% at 3 years | 16% at 3 years | LFS at 3 years: 49% GRFS at 3 years:
| 34% at 3 years | aGvHD, Grade ≥ II:
| NM |
Jondreville et al. (2021) [31] | N = 36 Median age: 55 (range: 26–69) | FLAMSA + RIC (Bu/Mel + ATG if PBSC) + PTCY for Haplo | AML (n = 29), MDS (n = 6), myelofibrosis (n = 1) | AML (n = 29):
| / | 62% at 2 years 2-year OS for HLA-matched: 89% 2-year OS for Haplo: 34% | HLA-matched: 0% at 2 years Haplo: 58% at 2 years | DFS at 2 years: 52% (entire cohort):
| HLA-matched: 32% Haplo: 20% |
| n = 7 (19) |
Wang et al. (2018) [32] | N = 47 Median age: 42 (range: 16–62) | FLAG-Ida + RIC (Bu/Flu) + PTCY for Haplo or MUD | AML | PIF (n = 23) Early relapse (n = 1) R/R (n = 23) | 89% | 43.8 ± 7.8% at 3 years (estimated) | 25.7 ± 4.2% at 3 years (estimated) | 42.3 ± 7.8% at 3 years (estimated) | 33.5 ± 5.7% at 3 years (estimated) | aGvHD:
| n = 13 |
3. Acute Myeloid Leukemia with Active Disease
4. Venetoclax-Enhanced Sequential FLAMSA-RIC
5. Myelodysplastic Syndrome with Increased Blasts
6. Sequential Conditioning and HLA-Haploidentical/Mismatched Unrelated Donors and the Use of PTCy
7. Cellular Therapies, Future Treatment Options, and Sequential Conditioning
8. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- DiNardo, C.D.; Lachowiez, C.A.; Takahashi, K.; Loghavi, S.; Kadia, T.; Daver, N.; Xiao, L.; Adeoti, M.; Short, N.J.; Sasaki, K.; et al. Venetoclax combined with FLAG-IDA induction and consolidation in newly diagnosed acute myeloid leukemia. Am. J. Hematol. 2022, 97, 1035–1043. [Google Scholar] [PubMed]
- Cheson, B.D.; Bennett, J.M.; Kopecky, K.J.; Büchner, T.; Willman, C.L.; Estey, E.H.; Schiffer, C.A.; Doehner, H.; Tallman, M.S.; Lister, T.A.; et al. International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. Revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. J. Clin. Oncol. 2003, 21, 4642–4649. [Google Scholar] [PubMed]
- Ravandi, F. Primary refractory acute myeloid leukaemia—In search of better definitions and therapies. Br. J. Haematol. 2011, 155, 413–419. [Google Scholar] [PubMed]
- Duval, M.; Klein, J.P.; He, W.; Cahn, J.; Cairo, M.; Camitta, B.M.; Kamble, R.; Copelan, E.; De Lima, M.; Gupta, V.; et al. Hematopoietic Stem-Cell Transplantation for Acute Leukemia in Relapse or Primary Induction Failure. J. Clin. Oncol. 2010, 28, 3730–3738. [Google Scholar]
- Nagler, A.; Savani, B.N.; Labopin, M.; Polge, E.; Passweg, J.; Finke, J.; Kyrcz-Krzemien, S.; Volin, L.; Anagnostopoulos, A.; Aljurf, M.; et al. Outcomes after use of two standard ablative regimens in patients with refractory acute myeloid leukaemia: A retrospective, multicentre, registry analysis. Lancet Haematol. 2015, 2, 384–392. [Google Scholar] [CrossRef]
- Scott, B.L.; Pasquini, M.C.; Fei, M.; Fraser, R.; Wu, J.; Devine, S.M.; Porter, D.L.; Maziarz, R.T.; Warlick, E.; Fernandez, H.F.; et al. Myeloablative versus Reduced-Intensity Conditioning for Hematopoietic Cell Transplantation in Acute Myelogenous Leukemia and Myelodysplastic Syndromes-Long-Term Follow-Up of the BMT CTN 0901 Clinical Trial. Transplant. Cell Ther. 2021, 27, e1–e483. [Google Scholar] [CrossRef]
- Scott, B.L.; Pasquini, M.C.; Fei, M.; Fraser, R.; Wu, J.; Devine, S.M.; Porter, D.L.; Maziarz, R.T.; Warlick, E.; Fernandez, H.F.; et al. Myeloablative versus reduced-intensity hematopoietic cell transplantation for acute myeloid leukemia and myelodysplastic syndromes. J. Clin. Oncol. 2017, 35, 1154–1161. [Google Scholar] [CrossRef]
- Shimoni, A.; Hardan, I.; Shem-Tov, N.; Yeshurun, M.; Yerushalmi, R.; Avigdor, A.; Ben-Bassat, I.; Nagler, A. Allogeneic hematopoietic stem-cell transplantation in AML and MDS using myeloablative versus reduced-intensity conditioning: The role of dose intensity. Leukemia 2006, 20, 322–328. [Google Scholar]
