The Role of LncRNAs in Radio- and Chemoresistance of Glioblastoma: Prognostic or Therapeutic?
Simple Summary
Abstract
1. Introduction
2. LncRNAs
2.1. Prognostic Role of LncRNAs
2.2. MAPK/ERK Pathway
2.3. PI3K/AKT Pathway
2.4. Wnt/β-Catenin Signaling Pathway
2.5. Cell Cycle Regulation
2.6. miRNA Sponging and ceRNA Activity
2.7. Tumor Progression
2.8. Metabolic Reprogramming and Stress Response
2.9. LncRNAs as Therapeutic Targets
2.10. NF-κB Pathway
2.11. PI3K/Akt/mTOR Pathway
2.12. Autophagy
2.13. Wnt/β-Catenin Pathway
2.14. miRNA Sponge Networks (ceRNA Axes)
2.15. TGF-β/Smad Pathway
2.16. CHK1 and DNA Repair Pathway
2.17. IGF Signaling Pathway
2.18. Cell Cycle Regulation
2.19. Other Mechanisms
3. Discussion
4. Conclusion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- França, G.S.; Baron, M.; King, B.R.; Bossowski, J.P.; Bjornberg, A.; Pour, M.; Rao, A.; Patel, A.S.; Misirlioglu, S.; Barkley, D.; et al. Cellular adaptation to cancer therapy along a resistance continuum. Nature 2024, 631, 876–883. [Google Scholar] [CrossRef]
- Song, P.; Gao, Z.; Bao, Y.; Chen, L.; Huang, Y.; Liu, Y.; Dong, Q.; Wei, X. Wnt/β-catenin signaling pathway in carcinogenesis and cancer therapy. J. Hematol. Oncol. 2024, 17, 1–30. [Google Scholar] [CrossRef]
- Song, J.; Yang, P.; Chen, C.; Ding, W.; Tillement, O.; Bai, H.; Zhang, S. Targeting epigenetic regulators as a promising avenue to overcome cancer therapy resistance. Signal Transduct. Target. Ther. 2025, 10, 219. [Google Scholar] [CrossRef]
- Liu, R.; Zhao, E.; Yu, H.; Yuan, C.; Abbas, M.N.; Cui, H. Methylation across the central dogma in health and diseases: New therapeutic strategies. Signal Transduct. Target. Ther. 2023, 8, 1–46. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Allis, C.D.; Wang, G.G. The language of chromatin modification in human cancers. Nat. Rev. Cancer 2021, 21, 413–430. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Gonzalez, E.A.; Rameshwar, P.; Etchegaray, J.-P. Non-Coding RNAs as Mediators of Epigenetic Changes in Malignancies. Cancers 2020, 12, 3657. [Google Scholar] [CrossRef]
- Momtazmanesh, S.; Rezaei, N. Long Non-Coding RNAs in Diagnosis, Treatment, Prognosis, and Progression of Glioma: A State-of-the-Art Review. Front. Oncol. 2021, 11, 712786. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Weiswald, L.-B.; Poulain, L.; Denoyelle, C.; Meryet-Figuiere, M. Involvement of lncRNAs in cancer cells migration, invasion and metastasis: Cytoskeleton and ECM crosstalk. J. Exp. Clin. Cancer Res. 2023, 42, 1–14. [Google Scholar] [CrossRef]
- Lashkarboloki, M.; Jahanbakhshi, A.; Mowla, S.J.; Bjeije, H.; Soltani, B.M. Oncogenic roles of long non-coding RNAs in essential glioblastoma signaling pathways. J. Neurogenetics 2024, 38, 62–78. [Google Scholar] [CrossRef]
- Yang, M.; Zhu, P.; Cheema, J.; Bloomer, R.; Mikulski, P.; Liu, Q.; Zhang, Y.; Dean, C.; Ding, Y. In vivo single-molecule analysis reveals COOLAIR RNA structural diversity. Nature 2022, 609, 394–399. [Google Scholar] [CrossRef]
- Chen, Z.; Tian, D.; Chen, X.; Cheng, M.; Xie, H.; Zhao, J.; Liu, J.; Fang, Z.; Zhao, B.; Bian, E. Super-enhancer-driven lncRNA LIMD1-AS1 activated by CDK7 promotes glioma progression. Cell Death Dis. 2023, 14, 1–13. [Google Scholar] [CrossRef]
- Statello, L.; Guo, C.-J.; Chen, L.-L.; Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 2021, 22, 96–118. [Google Scholar] [CrossRef]
- Long, S.; Li, G. Comprehensive analysis of a long non-coding RNA-mediated competitive endogenous RNA network in glioblastoma multiforme. Exp. Ther. Med. 2019, 18, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- Mattick, J.S.; Amaral, P.P.; Carninci, P.; Carpenter, S.; Chang, H.Y.; Chen, L.-L.; Chen, R.; Dean, C.; Dinger, M.E.; Fitzgerald, K.A.; et al. Long non-coding RNAs: Definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol. 2023, 24, 430–447. [Google Scholar] [CrossRef]
- Huarte, M.; Guttman, M.; Feldser, D.; Garber, M.; Koziol, M.J.; Kenzelmann-Broz, D.; Khalil, A.M.; Zuk, O.; Amit, I.; Rabani, M.; et al. A Large Intergenic Noncoding RNA Induced by p53 Mediates Global Gene Repression in the p53 Response. Cell 2010, 142, 409–419. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Agabalazadeh, A.; Abak, A.; Shoorei, H.; Taheri, M.M.H.; Sharifi, G. Role of Long Non-Coding RNAs in Conferring Resistance in Tumors of the Nervous System. Front. Oncol. 2021, 11. [Google Scholar] [CrossRef]
- Roshani, F.; Ahvar, M.; Ebrahimi, A. Network analysis to identify driver genes and combination drugs in brain cancer. Sci. Rep. 2024, 14, 1–7. [Google Scholar] [CrossRef]