- Shimomura, Y.; Kitamura, T.; Yanada, M.; Mizuno, S.; Kondo, T.; Yoshihara, S.; Tanaka, M.; Inai, K.; Katayama, Y.; Onizuka, M.; et al. Allogeneic hematopoietic stem cell transplantation using reduced intensity conditioning regimen for patients with acute myeloid leukemia not in complete remission. Cytotherapy 2025, 27, 316–323. [Google Scholar] [CrossRef]
- O’Hagan Henderson, S.; Frietsch, J.J.; Hilgendorf, I.; Hochhaus, A.; Köhne, C.H.; Casper, J. Combination of treosulfan, fludarabine and cytarabine as conditioning in patients with acute myeloid leukemia, myelodysplastic syndrome and myeloproliferative neoplasms. J. Cancer Res. Clin. Oncol. 2022, 148, 2599–2609. [Google Scholar]
- Connor, M.P.; Loren, A.W.; Hexner, E.O.; Martin, M.E.; Gill, S.I.; Luger, S.M.; Mangan, J.K.; Perl, A.E.; McCurdy, S.R.; Pratz, K.W.; et al. Clofarabine and Busulfan Myeloablative Conditioning in Allogeneic Hematopoietic Cell Transplantation for Patients with Active Myeloid Malignancies. Transplant. Cell. Ther. 2023, 29, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Blum, W.; Bolwell, B.J.; Phillips, G.; Farag, S.S.; Lin, T.S.; Avalos, B.R.; Penza, S.L.; Marcucci, G.; Byrd, J.C.; Kalaycio, M.E.; et al. High Disease Burden Is Associated with Poor Outcomes for Patients with Acute Myeloid Leukemia Not in Remission Who Undergo Unrelated Donor Cell Transplantation. Biol. Blood Marrow Transplant. 2006, 12, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Pfrepper, C.; Klink, A.; Behre, G.; Schenk, T.; Franke, G.N.; Jentzsch, M.; Schwind, S.; Al-Ali, H.K.; Hochhaus, A.; Niederwieser, D.; et al. Risk factors for outcome in refractory acute myeloid leukemia patients treated with a combination of fludarabine, cytarabine, and amsacrine followed by a reduced-intensity conditioning and allogeneic stem cell transplantation. J. Cancer Res. Clin. Oncol. 2016, 142, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Dalle, I.A.; Labopin, M.; Kröger, N.; Schroeder, T.; Finke, J.; Stelljes, M.; Neubauer, A.; Blaise, D.; Yakoub-Agha, I.; Salmenniemi, U.; et al. Impact of disease burden on clinical outcomes of AML patients receiving allogeneic hematopoietic cell transplantation: A study from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Bone Marrow Transplant. 2023, 58, 784–790. [Google Scholar] [CrossRef]
- Michallet, M.; Thomas, X.; Vernant, J.P.; Kuentz, M.; Socié, G.; Espérou-Bourdeau, H.; Milpied, N.; Blaise, D.; Rio, B.; Reiffers, J.; et al. Long-term outcome after allogeneic hematopoietic stem cell transplantation for advanced stage acute myeloblastic leukemia: A retrospective study of 379 patients reported to the Société Française de Greffe de Moelle (SFGM). Bone Marrow Transplant. 2000, 26, 1157–1163. [Google Scholar] [CrossRef]
- Buckley, S.A.; Wood, B.L.; Othus, M.; Hourigan, C.S.; Ustun, C.; Linden, M.A.; DeFor, T.E.; Malagola, M.; Anthias, C.; Valkova, V.; et al. Minimal residual disease prior to allogeneic hematopoietic cell transplantation in acute myeloid leukemia: A meta-analysis. Haematologica 2017, 102, 865–873. [Google Scholar] [CrossRef]
- Walter, R.B.; Gooley, T.A.; Wood, B.L.; Milano, F.; Fang, M.; Sorror, M.L.; Estey, E.H.; Salter, A.I.; Lansverk, E.; Chien, J.W.; et al. Impact of pretransplantation minimal residual disease, as detected by multiparametric flow cytometry, on outcome of myeloablative hematopoietic cell transplantation for acute myeloid leukemia. J. Clin. Oncol. 2011, 29, 1190–1197. [Google Scholar] [CrossRef]
- Schmid, C.; Schleuning, M.; Ledderose, G.; Tischer, J.; Kolb, H. Sequential Regimen of Chemotherapy, Reduced-Intensity Conditioning for Allogeneic Stem-Cell Transplantation, and Prophylactic Donor Lymphocyte Transfusion in High-Risk Acute Myeloid Leukemia and Myelodysplastic Syndrome. J. Clin. Oncol. 2005, 23, 5675–5687. [Google Scholar] [CrossRef]
- Kolb, H.; Schmid, C. The FLAMSA concept—Past and future. Ann. Hematol. 2020, 99, 1979–1988. [Google Scholar] [CrossRef]
- Legha, S.S.; Keating, M.J.; Zander, A.R.; McCredie, K.B.; Bodey, G.P.; Freireich, E.J. 4′-(9-Acridinylamino) methanesulfon-m-anisidide (AMSA): A new drug effective in the treatment of adult acute leukemia. Ann. Intern. Med. 1980, 93, 17–21. [Google Scholar] [CrossRef]
- Craddock, C.; Jackson, A.; Loke, J.; Siddique, S.; Hodgkinson, A.; Mason, J.; Andrew, G.; Nagra, S.; Malladi, R.; Peniket, A.; et al. Augmented Reduced-Intensity Regimen Does Not Improve Postallogeneic Transplant Outcomes in Acute Myeloid Leukemia. J. Clin. Oncol. 2021, 39, 768–778. [Google Scholar] [CrossRef] [PubMed]
- Sheth, V.; Labopin, M.; Canaani, J.; Volin, L.; Brecht, A.; Ganser, A.; Mayer, J.; Labussière-Wallet, H.; Bittenbring, J.; Shouval, R.; et al. Comparison of FLAMSA-based reduced intensity conditioning with treosulfan/fludarabine conditioning for patients with acute myeloid leukemia: An ALWP/EBMT analysis. Bone Marrow Transplant. 2019, 54, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Braitsch, K.; Schwarz, A.; Koch, K.; Hubbuch, M.; Menzel, H.; Keller, U.; Götze, K.S.; Bassermann, F.; Herhaus, P.; Verbeek, M. Conditioning with fludarabine and treosulfan compared to FLAMSA-RIC in allogeneic stem cell transplantation for myeloid malignancies: A retrospective single-center analysis. Ann. Hematol. 2022, 101, 1311–1319. [Google Scholar] [CrossRef] [PubMed]
- Mohty, M.; Malard, F.; Blaise, D.; Milpied, N.; Socié, G.; Huynh, A.; Reman, O.; Yakoub-Agha, I.; Furst, S.; Guillaume, T.; et al. Sequential regimen of clofarabine, cytosine arabinoside and reduced-intensity conditioned transplantation for primary refractory acute myeloid leukemia. Haematologica 2017, 102, 184–191. [Google Scholar] [CrossRef]
- Le Bourgeois, A.; Labopin, M.; Marçais, A.; de Latour, R.P.; Blaise, D.; Chantepie, S.; N’Guyen, S.; Maillard, N.; Forcade, E.; Yakoub-Agha, I.; et al. Sequential allogeneic hematopoietic stem cell transplantation for active refractory/relapsed myeloid malignancies: Results of a reduced-intensity conditioning preceded by clofarabine and cytosine arabinoside, a retrospective study on behalf of the SFGM-TC. Ann. Hematol. 2020, 99, 1855–1862. [Google Scholar] [CrossRef]
- Duléry, R.; Ménard, A.L.; Chantepie, S.; El-Cheikh, J.; François, S.; Delage, J.; Giannotti, F.; Ruggeri, A.; Brissot, E.; Battipaglia, G.; et al. Sequential Conditioning with Thiotepa in T Cell- Replete Hematopoietic Stem Cell Transplantation for the Treatment of Refractory Hematologic Malignancies: Comparison with Matched Related, Haplo-Mismatched, and Unrelated Donors. Biol. Blood Marrow Transplant. 2018, 24, 1013–1021. [Google Scholar] [CrossRef]
- Zoellner, A.K.; Fritsch, S.; Prevalsek, D.; Engel, N.; Hubmann, M.; Reibke, R.; Rieger, C.T.; Hellmuth, J.C.; Haas, M.; Mumm, F.; et al. Sequential therapy combining clofarabine and T-cell-replete HLA-haploidentical haematopoietic SCT is feasible and shows efficacy in the treatment of refractory or relapsed aggressive lymphoma. Bone Marrow Transplant. 2015, 50, 679–684. [Google Scholar] [CrossRef]
- Tischer, J.; Stemmler, H.J.; Engel, N.; Hubmann, M.; Fritsch, S.; Prevalsek, D.; Schulz, C.; Zoellner, A.K.; Bücklein, V.; Hill, W.; et al. Feasibility of clofarabine cytoreduction followed by haploidentical hematopoietic stem cell transplantation in patients with relapsed or refractory advanced acute leukemia. Ann. Hematol. 2013, 92, 1379–1388. [Google Scholar] [CrossRef]
- Fraccaroli, A.; Prevalsek, D.; Fritsch, S.; Haebe, S.; Bücklein, V.; Schulz, C.; Hubmann, M.; Stemmler, H.J.; Ledderose, G.; Hausmann, A.; et al. Sequential HLA-haploidentical transplantation utilizing post-transplantation cyclophosphamide for GvHD prophylaxis in high-risk and relapsed/refractory AML/MDS. Am. J. Hematol. 2018, 93, 1524–1531. [Google Scholar] [CrossRef]