- Ostrom, Q.T.; Cioffi, G.; Gittleman, H.; Patil, N.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012–2016. Neuro-Oncol. 2019, 21 (Suppl. 5), v1–v100. [Google Scholar] [CrossRef]
- Méndez, A.B.D.; Di Giuliani, M.; Sacconi, A.; Tremante, E.; Lulli, V.; Di Martile, M.; Vari, G.; De Bacco, F.; Boccaccio, C.; Regazzo, G.; et al. Androgen receptor inhibition sensitizes glioblastoma stem cells to temozolomide by the miR-1/miR-26a-1/miR-487b signature mediated WT1 and FOXA1 silencing. Cell Death Discov. 2025, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- McFaline-Figueroa, J.R.; Lee, E.Q. Brain Tumors. Am. J. Med. 2018, 131, 874–882. [Google Scholar] [CrossRef] [PubMed]
- Tomar, M.S.; Kumar, A.; Srivastava, C.; Shrivastava, A. Elucidating the mechanisms of Temozolomide resistance in gliomas and the strategies to overcome the resistance. Biochim. et Biophys. Acta (BBA) - Rev. Cancer 2021, 1876, 188616. [Google Scholar] [CrossRef]
- de Estibariz, I.M.; Jakjimovska, A.; Illarregi, U.; Martin-Guerrero, I.; Gutiérrez-Camino, A.; Lopez-Lopez, E.; Bilbao-Aldaiturriaga, N. The Role of the Dysregulation of Long Non-Coding and Circular RNA Expression in Medulloblastoma: A Systematic Review. Cancers 2023, 15, 4686. [Google Scholar] [CrossRef]
- Katsushima, K.; Jallo, G.; Eberhart, C.G.; Perera, R.J. Long non-coding RNAs in brain tumors. NAR Cancer 2021, 3, zcaa041. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Abak, A.; Hussen, B.M.; Taheri, M.; Sharifi, G. The Emerging Role of Non-Coding RNAs in Pituitary Gland Tumors and Meningioma. Cancers 2021, 13, 5987. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, F.; Wang, H.; E Teschendorff, A.; Xie, F.; He, Y. Pan-cancer characterization of long non-coding RNA and DNA methylation mediated transcriptional dysregulation. EBioMedicine 2021, 68, 103399. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ren, M.; Song, C.; Li, D.; Soomro, S.H.; Xiong, Y.; Zhang, H.; Fu, H. LINC00461, a long non-coding RNA, is important for the proliferation and migration of glioma cells. Oncotarget 2017, 8, 84123–84139. [Google Scholar] [CrossRef]
- Tang, T.; Cheng, Y.; She, Q.; Jiang, Y.; Chen, Y.; Yang, W.; Li, Y. Long non-coding RNA TUG1 sponges miR-197 to enhance cisplatin sensitivity in triple negative breast cancer. Biomed. Pharmacother. 2018, 107, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Wei, Y.; Wang, X.; Zhang, Z.; Yin, J.; Li, W.; Chen, L.; Lyu, X.; Shi, Z.; Yan, W.; et al. DNA-methylation-mediated activating of lncRNA SNHG12 promotes temozolomide resistance in glioblastoma. Mol. Cancer 2020, 19, 1–19. [Google Scholar] [CrossRef]
- Li, C.; Feng, S.; Chen, L. MSC-AS1 knockdown inhibits cell growth and temozolomide resistance by regulating miR-373-3p/CPEB4 axis in glioma through PI3K/Akt pathway. Mol. Cell. Biochem. 2020, 476, 699–713. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Jin, W.; Yi, K.; Wang, Q.; Zhou, J.; Tan, Y.; Xu, C.; Xiao, M.; Hong, B.; Xu, F.; et al. Combination LSD1 and HOTAIR-EZH2 inhibition disrupts cell cycle processes and induces apoptosis in glioblastoma cells. Pharmacol. Res. 2021, 171, 105764. [Google Scholar] [CrossRef]
- He, X.; Sheng, J.; Yu, W.; Wang, K.; Zhu, S.; Liu, Q. LncRNA MIR155HG Promotes Temozolomide Resistance by Activating the Wnt/β-Catenin Pathway Via Binding to PTBP1 in Glioma. Cell. Mol. Neurobiol. 2021, 41, 1271–1284. [Google Scholar] [CrossRef]
- Liu, B.; Zhou, J.; Wang, C.; Chi, Y.; Wei, Q.; Fu, Z.; Lian, C.; Huang, Q.; Liao, C.; Yang, Z.; et al. LncRNA SOX2OT promotes temozolomide resistance by elevating SOX2 expression via ALKBH5-mediated epigenetic regulation in glioblastoma. Cell Death Dis. 2020, 11, 384. [Google Scholar] [CrossRef] [PubMed]
- Lan, T.; Quan, W.; Yu, D.-H.; Chen, X.; Wang, Z.-F.; Li, Z.-Q. High expression of LncRNA HOTAIR is a risk factor for temozolomide resistance in glioblastoma via activation of the miR-214/β-catenin/MGMT pathway. Sci. Rep. 2024, 14, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Deguchi, S.; Katsushima, K.; Hatanaka, A.; Shinjo, K.; Ohka, F.; Wakabayashi, T.; Zong, H.; Natsume, A.; Kondo, Y. Oncogenic effects of evolutionarily conserved noncoding RNA ECONEXIN on gliomagenesis. Oncogene 2017, 36, 4629–4640. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Cheng, Y.; Yuan, Z.; Wang, F.; Yang, L.; Zhao, H. NCK1-AS1 Increases Drug Resistance of Glioma Cells to Temozolomide by Modulating miR-137/TRIM24. Cancer Biotherapy Radiopharm. 2020, 35, 101–108. [Google Scholar] [CrossRef]