- Doppelhammer, M.; Fraccaroli, A.; Prevalsek, D.; Bücklein, V.; Häbe, S.; Schulz, C.; Hubmann, M.; Hausmann, A.; Claus, R.; Rank, A.; et al. Comparable outcome after haploidentical and HLA-matched allogeneic stem cell transplantation for high-risk acute myeloid leukemia following sequential conditioning-a matched pair analysis. Ann. Hematol. 2019, 98, 753–762. [Google Scholar] [CrossRef]
- Jondreville, L.; Roos-Weil, D.; Uzunov, M.; Boussen, I.; Grenier, A.; Norol, F.; Morel, V.; Nguyen, S.; Souchet, L. FLAMSA-Busulfan-Melphalan as a Sequential Conditioning Regimen in HLA-Matched or Haploidentical Hematopoietic Stem Cell Transplantation for High-Risk Myeloid Diseases. Transplant. Cell. Ther. 2021, 27, e1–e915. [Google Scholar]
- Wang, L.; Devillier, R.; Wan, M.; Decroocq, J.; Tian, L.; Fürst, S.; Wang, L.; Vey, N.; Fan, X.; Blaise, D.; et al. Clinical outcome of FLAG-IDA chemotherapy sequential with Flu–Bu3 conditioning regimen in patients with refractory AML: A parallel study from Shanghai Institute of Hematology and Institut Paoli-Calmettes. Bone Marrow Transplant. 2018, 54, 458–464. [Google Scholar] [PubMed]
- Heinicke, T.; Labopin, M.; Polge, E.; Stelljes, M.; Ganser, A.; Tischer, J.; Brecht, A.; Kröger, N.; Beelen, D.W.; Scheid, C.; et al. Evaluation of six different types of sequential conditioning regimens for allogeneic stem cell transplantation in relapsed/refractory acute myelogenous leukemia—A study of the Acute Leukemia Working Party of the EBMT. Leuk. Lymphoma 2021, 62, 399–409. [Google Scholar]
- Holtick, U.; Herling, M.; Pflug, N.; Chakupurakal, G.; Leitzke, S.; Wolf, D.; Hallek, M.; Scheid, C.; Chemnitz, J.M. Similar outcome after allogeneic stem cell transplantation with a modified FLAMSA conditioning protocol substituting 4 Gy TBI with treosulfan in an elderly population with high-risk AML. Ann. Hematol. 2017, 96, 479–487. [Google Scholar]
- Ringdén, O.; Labopin, M.; Schmid, C.; Sadeghi, B.; Polge, E.; Tischer, J.; Ganser, A.; Michallet, M.; Kanz, L.; Schwerdtfeger, R.; et al. Sequential chemotherapy followed by reduced-intensity conditioning and allogeneic haematopoietic stem cell transplantation in adult patients with relapse or refractory acute myeloid leukaemia: A survey from the Acute Leukaemia Working Party of EBMT. Br. J. Haematol. 2017, 176, 431–439. [Google Scholar] [CrossRef]
- Mangan, J.K.; Luger, S.M. Salvage therapy for relapsed or refractory acute myeloid leukemia. Ther. Adv. Hematol. 2011, 2, 73–82. [Google Scholar]
- DiNardo, C.D.; Lachowiez, C.A.; Takahashi, K.; Loghavi, S.; Xiao, L.; Kadia, T.; Daver, N.; Adeoti, M.; Short, N.J.; Sasaki, K.; et al. Venetoclax Combined with FLAG-IDA Induction and Consolidation in Newly Diagnosed and Relapsed or Refractory Acute Myeloid Leukemia. J. Clin. Oncol. 2021, 39, 2768–2778. [Google Scholar] [CrossRef]
- Rodríguez-Arbolí, E.; Labopin, M.; Tischer, J.; Brecht, A.; Ganser, A.; Finke, J.; Blau, I.W.; Kröger, N.; Kalhs, P.; Forcade, E.; et al. FLAMSA-Based Reduced-Intensity Conditioning versus Myeloablative Conditioning in Younger Patients with Relapsed/Refractory Acute Myeloid Leukemia with Active Disease at the Time of Allogeneic Stem Cell Transplantation: An Analysis from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Biol. Blood Marrow Transplant. 2020, 26, 2165–2173. [Google Scholar]
- Decroocq, J.; Itzykson, R.; Vigouroux, S.; Michallet, M.; Yakoub-Agha, I.; Huynh, A.; Beckerich, F.; Suarez, F.; Chevallier, P.; Nguyen-Quoc, S.; et al. Similar outcome of allogeneic stem cell transplantation after myeloablative and sequential conditioning regimen in patients with refractory or relapsed acute myeloid leukemia: A study from the Société Francophone de Greffe de Moelle et de Thérapie Cellulaire. Am. J. Hematol. 2018, 93, 416–423. [Google Scholar]