- Tian, W.; Zhang, Y.; Liu, H.; Jin, H.; Sun, T. LINC01123 potentially correlates with radioresistance in glioma through the miR-151a/CENPB axis. Neuropathology 2021, 42, 3–15. [Google Scholar] [CrossRef]
- Wang, X.; Yu, X.; Xu, H.; Wei, K.; Wang, S.; Wang, Y.; Han, J. Serum-derived extracellular vesicles facilitate temozolomide resistance in glioblastoma through a HOTAIR-dependent mechanism. Cell Death Dis. 2022, 13, 1–11. [Google Scholar] [CrossRef]
- Yuan, Z.; Yang, Z.; Li, W.; Wu, A.; Su, Z.; Jiang, B. Expression of Concern Issued: Exosome-Mediated Transfer of Long Noncoding RNA HOTAIR Regulates Temozolomide Resistance by miR-519a-3p/RRM1 Axis in Glioblastoma. Cancer Biotherapy Radiopharm. 2020. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, G.; Gao, Y.; Liang, H. HOTAIR/miR-125 axis-mediated Hexokinase 2 expression promotes chemoresistance in human glioblastoma. J. Cell. Mol. Med. 2020, 24, 5707–5717. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, N.; Liu, B.; Wang, C.; He, Z.; Lenahan, C.; Tang, W.; Zeng, H.; Guo, H. lncRNA XLOC013218 promotes cell proliferation and TMZ resistance by targeting the PIK3R2-mediated PI3K/AKT pathway in glioma. Cancer Sci. 2022, 113, 2681–2692. [Google Scholar] [CrossRef]
- Zhang, X.; Li, R. lncRNA MAFG-AS1 enhances radioresistance of glioblastoma cells via miR-642a-5p/Notch1 axis. Acta Neurobiol. Exp. 2022, 82, 315–326. [Google Scholar] [CrossRef]
- Ling, Z.; Zhang, J.; Liu, Q. Oncogenic Forkhead box D3 antisense RNA 1 promotes cell survival and confers temozolomide resistance in glioblastoma cells through the miR-128-3p/WEE1 G2 checkpoint kinase axis. Bioengineered 2022, 13, 6012–6023. [Google Scholar] [CrossRef]
- Dong, J.; Peng, Y.; Zhong, M.; Xie, Z.; Jiang, Z.; Wang, K.; Wu, Y. Implication of lncRNA ZBED3-AS1 downregulation in acquired resistance to Temozolomide and glycolysis in glioblastoma. Eur. J. Pharmacol. 2022, 938, 175444. [Google Scholar] [CrossRef]
- Luo, J.; Bai, R.; Liu, Y.; Bi, H.; Shi, X.; Qu, C. Long non-coding RNA ATXN8OS promotes ferroptosis and inhibits the temozolomide-resistance of gliomas through the ADAR/GLS2 pathway. Brain Res. Bull. 2022, 186, 27–37. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, S.; Liang, C.; Lian, M. Long intergenic noncoding RNA 00021 promotes glioblastoma temozolomide resistance by epigenetically silencing p21 through Notch pathway. IUBMB Life 2020, 72, 1747–1756. [Google Scholar] [CrossRef] [PubMed]
- Botti, G.; Marra, L.; Malzone, M.; Anniciello, A.; Botti, C.; Franco, R.; Cantile, M. LncRNA HOTAIR as Prognostic Circulating Marker and Potential Therapeutic Target in Patients with Tumor Diseases. Curr. Drug Targets 2016, 18, 27–34. [Google Scholar] [CrossRef]
- Degirmenci, Z.; Unver, S.; Kilic, T.; Avsar, T. Silencing of the MEG3 gene promoted anti-cancer activity and drug sensitivity in glioma. J. Cell. Mol. Med. 2023, 27, 2603–2613. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Lin, D.; Jin, L.; Wang, J.; Lin, Z.; Zhang, S.; Lin, G. LncRNA HOXA-AS2 Promotes Temozolomide Resistance in Glioblastoma by Regulated miR-302a-3p/IGF1 Axis. Genet. Res. 2022, 2022, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, X.; Wang, Z. lncRNA MEG3 inhibits pituitary tumor development by participating in cell proliferation, apoptosis and EMT processes. Oncol. Rep. 2021, 45, 1–11. [Google Scholar] [CrossRef]
- Wang, J.; Yang, S.; Ji, Q.; Li, Q.; Zhou, F.; Li, Y.; Yuan, F.; Liu, J.; Tian, Y.; Zhao, Y.; et al. Long Non-coding RNA EPIC1 Promotes Cell Proliferation and Motility and Drug Resistance in Glioma. Mol. Ther. - Oncolytics 2020, 17, 130–137. [Google Scholar] [CrossRef]
- Rahmani, F.; Al-Asady, A.M.; Hanaie, R.; Zandigohar, M.; Faridnejad, H.; Payazdan, M.; Safavi, P.; Ryzhikov, M.; Hassanian, S.M. Interplay Between Lncrna/Mirna And Wnt/Β-Catenin Signaling In Brain Cancer Tumorigenesis. EXCLI J. 2023, 22, 1211–1222. [Google Scholar] [CrossRef]
- Zhang, L.; He, A.; Chen, B.; Bi, J.; Chen, J.; Guo, D.; Qian, Y.; Wang, W.; Shi, T.; Zhao, Z.; et al. A HOTAIR regulatory element modulates glioma cell sensitivity to temozolomide through long-range regulation of multiple target genes. Genome Res. 2020, 30, 155–163. [Google Scholar] [CrossRef]
- Correction: Long Noncoding RNA HOTAIR Regulates Polycomb-Dependent Chromatin Modification and Is Associated with Poor Prognosis in Colorectal Cancers. Cancer Res. 2012, 72, 1039. [CrossRef]
- Kim, K.; Jutooru, I.; Chadalapaka, G.; Johnson, G.; Frank, J.; Burghardt, R.; Kim, S.; Safe, S. HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene 2012, 32, 1616–1625. [Google Scholar] [CrossRef]
- Li, X.; Wu, Z.; Mei, Q.; Guo, M.; Fu, X.; Han, W. Long non-coding RNA HOTAIR, a driver of malignancy, predicts negative prognosis and exhibits oncogenic activity in oesophageal squamous cell carcinoma. Br. J. Cancer 2013, 109, 2266–2278. [Google Scholar] [CrossRef]
- Guo, S.; King, P.; Liang, E.; Guo, A.A.; Liu, M. LncRNA HOTAIR sponges miR-301a-3p to promote glioblastoma proliferation and invasion through upregulating FOSL1. Cell. Signal. 2022, 94, 110306. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Xu, N.; Liu, Y.; Liu, B.; Yang, Z.; Fu, Z.; Lian, C.; Guo, H. Genomic profiling of long non-coding RNA and mRNA expression associated with acquired temozolomide resistance in glioblastoma cells. Int. J. Oncol. 2017, 51, 445–455. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, X.; Wang, Y.; Wang, K. Functions and underlying mechanisms of lncRNA HOTAIR in cancer chemotherapy resistance. Cell Death Discov. 2022, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Yan, Q.; Zhao, Z.-Y.; Zhang, J.-L.; Zhang, H.; Yin, H.; Yuan, Z. STAT3-mediated upregulation of LINC00520 contributed to temozolomide chemoresistance in glioblastoma by interacting with RNA-binding protein LIN28B. Cancer Cell Int. 2022, 22, 1–14. [Google Scholar] [CrossRef]
- Ding, H.; Cui, L.; Wang, C. Long noncoding RNA LIFR-AS1 suppresses proliferation, migration and invasion and promotes apoptosis through modulating miR-4262/NF-κB pathway in glioma. Neurol. Res. 2020, 43, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Duan, S.; Li, M.; Wang, Z.; Wang, L.; Liu, Y. H19 induced by oxidative stress confers temozolomide resistance in human glioma cells via activating NF-κB signaling. OncoTargets Ther. 2018, 11, 6395–6404. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Han, S.; Gao, W.; Feng, Y.; Li, K.; Wu, D. Long Noncoding RNA KCNQ1OT1 Confers Gliomas Resistance to Temozolomide and Enhances Cell Growth by Retrieving PIM1 From miR-761. Cell. Mol. Neurobiol. 2020, 42, 695–708. [Google Scholar] [CrossRef]
- Hu, T.; Wang, F.; Han, G. LncRNA PSMB8-AS1 acts as ceRNA of miR-22-3p to regulate DDIT4 expression in glioblastoma. Neurosci. Lett. 2020, 728, 134896. [Google Scholar] [CrossRef]
- Gao, W.; Qiao, M.; Luo, K. Long Noncoding RNA TP53TG1 Contributes to Radioresistance of Glioma Cells Via miR-524-5p/RAB5A Axis. Cancer Biotherapy Radiopharm. 2021, 36, 600–612. [Google Scholar] [CrossRef]
- Su, Y.-K.; Lin, J.W.; Shih, J.-W.; Chuang, H.-Y.; Fong, I.-H.; Yeh, C.-T.; Lin, C.-M. Targeting BC200/miR218-5p Signaling Axis for Overcoming Temozolomide Resistance and Suppressing Glioma Stemness. Cells 2020, 9, 1859. [Google Scholar] [CrossRef]
- Gao, Z.; Xu, J.; Fan, Y.; Qi, Y.; Wang, S.; Zhao, S.; Guo, X.; Xue, H.; Deng, L.; Zhao, R.; et al. PDIA3P1 promotes Temozolomide resistance in glioblastoma by inhibiting C/EBPβ degradation to facilitate proneural-to-mesenchymal transition. J. Exp. Clin. Cancer Res. 2022, 41, 1–21. [Google Scholar] [CrossRef]
- Zhou, L.; Huang, X.; Zhang, Y.; Wang, J.; Li, H.; Huang, H. PSMG3-AS1 enhances glioma resistance to temozolomide via stabilizing c-Myc in the nucleus. Brain Behav. 2022, 12, e2531. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, M.; Long, W.; Yuan, J.; Li, H.; Zhang, C.; Tang, G.; Jiang, W.; Yuan, X.; Wu, M.; et al. Knockdown lncRNA CRNDE enhances temozolomide chemosensitivity by regulating autophagy in glioblastoma. Cancer Cell Int. 2021, 21, 1–15. [Google Scholar] [CrossRef]
- Fu, T.; Yang, Y.; Mu, Z.; Sun, R.; Li, X.; Dong, J. Silencing lncRNA LINC01410 suppresses cell viability yet promotes apoptosis and sensitivity to temozolomide in glioblastoma cells by inactivating PTEN/AKT pathway via targeting miR-370-3p. Immunopharmacol. Immunotoxicol. 2021, 43, 680–692. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Wang, B.; Zheng, R.; Zhang, J.; Huang, C.; Zheng, R.; Huang, Z.; Qiu, W.; Liu, M.; Yang, K.; et al. Linc-RA1 inhibits autophagy and promotes radioresistance by preventing H2Bub1/USP44 combination in glioma cells. Cell Death Dis. 2020, 11, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Hu, J.; Han, B.; Tan, S.; Jia, W.; Xin, Y. A positive feedback loop of lncRNA-RMRP/ZNRF3 axis and Wnt/β-catenin signaling regulates the progression and temozolomide resistance in glioma. Cell Death Dis. 2021, 12, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Tian, M.; Liu, J.; Wang, K. LINC00511 facilitates Temozolomide resistance of glioblastoma cells via sponging miR-126-5p and activating Wnt/β-catenin signaling. J. Biochem. Mol. Toxicol. 2021, 35, e22848. [Google Scholar] [CrossRef]