- Saraceni, F.; Labopin, M.; Brecht, A.; Kröger, N.; Eder, M.; Tischer, J.; Labussière-Wallet, H.; Einsele, H.; Beelen, D.; Bunjes, D.; et al. Fludarabine-treosulfan compared to thiotepa-busulfan-fludarabine or FLAMSA as conditioning regimen for patients with primary refractory or relapsed acute myeloid leukemia: A study from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation (EBMT). J. Hematol. Oncol. 2019, 12, 44. [Google Scholar]
- Schulz, F.; Jäger, P.; Tischer, J.; Fraccaroli, A.; Bug, G.; Hausmann, A.; Baermann, B.N.; Tressin, P.; Hoelscher, A.; Kasprzak, A.; et al. Smart Conditioning with Venetoclax-Enhanced Sequential FLAMSA + RIC in Patients with High-Risk Myeloid Malignancies. Cancers 2024, 16, 532. [Google Scholar] [CrossRef] [PubMed]
- Robin, M.; Porcher, R.; Adès, L.; Raffoux, E.; Michallet, M.; François, S.; Cahn, J.Y.; Delmer, A.; Wattel, E.; Vigouroux, S.; et al. HLA-matched allogeneic stem cell transplantation improves outcome of higher risk myelodysplastic syndrome A prospective study on behalf of SFGM-TC and GFM. Leukemia 2015, 29, 1496–1501. [Google Scholar] [PubMed]
- Damaj, G.; Mohty, M.; Robin, M.; Michallet, M.; Chevallier, P.; Beguin, Y.; Nguyen, S.; Bories, P.; Blaise, D.; Maillard, N.; et al. Upfront allogeneic stem cell transplantation after reduced-intensity/nonmyeloablative conditioning for patients with myelodysplastic syndrome: A study by the Société Française de Greffe de Moelle et de Thérapie Cellulaire. Biol. Blood Marrow Transplant. 2014, 20, 1349–1355. [Google Scholar] [PubMed]
- Field, T.; Perkins, J.; Huang, Y.; Kharfan-Dabaja, M.A.; Alsina, M.; Ayala, E.; Fernandez, H.F.; Janssen, W.; Lancet, J.; Perez, L.; et al. 5-Azacitidine for myelodysplasia before allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 2010, 45, 255–260. [Google Scholar]
- Potter, V.T.; Iacobelli, S.; van Biezen, A.; Maertens, J.; Bourhis, J.H.; Passweg, J.R.; Yakhoub-Agha, I.; Tabrizi, R.; Bay, J.O.; Chevallier, P.; et al. Comparison of Intensive Chemotherapy and Hypomethylating Agents before Allogeneic Stem Cell Transplantation for Advanced Myelodysplastic Syndromes: A Study of the Myelodysplastic Syndrome Subcommittee of the Chronic Malignancies Working Party of the European Society for Blood and Marrow Transplant Research. Biol. Blood Marrow Transplant. 2016, 22, 1615–1620. [Google Scholar]
- Martino, R.; Iacobelli, S.; Brand, R.; Jansen, T.; van Biezen, A.; Finke, J.; Bacigalupo, A.; Beelen, D.; Reiffers, J.; Devergie, A.; et al. Retrospective comparison of reduced-intensity conditioning and conventional high-dose conditioning for allogeneic hematopoietic stem cell transplantation using HLA-identical sibling donors in myelodysplastic syndromes. Blood 2006, 108, 836–846. [Google Scholar]
- Martino, R.; de Wreede, L.; Fiocco, M.; van Biezen, A.; von dem Borne, P.A.; Hamladji, R.M.; Volin, L.; Bornhäuser, M.; Robin, M.; Rocha, V.; et al. Comparison of conditioning regimens of various intensities for allogeneic hematopoietic SCT using HLA-identical sibling donors in AML and MDS with <10% BM blasts: A report from EBMT. Bone Marrow Transplant. 2013, 48, 761–770. [Google Scholar]
- Luger, S.M.; Ringdén, O.; Zhang, M.J.; Pérez, W.S.; Bishop, M.R.; Bornhauser, M.; Bredeson, C.N.; Cairo, M.S.; Copelan, E.A.; Gale, R.P.; et al. Similar outcomes using myeloablative vs reduced-intensity allogeneic transplant preparative regimens for AML or MDS. Bone Marrow Transplant. 2012, 47, 203–211. [Google Scholar] [CrossRef]
- Alzahrani, M.; Power, M.; Abou Mourad, Y.; Barnett, M.; Broady, R.; Forrest, D.; Gerrie, A.; Hogge, D.; Nantel, S.; Sanford, D.; et al. Improving Revised International Prognostic Scoring System Pre-Allogeneic Stem Cell Transplantation Does Not Translate Into Better Post-Transplantation Outcomes for Patients with Myelodysplastic Syndromes: A Single-Center Experience. Biol. Blood Marrow Transplant. 2018, 24, 1209–1215. [Google Scholar]
- Potter, V.; Gras, L.; Koster, L.; Kroger, N.; Sockel, K.; Ganser, A.; Finke, J.; Labussiere-Wallet, H.; Peffault de Latour, R.; Koc, Y.; et al. Sequential vs myeloablative vs reduced intensity conditioning for patients with myelodysplastic syndromes with an excess of blasts at time of allogeneic haematopoietic cell transplantation: A retrospective study by the chronic malignancies working party of the EBMT. Bone Marrow Transplant. 2024, 59, 224–231. [Google Scholar]
- Campidelli, A.; Robin, M.; Remen, T.; Luc, A.; Labussière-Wallet, H.; Dulery, R.; Srour, M.; Ceballos, P.; Forcade, E.; Nguyen-Quoc, S.; et al. On Behalf of the SFGM-TC: Retrospective Comparison of Reduced and Higher Intensity Conditioning for High-Risk Myelodysplastic Syndrome Treated with Allogeneic Stem-Cell Transplantation. Clin. Lymphoma Myeloma Leuk. 2022, 22, 34–43. [Google Scholar] [PubMed]
- Notarantonio, A.B.; Roth-Guépin, G.; Bonmati, C.; Divoux, M.; Kicki, C.; Pagliuca, S.; Campidelli, A.; Rubio, M.T.; D’Aveni-Piney, M. A new sequential conditioning regimen based on CPX-351/Vyxeos (“Vyx-Seq”) in patients with higher risk myelodysplastic syndromes. Leuk. Res. 2023, 135, 107405. [Google Scholar] [PubMed]
- Döhner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; DiNardo, C.D.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Godley, L.A.; Hasserjian, R.P.; et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 2022, 115, 453–474. [Google Scholar]
- Penack, O.; Abouqateb, M.; Peczynski, C.; Boreland, W.; Kröger, N.; Zeiser, R.; Ciceri, F.; Schroeder, T.; Dreger, P.; Passweg, J.; et al. How risky is a second allogeneic stem cell transplantation? Leukemia 2024, 38, 1799–1807. [Google Scholar]
- Ravandi, F.; Stein, A.S.; Kantarjian, H.M.; Walter, R.B.; Paschka, P.; Jongen-Lavrencic, M.; Ossenkoppele, G.J.; Yang, Z.; Mehta, B.; Subklewe, M. A Phase 1 First-in-Human Study of AMG 330, an Anti-CD33 Bispecific T-Cell Engager (BiTE®) Antibody Construct, in Relapsed/Refractory Acute Myeloid Leukemia (R/R AML). Blood 2018, 132 (Suppl. 1), 25. [Google Scholar]
- Linder, A.; Nixdorf, D.; Kuhl, N.; Piseddu, I.; Xu, T.T.; Holtermann, A.V.; Kuut, G.; Endres, R.E.; Philipp, N.; Bücklein, V.L.; et al. STING activation improves T-cell-engaging immunotherapy for acute myeloid leukemia. Blood 2023, 142, 2055. [Google Scholar]
- Park, J.H.; Rivière, I.; Gonen, M.; Wang, X.; Sénéchal, B.; Curran, K.J.; Sauter, C.; Wang, Y.; Santomasso, B.; Mead, E.; et al. Long-Term Follow-up of CD19 CAR Therapy in Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 449–459. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Liu, D.Y.; Sun, R.J.; Zhang, J.P.; Zhou, J.R.; Wei, Z.J.; Xiong, M.; Cao, X.Y.; Lu, Y.; Yang, J.F.; et al. Integrating CAR T-Cell Therapy and Transplantation: Comparisons of Safety and Long-Term Efficacy of Allogeneic Hematopoietic Stem Cell Transplantation After CAR T-Cell or Chemotherapy-Based Complete Remission in B-Cell Acute Lymphoblastic Leukemia. Front. Immunol. 2021, 12, 605766. [Google Scholar]
- Cappell, K.M.; Kochenderfer, J.N. Long-term outcomes following CAR T cell therapy: What we know so far. Nat. Rev. Clin. Oncol. 2023, 20, 359–371. [Google Scholar]
- Zhao, Y.; Bai, X.; Guo, S.; Zhang, X.; Liu, J.; Zhao, M.; Xie, T.; Meng, H.; Zhang, Y.; He, X.; et al. Efficacy and safety of CAR-T therapy targeting CLL1 in patients with extramedullary diseases of acute myeloid leukemia. J. Transl. Med. 2024, 22, 888. [Google Scholar]
- Lu, P.; Zhang, X.; Yang, J.; Li, J.; Qiu, L.; Gong, M.; Wang, H.; Chen, J.; Liu, H.; Xiong, M.; et al. Nanobody-based naturally selected CD7-targeted CAR-T therapy for acute myeloid leukemia. Blood 2025, 145, 1022–1033. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhang, M.; Yang, T.; Mo, Z.; Wei, G.; Jing, R.; Zhao, H.; Huang, H. Sequential CD7 CAR T-cell therapy and allogeneic HSCT without GVHD prophylaxis. N. Engl. J. Med. 2024, 390, 1467–1480. [Google Scholar] [CrossRef] [PubMed]