- Zhu, C.; Li, K.; Jiang, M.; Chen, S. RBM5-AS1 promotes radioresistance in medulloblastoma through stabilization of SIRT6 protein. Acta Neuropathol. Commun. 2021, 9, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wang, K.; Jin, T.; Xu, Q.; He, Y.; Cui, B.; Wang, Y. NCK1-AS1 enhances glioma cell proliferation, radioresistance and chemoresistance via miR-22-3p/IGF1R ceRNA pathway. Biomed. Pharmacother. 2020, 129, 110395. [Google Scholar] [CrossRef]
- Liao, X.; Zhang, S.; Li, X.; Qian, W.; Li, M.; Chen, S.; Wu, X.; Yu, X.; Li, Z.; Tang, M.; et al. Dynamic structural remodeling of LINC01956 enhances temozolomide resistance in MGMT -methylated glioblastoma. Sci. Transl. Med. 2024, 16, eado1573. [Google Scholar] [CrossRef]
- Yang, E.; Hong, B.; Wang, Y.; Wang, Q.; Zhao, J.; Cui, X.; Wu, Y.; Yang, S.; Su, D.; Liu, X.; et al. EPIC-0628 abrogates HOTAIR/EZH2 interaction and enhances the temozolomide efficacy via promoting ATF3 expression and inhibiting DNA damage repair in glioblastoma. Cancer Lett. 2024, 588, 216812. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Wei, Y.; Zhang, Q.; Sun, M.; Wang, Y.; Hou, J.; Zhang, P.; Lv, X.; Su, D.; Jiang, Y.; et al. Multiomics analyses reveal DARS1-AS1 /YBX1–controlled posttranscriptional circuits promoting glioblastoma tumorigenesis/radioresistance. Sci. Adv. 2023, 9, eadf3984. [Google Scholar] [CrossRef]
- Shree, B.; Tripathi, S.; Sharma, V. Transforming Growth Factor-Beta-Regulated LncRNA-MUF Promotes Invasion by Modulating the miR-34a Snail1 Axis in Glioblastoma Multiforme. Front. Oncol. 2022, 11, 788755. [Google Scholar] [CrossRef]
- Tang, G.; Luo, L.; Zhang, J.; Zhai, D.; Huang, D.; Yin, J.; Zhou, Q.; Zhang, Q.; Zheng, G. lncRNA LINC01057 promotes mesenchymal differentiation by activating NF-κB signaling in glioblastoma. Cancer Lett. 2021, 498, 152–164. [Google Scholar] [CrossRef]
- Chae, Y.; Roh, J.; Im, M.; Jang, W.; Kim, B.; Kang, J.; Youn, B.; Kim, W. Gene Expression Profiling Regulated by lncRNA H19 Using Bioinformatic Analyses in Glioma Cell Lines. Cancer Genom. - Proteom. 2024, 21, 608–621. [Google Scholar] [CrossRef]
- Wu, Z.; Zheng, Y.; Xie, W.; Li, Q.; Zhang, Y.; Ren, B.; Cai, L.; Cheng, Y.; Tang, H.; Su, Z.; et al. The long noncoding RNA-H19/miRNA-93a/ATG7 axis regulates the sensitivity of pituitary adenomas to dopamine agonists. Mol. Cell. Endocrinol. 2020, 518, 111033. [Google Scholar] [CrossRef]
- Kuang, Y.; Bing, Z.; Jin, X.; Li, Q. LncRNA H19 Upregulation Participates in the Response of Glioma Cells to Radiation. BioMed Res. Int. 2021, 2021. [Google Scholar] [CrossRef]
- Sun, X.-H.; Fan, W.-J.; An, Z.-J.; Sun, Y. Inhibition of Long Noncoding RNA CRNDE Increases Chemosensitivity of Medulloblastoma Cells by Targeting miR-29c-3p. Oncol. Res. Featur. Preclin. Clin. Cancer Ther. 2020, 28, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Nayak, R.; Mallick, B. LncRNA-associated competing endogenous RNA network analysis uncovered key lncRNAs involved in temozolomide resistance and tumor recurrence of glioblastoma. J. Mol. Recognit. 2023, 36, e3060. [Google Scholar] [CrossRef]
- Chen, Z.; Zhou, J.; Liu, Y.; Ni, H.; Zhou, B. Targeting MAGI2-AS3-modulated Akt-dependent ATP-binding cassette transporters as a possible strategy to reverse temozolomide resistance in temozolomide-resistant glioblastoma cells. Drug Dev. Res. 2023, 84, 1482–1495. [Google Scholar] [CrossRef]
- Jiang, C.; Shen, F.; Du, J.; Fang, X.; Li, X.; Su, J.; Wang, X.; Huang, X.; Liu, Z. Upregulation of CASC2 sensitized glioma to temozolomide cytotoxicity through autophagy inhibition by sponging miR-193a-5p and regulating mTOR expression. Biomed. Pharmacother. 2018, 97, 844–850. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Wang, W.; Wu, Z.; Chen, S.; Chen, X.; Zhuang, S.; Song, G.; Lv, Y.; Lin, Y. Over-expression of lncRNA TMEM161B-AS1 promotes the malignant biological behavior of glioma cells and the resistance to temozolomide via up-regulating the expression of multiple ferroptosis-related genes by sponging hsa-miR-27a-3p. Cell Death Discov. 2021, 7, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gao, X. LINC00883 Promotes Drug Resistance of Glioma Through a microRNA-136/NEK1-Dependent Mechanism. Front. Oncol. 2022, 11, 692265. [Google Scholar] [CrossRef]
- Okamoto, R.; Toya, K.; Ogino, Y.; Sato, A. Downregulation of long noncoding RNA TP73-AS1 expression confers resistance to temozolomide in human glioblastoma cells. Nucleosides Nucleotides Nucleic Acids 2023, 43, 86–98. [Google Scholar] [CrossRef]