- Gyurkocza, B.; Nath, R.; Seropian, S.; Choe, H.; Litzow, M.R.; Abboud, C.; Koshy, N.; Stiff, P.; Tomlinson, B.; Abhyankar, S.; et al. Randomized Phase III SIERRA Trial of 131I-Apamistamab Before Allogeneic Hematopoietic Cell Transplantation Versus Conventional Care for Relapsed/Refractory AML. J. Clin. Oncol. 2025, 43, 201–213. [Google Scholar] [CrossRef] [PubMed]
- Wadleigh, M.; Richardson, P.G.; Zahrieh, D.; Lee, S.J.; Cutler, C.; Ho, V.; Alyea, E.P.; Antin, J.H.; Stone, R.M.; Soiffer, R.J.; et al. Prior gemtuzumab ozogamicin exposure significantly increases the risk of veno-occlusive disease in patients who undergo myeloablative allogeneic stem cell transplantation. Blood 2003, 102, 1578–1582. [Google Scholar] [CrossRef]
- Pautas, C.; Raffoux, E.; Lambert, J.; Legrand, O.; Chantepie, S.; Gastaud, L.; Marolleau, J.P.; Thomas, X.; Turlure, P.; Benner, R.J.; et al. Outcomes following hematopoietic stem cell transplantation in patients treated with standard chemotherapy with or without gemtuzumab ozogamicin for acute myeloid leukemia. Bone Marrow Transplant. 2021, 56, 1474–1477. [Google Scholar] [CrossRef]
- Ho, V.T.; Martin, A.S.; Pérez, W.S.; Steinert, P.; Zhang, M.J.; Chirnomas, D.; Hoang, C.J.; Loberiza, F.R., Jr.; Saber, W. Prior Gemtuzumab Ozogamicin Exposure in Adults with Acute Myeloid Leukemia Does Not Increase Hepatic Veno-Occlusive Disease Risk after Allogeneic Hematopoietic Cell Transplantation: A Center for International Blood and Marrow Transplant Research Analysis. Biol. Blood Marrow Transplant. 2020, 26, 884–892. [Google Scholar] [CrossRef]
- Sumiyoshi, R.; Tashiro, H.; Saito, S.; Matsuo, T.; Yamamoto, T.; Matsumoto, K.; Ooi, J.; Shirafuji, N. Gemtuzumab ozogamicin monotherapy prior to stem cell infusion induces sustained remission in a relapsed acute myeloid leukemia patient after allogeneic stem cell transplantation: A case report. Medicine 2020, 99, e22064. [Google Scholar] [CrossRef]
- Tachibana, T.; Izumi, A.; Arai, S.; Takeda, T.; Hirose, N.; Tamai, Y.; Sato, S.; Hashimoto, C.; Fujimaki, K.; Ishii, R.; et al. Preconditioning intervention prior to allogeneic hematopoietic stem cell transplantation in patients with high-risk acute myeloid leukemia. Exp. Hematol. 2025, 144, 104746. [Google Scholar] [CrossRef]
- Ronnacker, J.; Urbahn, M.A.; Reicherts, C.; Kolloch, L.; Berning, P.; Sandmann, S.; Eßeling, E.; Call, S.; Floeth, M.; Marx, J.; et al. Early blast clearance during sequential conditioning prior to allogeneic stem cell transplantation in patients with acute myeloid leukaemia. Br. J. Haematol. 2024, 205, 280–290. [Google Scholar] [CrossRef]
- Jeon, Y.W.; Yoon, S.; Min, G.J.; Park, S.S.; Park, S.; Yoon, J.H.; Lee, S.E.; Cho, B.S.; Eom, K.S.; Kim, Y.J.; et al. Risk factors predicting graft-versus-host disease and relapse-free survival after allogeneic hematopoietic stem cell transplantation in relapsed or refractory non-Hodgkin’s lymphoma. Ann. Hematol. 2019, 98, 1743–1753. [Google Scholar] [CrossRef]
- Saliba, R.M.; de Lima, M.; Giralt, S.; Andersson, B.; Khouri, I.F.; Hosing, C.; Ghosh, S.; Neumann, J.; Hsu, Y.; De Jesus, J.; et al. Hyperacute GVHD: Risk factors, outcomes, and clinical implications. Blood 2007, 109, 2751–2758. [Google Scholar] [PubMed]
- Bacigalupo, A.; Lamparelli, T.; Bruzzi, P.; Guidi, S.; Alessandrino, P.E.; di Bartolomeo, P.; Oneto, R.; Bruno, B.; Barbanti, M.; Sacchi, N.; et al. Antithymocyte globulin for graft-versus-host disease prophylaxis in transplants from unrelated donors: 2 randomized studies from Gruppo Italiano Trapianti Midollo Osseo (GITMO). Blood 2001, 98, 2942–2947. [Google Scholar] [PubMed]
- Ofran, Y.; Beohou, E.; Labopin, M.; Blaise, D.; Cornelissen, J.J.; de Groot, M.R.; Socié, G.; Huynh, A.; Maertens, J.; Baron, F.; et al. Anti-thymocyte globulin for graft-versus-host disease prophylaxis in patients with intermediate- or high-risk acute myeloid leukaemia undergoing reduced-intensity conditioning allogeneic stem cell transplantation in first complete remission—A survey on behalf of the Acute Leukaemia Working Party of the European Society for Blood and Marrow Transplantation. Br. J. Haematol. 2019, 184, 643–646. [Google Scholar] [PubMed]