- Jiang, X.; Zhou, X.; Zhang, L.; Chen, G.; Li, S.; Cao, Y. Long-stranded non-coding RNA HCG11 regulates glioma cell proliferation, apoptosis and drug resistance via the sponge MicroRNA-144COX-2 axis. Cell. Mol. Biol. 2022, 67, 62–67. [Google Scholar] [CrossRef]
- Duan, R.; Zhao, X.; Hong, Z.; Yu, L. The LINC00957/miR-17-5p axis regulates the cell cycle and migration in glioblastoma via the cuproptosis-related gene nephronectin. Transl. Cancer Res. 2024, 13, 4923–4937. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, N.; Liu, B.; Huang, Y.; Zeng, H.; Yang, Z.; He, Z.; Guo, H. Long noncoding RNA RP11-838N2.4 enhances the cytotoxic effects of temozolomide by inhibiting the functions of miR-10a in glioblastoma cell lines. Oncotarget 2016, 7, 43835–43851. [Google Scholar] [CrossRef]
- Ding, J.; Zhang, L.; Chen, S.; Cao, H.; Xu, C.; Wang, X. lncRNA CCAT2 Enhanced Resistance of Glioma Cells Against Chemodrugs by Disturbing the Normal Function of miR-424. OncoTargets Ther. 2020, 13, 1431–1445. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Zhou, Y.; Huang, X.; Jiang, X. Long non-coding RNA OIP5-AS1 inhibition upregulates microRNA-129-5p to repress resistance to temozolomide in glioblastoma cells via downregulating IGF2BP2. Cell Biol. Toxicol. 2021, 38, 963–977. [Google Scholar] [CrossRef]
- Li, B.; Zhao, H.; Song, J.; Wang, F.; Chen, M. LINC00174 down-regulation decreases chemoresistance to temozolomide in human glioma cells by regulating miR-138-5p/SOX9 axis. Hum. Cell 2019, 33, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.; Shih, C.; Liu, A.; Chen, K. Hypoxia-inducible lncRNA MIR210HG interacting with OCT1 is involved in glioblastoma multiforme malignancy. Cancer Sci. 2021, 113, 540–552. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Gao, Z.; Xu, J.; Wang, H.; Guo, Q.; Li, B.; Li, M.; Xu, H.; Qi, Y.; Zhao, S.; et al. SPI1-mediated MIR222HG transcription promotes proneural-to-mesenchymal transition of glioma stem cells and immunosuppressive polarization of macrophages. Theranostics 2023, 13, 3310–3329. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Li, Z.; Tian, K.; Meng, X.; Wang, X.; Song, D.; Wang, X.; Xu, T.; Sun, P.; Zhong, J.; et al. LncRNA-Mediated TPI1 and PKM2 Promote Self-Renewal and Chemoresistance in GBM. Adv. Sci. 2024, 11, e2402600. [Google Scholar] [CrossRef]
- Li, Z.; Meng, X.; Wu, P.; Zha, C.; Han, B.; Li, L.; Sun, N.; Qi, T.; Qin, J.; Zhang, Y.; et al. Glioblastoma Cell–Derived lncRNA-Containing Exosomes Induce Microglia to Produce Complement C5, Promoting Chemotherapy Resistance. Cancer Immunol. Res. 2021, 9, 1383–1399. [Google Scholar] [CrossRef]
- Ahmadov, U.; Picard, D.; Bartl, J.; Silginer, M.; Trajkovic-Arsic, M.; Qin, N.; Blümel, L.; Wolter, M.; Lim, J.K.M.; Pauck, D.; et al. The long non-coding RNA HOTAIRM1 promotes tumor aggressiveness and radiotherapy resistance in glioblastoma. Cell Death Dis. 2021, 12, 1–11. [Google Scholar] [CrossRef]
- Li, X.D.; Wang, M.J.; Zheng, J.L.; Wu, Y.H.; Wang, X.; Jiang, X.B. Long noncoding RNA just proximal to X-inactive specific transcript facilitates aerobic glycolysis and temozolomide chemoresistance by promoting stability of PDK1 mRNA in an m6A-dependent manner in glioblastoma multiforme cells. Cancer Sci. 2021, 112, 4543–4552. [Google Scholar] [CrossRef]
- Cao, Y.; Chai, W.; Wang, Y.; Tang, D.; Shao, D.; Song, H.; Long, J. lncRNA TUG1 inhibits the cancer stem cell-like properties of temozolomide-resistant glioma cells by interacting with EZH2. Mol. Med. Rep. 2021, 24, 1–10. [Google Scholar] [CrossRef]
- Gong, H.; Gao, M.; Lin, Y.; Liu, J.; Hu, Z.; Liu, J. TUG1/MAZ/FTH1 Axis Attenuates the Antiglioma Effect of Dihydroartemisinin by Inhibiting Ferroptosis. Oxidative Med. Cell. Longev. 2022, 2022, 7843863. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yu, G.; Xu, Y.; Liu, C.; Sun, Q.; Li, W.; Sun, J.; Jiang, Y.; Ye, L. Knockdown of Long Non-Coding RNA HCP5 Increases Radiosensitivity Through Cellular Senescence by Regulating microRNA-128 in Gliomas. Cancer Manag. Res. 2021, 13, 3723–3737. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, A.M.; Morais, C.M.; Rebelo, O.; Tão, H.; Barbosa, M.; de Lima, M.C.P.; Jurado, A.S. Downregulation of long non-protein coding RNA MVIH impairs glioblastoma cell proliferation and invasion through an miR-302a-dependent mechanism. Hum. Mol. Genet. 2021, 30, 46–64. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.-Y.; Wang, G.-H.; Xu, J.-J.; Lin, X.-Y.; Fang, X.; Zhang, H.-X.; Feng, M.; Jiang, C.-M. CREB-induced LINC00473 promotes chemoresistance to TMZ in glioblastoma by regulating O6-methylguanine-DNA-methyltransferase expression via CEBPα binding. Neuropharmacology 2023, 243, 109790. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, F.; Zhang, Z.; Guo, Y.; Shen, H.; Chen, H. LncRNA-PVT1 was identified as a key regulator for TMZ resistance and STAT-related pathway in glioma. BMC Cancer 2023, 23, 1–12. [Google Scholar] [CrossRef]
- Bi, C.-L.; Liu, J.-F.; Zhang, M.-Y.; Lan, S.; Yang, Z.-Y.; Fang, J.-S. LncRNA NEAT1 promotes malignant phenotypes and TMZ resistance in glioblastoma stem cells by regulating let-7g-5p/MAP3K1 axis. Biosci. Rep. 2020, 40. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Liu, Y.; Xu, G.; Hei, Y.; Lu, X.; Liu, W. Long non-coding RNA NEAT1 regulates glioma cell proliferation and apoptosis by competitively binding to microRNA-324-5p and upregulating KCTD20 expression. Oncol. Rep. 2021, 46, 1–17. [Google Scholar] [CrossRef]
- Liang, J.; Xie, J.; He, J.; Li, Y.; Wei, D.; Zhou, R.; Wei, G.; Liu, X.; Chen, Q.; Li, D. Inhibiting lncRNA NEAT1 Increases Glioblastoma Response to TMZ by Reducing Connexin 43 Expression. Cancer Rep. 2024, 7, e70031. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Zhao, Z.; Shang, J.; Li, G.; Zhang, R. LncRNA NEAT1 promotes glioma cancer progression via regulation of miR-98-5p/BZW1. Biosci. Rep. 2021, 41. [Google Scholar] [CrossRef]
- Chen, Q.; Cai, J.; Wang, Q.; Wang, Y.; Liu, M.; Yang, J.; Zhou, J.; Kang, C.-S.; Li, M.; Jiang, C. Long Noncoding RNA NEAT1, Regulated by the EGFR Pathway, Contributes to Glioblastoma Progression Through the WNT/β-Catenin Pathway by Scaffolding EZH2. Clin. Cancer Res. 2018, 24, 684–695. [Google Scholar] [CrossRef]
- Ji, P.; Diederichs, S.; Wang, W.; Böing, S.; Metzger, R.; Schneider, P.M.; Tidow, N.; Brandt, B.; Buerger, H.; Bulk, E.; et al. MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 2003, 22, 8031–8041. [Google Scholar] [CrossRef]
- Shen, L.; Chen, L.; Wang, Y.; Jiang, X.; Xia, H.; Zhuang, Z. Long noncoding RNA MALAT1 promotes brain metastasis by inducing epithelial-mesenchymal transition in lung cancer. J. Neuro-Oncol. 2014, 121, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Wu, Z.; Wu, T.; Huang, Y.; Cheng, Z.; Li, X.; Sun, T.; Xie, X.; Zhou, Y.; Du, Z. Tumor-suppressive function of long noncoding RNA MALAT1 in glioma cells by downregulation of MMP2 and inactivation of ERK/MAPK signaling. Cell Death Dis. 2016, 7, e2123. [Google Scholar] [CrossRef]
- Li, L.; Gu, M.; You, B.; Shi, S.; Shan, Y.; Bao, L.; You, Y. Long non-coding RNA ROR promotes proliferation, migration and chemoresistance of nasopharyngeal carcinoma. Cancer Sci. 2016, 107, 1215–1222. [Google Scholar] [CrossRef]
- Xia, Y.; Pei, T.; Zhao, J.; Wang, Z.; Shen, Y.; Yang, Y.; Liang, J. Long noncoding RNA H19: Functions and mechanisms in regulating programmed cell death in cancer. Cell Death Discov. 2024, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Beisel, C.; Paro, R. Silencing chromatin: Comparing modes and mechanisms. Nat. Rev. Genet. 2011, 12, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; He, L.; Zhao, Y.; Li, Y.; Zhang, S.; Sun, K.; So, K.; Chen, F.; Zhou, L.; Lu, L.; et al. Malat1 regulates myogenic differentiation and muscle regeneration through modulating MyoD transcriptional activity. Cell Discov. 2017, 3, 17002. [Google Scholar] [CrossRef]
- Sun, H.; Peng, G.; Wu, H.; Liu, M.; Mao, G.; Ning, X.; Yang, H.; Deng, J. Long non-coding RNA MEG3 is involved in osteogenic differentiation and bone diseases (Review). Biomed. Rep. 2020, 13, 15–21. [Google Scholar] [CrossRef]
Pathway/Mechanism | lncRNA | Key Points / Function | References |
---|---|---|---|
MAPK/ERK Pathway | LINC00461 (ECONEXIN) | Promotes glioma progression via MAPK/ERK; affects proliferation, migration, invasion | Yang Y, Ren M [26] |
TPTEP1 | Promotes MAPK14 expression, activates P38 MAPK via antagonizing miR-106a-5p | Tang T, Wang LX [27] | |
SNHG12 | Sponges miR-129-5p, upregulates MAPK1 and E2F7, confers TMZ resistance | Lu C, Wei Y [28] | |
PI3K/AKT Pathway | LINC00461 (ECONEXIN) | Also involved in PI3K/AKT signaling | Yang Y, Ren M [26] |
MSC-AS1 | Knockdown suppresses growth and chemoresistance via PI3K/Akt pathway | Li C, Feng S [29] | |
XLOC013218 (XLOC) | Upregulates PIK3R2 via Sp1, activating PI3K/AKT; promotes TMZ resistance | Zhou J, Xu N [30] | |
Wnt/β-catenin Pathway | MIR155HG | Knockdown increases TMZ sensitivity by inhibiting Wnt/β-catenin | He X, Sheng J [31] |
SOX2OT | Oncogenic role via Wnt5a/β-catenin signaling | Liu B, Zhou J, Wang C [32] | |