- Baron, F.; Mohty, M.; Blaise, D.; Socié, G.; Labopin, M.; Esteve, J.; Ciceri, F.; Giebel, S.; Gorin, N.C.; Savani, B.N.; et al. Anti-thymocyte globulin as graft- versus -host disease prevention in the setting of allogeneic peripheral blood stem cell transplantation: A review from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Haematologica 2016, 102, 224–234. [Google Scholar]
- Caldemeyer, L.E.; Akard, L.P.; Edwards, J.R.; Tandra, A.; Wagenknecht, D.R.; Dugan, M.J. Donor Lymphocyte Infusions Used to Treat Mixed-Chimeric and High-Risk Patient Populations in the Relapsed and Nonrelapsed Settings after Allogeneic Transplantation for Hematologic Malignancies Are Associated with High Five-Year Survival if Persistent Full Donor Chimerism Is Obtained or Maintained. Biol. Blood Marrow Transplant. 2017, 23, 1989–1997. [Google Scholar]
- Schmid, C.; Labopin, M.; Schaap, N.; Veelken, H.; Brecht, A.; Stadler, M.; Finke, J.; Baron, F.; Collin, M.; Bug, G.; et al. Long-term results and GvHD after prophylactic and preemptive donor lymphocyte infusion after allogeneic stem cell transplantation for acute leukemia. Bone Marrow Transplant. 2022, 57, 215–223. [Google Scholar] [CrossRef]
- Mamez, A.C.; Pradier, A.; Morin, S.; Giannotti, F.; Bernardi, C.; Masouridi-Levrat, S.; Chalandon, Y.; Simonetta, F. Utility of the 2024 best practice recommendations from the EBMT Cellular Therapy and Immunobiology Working Party for use of donor lymphocyte infusions after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2024, 60, 247–249. [Google Scholar]
- Le Grand, S.; Villemonteix, J.; Daguindau, E.; Fort, M.; Caillat-Zucman, S.; Allain, V.; Dormoy, A.; De Mas, V.; Delabesse, E.; Recher, C.; et al. HLA evolutionary divergence score after donor lymphocyte infusion following allogeneic hematopoietic stem cell transplantation. Hemasphere 2025, 9, e70088. [Google Scholar]
Authors | Disease—Age | Disease Status | Conditioning Regimen | OS | CIR | NRM |
---|---|---|---|---|---|---|
Patients with Active Disease | ||||||
Duval et al. (2010) [4] | ALL, AML Age 1–70 y | AD | TBI/Cyclophosphamide Busulfan/Cyclophosphamide | ALL: 16% AML: 19% (3 years) | ||
Nagler et al. (2015) [5] | AML Age 18–68 y | AD | Busulfan/Cyclophosphamide | 31.2% (2 years) | 53.5% (2 years) | 21.5% (2 years) |
TBI/Cyclophosphamide | 33.4% (2 years) | 54% (2 years) | 17.5% (2 years) | |||
Henderson et al. (2021) [10] | AML, MDS, MPN, CML Age 18–69 y | AD: 55% | Treosulfan—Cytarabine/Fludarabine | 46.2% (2 years) | 37.6% (3 years) | 20.9% (2 years) |
Connor et al. (2023) [11] | AML, MDS, CML (AP), BPDCN Age 22–70 y | AD | Clofarabine/Busulfan (MAC) | 40% (2 years) | 39% (2 years) | 31% (2 years) |
Shimomura et al. (2024) [9] | AML Age 55–65 y | AD | Busulfan/Fludarabine (RIC) Melphalan/Fludarabine (RIC) | 22% (5 years) | 53.36% (5 years) | 27.5% (5 years) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bours, B.; Masouridi-Levrat, S. Is There (Still) a Place for Sequential Conditioning? Curr. Oncol. 2025, 32, 196. https://doi.org/10.3390/curroncol32040196
Bours B, Masouridi-Levrat S. Is There (Still) a Place for Sequential Conditioning? Current Oncology. 2025; 32(4):196. https://doi.org/10.3390/curroncol32040196
Chicago/Turabian StyleBours, Boris, and Stavroula Masouridi-Levrat. 2025. "Is There (Still) a Place for Sequential Conditioning?" Current Oncology 32, no. 4: 196. https://doi.org/10.3390/curroncol32040196
APA StyleBours, B., & Masouridi-Levrat, S. (2025). Is There (Still) a Place for Sequential Conditioning? Current Oncology, 32(4), 196. https://doi.org/10.3390/curroncol32040196