HOTAIR | Regulates β-catenin by sponging miR-214; influences TMZ sensitivity | Lan T, Quan W [33] | |
miRNA Sponge/ceRNA | SNHG12 | Sponges miR-129-5p, upregulates MAPK1/E2F7 | Lu C, Wei Y [28] |
ECONEXIN (LINC00461) | Sponges miR-411-5p regulating TOP2A | Deguchi S, Katsushima K [34] | |
NCK1-AS1 | Modulates miR-137/TRIM24, increasing TMZ resistance | Chen M, Cheng Y [35] | |
LINC01123 | Sponges miR-151a, upregulates CENPB; increases radioresistance | Tian W, Zhang Y [36] | |
HOTAIR | Sponges multiple miRNAs (miR-214, miR-526b-3p, miR-519a-3p, miR-125) involved in drug resistance and progression | Lan T et al. [33], Wang X et al. [37], Yuan Z et al. [38], Zhang J et al. [39] | |
Drug Resistance/ Chemoresistance | MSC-AS1 | Knockdown reduces TMZ resistance via miR-373-3p/CPEB4 and PI3K/Akt | Li C, Feng S, Chen L [29] |
SNHG12, NCK1-AS1, LINC00520 | Associated with TMZ resistance | Lu C, Wei Y [28] | |
XLOC013218 (XLOC) | Activates TMZ resistance through PI3K/AKT signaling | Zhou J et al. [40] | |
MAFG-AS1 | Decreases radiosensitivity via miR-642a-5p/Notch1 axis | Zhang X, Li R [41] | |
FOXD3-AS1 | Critical for GBM survival and TMZ resistance | Ling Z, Zhang J [42] | |
ZBED3-AS1 | Linked to TMZ resistance and glycolysis | Dong J, Peng Y [43] | |
ATXN8OS | Mediates ferroptosis and TMZ resistance via ADAR/GLS2 pathway | Luo J, Bai R [44] | |
Cell Cycle / Proliferation | LINC00021 | Represses p21, promoting glioblastomagenesis | Zhang S, Guo S [45] |
E2F1 | Targets promoter of LINC00021 | Zhang S, Guo S [45] | |
HOTAIR | Regulates cell cycle, promotes invasion and metastasis | Zhang et al. [45], Botti G et al. [46] | |
EMT | MAFG-AS1 | Promotes EMT, proliferation, metastasis | Zhang X, Li R [41] |
MEG3 | Inhibits EMT in some cancers; promotes EMT in others | Degirmenci Z [47] | |
HOTAIR | Promotes EMT and invasion | Zhang J, Chen G [39] | |
Other Mechanisms | HOXA-AS2 | Knockdown reduces IGF1 expression via miR-302a-3p | Lin L, Lin D [48] |
HOTAIR | Delivered by extracellular vesicles/exosomes, regulates miRNA axes, promotes TMZ resistance | Wang X et al. [37], Yuan Z et al. [38] | |
MEG3 | Stimulates p53 transcriptional activity; regulates proliferation, apoptosis, EMT | Wang X, Li Z [49] |
Pathway/Mechanism | Main lncRNAs Involved | Main Effects | Key References |
---|---|---|---|
NF-κB | LIFR-AS1, LINC01057, H19 | Apoptosis, MES differentiation, resistance | Ding et al. [60], Duan S et al. [61] |
miRNA-ceRNA | KCNQ1OT1, NCK1-AS1, TP53TG1, PSMB8-AS1, CCAT2, LINC00174, etc. | Proliferation, chemoresistance, radioresistance | Wang W et al. [62], Hu T et al. [63], Gao W et al. [64] |
Chemoresistance (TMZ) | KCNQ1OT1, BC200, PDIA3P1, PSMG3-AS1, LINC01410, etc. | Resistance, proliferation | Wang W et al. [62], Su YK et al. [65], Gao Z et al. [66], Zhou L et al. [67] |
PI3K/Akt/mTOR | CRNDE, MAGI2-AS3, LINC01410 | Autophagy, TMZ resistance | Zhao Z et al. [68], Fu T et al. [69] |
Autophagy | Linc-RA1, CRNDE, H19 | Radio and chemo resistance | Zhao Z et al. [68], Zheng J et al., [70] |
Wnt/β-Catenin | RMRP, LINC00511 | TMZ resistance, proliferation | Liu T et al. [71], Lu Y et al. [72] |
Radioresistance | Linc-RA1, NCK1-AS1, TP53TG1, RBM5-AS1, HCP5, LINC01123 | Radiotherapy resistance | Zheng J et al. [70], Zhu C et al. [73], Wang B et al. [74], Gao W et al., [64] |
DNA Damage/Repair | EPIC1, EPIC-0628, CHK1, DARS1-AS1 | Cell cycle, DNA repair, TMZ sensitivity | Hu T et al. [63], Liao X et al. [75], Yang E et al. [76], Zheng C et al. [77] |
EMT/Invasion | lncRNA-MUF, H19, XIST | EMT, tumor invasion | Shree B et al. [78], Zhao J [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tremante, E.; Díaz Méndez, A.B.; Rizzo, M.G. The Role of LncRNAs in Radio- and Chemoresistance of Glioblastoma: Prognostic or Therapeutic? Curr. Oncol. 2025, 32, 539. https://doi.org/10.3390/curroncol32100539
Tremante E, Díaz Méndez AB, Rizzo MG. The Role of LncRNAs in Radio- and Chemoresistance of Glioblastoma: Prognostic or Therapeutic? Current Oncology. 2025; 32(10):539. https://doi.org/10.3390/curroncol32100539
Chicago/Turabian StyleTremante, Elisa, Ana Belén Díaz Méndez, and Maria Giulia Rizzo. 2025. "The Role of LncRNAs in Radio- and Chemoresistance of Glioblastoma: Prognostic or Therapeutic?" Current Oncology 32, no. 10: 539. https://doi.org/10.3390/curroncol32100539
APA StyleTremante, E., Díaz Méndez, A. B., & Rizzo, M. G. (2025). The Role of LncRNAs in Radio- and Chemoresistance of Glioblastoma: Prognostic or Therapeutic? Current Oncology, 32(10), 539. https://doi.org/10.3390/curroncol32100539