Report from the 24th Annual Western Canadian Gastrointestinal Cancer Consensus Conference on Colorectal Cancer, Richmond, British Columbia, 28–29, October 2022
Abstract
:1. Terms of Reference
1.1. Purpose
1.2. Participants
1.3. Target Audience
1.4. Basis of Recommendations
2. Question 1
2.1. Recommendations
- All patients with rectal cancer should be tested for tumour mismatch repair (MMR) status.
- Compelling evidence supports a high clinical and pathologic response to immunotherapy for dMMR non-metastatic rectal cancer and can spare the need for chemotherapy, radiation, and surgery. Survival outcomes are not yet available.
- Ideally, immunotherapy should be considered as part of a clinical trial.
- Outside of a clinical trial (if not available), immunotherapy is reasonable to consider after a careful discussion with the patient regarding risks and benefits. These cases should be discussed within a multi-disciplinary team.
- The optimal immunotherapy agent(s) and duration of treatment are not known.
- In patients who achieve a complete clinical response, nonoperative management may be an option for those who are at high-operative risk or who decline surgery. These patients should be followed with intense surveillance per a watch-and-wait approach.
2.2. Summary of Evidence
3. Question 2
3.1. Recommendations
- The prognostic value of ctDNA in stage II colon cancer is well established, however, the predictive value of ctDNA is still under investigation and requires longer follow-up of currently available trials. Additional clinical trials are forthcoming, that will provide further direction as to the role of ctDNA in tailoring adjuvant chemotherapy in patients with stage II colon cancer.
- Patients should be offered clinical trials where available.
3.2. Summary of Evidence
4. Question 3
4.1. Recommendations
- Patients should undergo timely molecular testing to determine an optimal first-line strategy; this would include MMR, BRAF and extended RAS analysis.
- In patients with pMMR, RAS/BRAF wild-type left-sided metastatic colorectal cancer, the recommended first-line treatment is combination chemotherapy where appropriate with an anti-epidermal growth factor receptor (EGFR) monoclonal antibody (mAb).
- In patients with pMMR, RAS or BRAF mutated or right-sided metastatic colorectal cancer (mCRC), the recommended first-line treatment is combination chemotherapy with bevacizumab.
- For right-sided mCRC, anti-EGFR mAB in the first line is not recommended.
- Patients should be offered clinical trials where available.
4.2. Summary of the Evidence
5. Question 4
5.1. Recommendations
- National guidelines with standardised criteria for hereditary cancer referral are needed.
- The following patients should be referred for genetic screening (Table 3):
- Patients with dMMR colorectal cancer not attributed to MLH1 promotor methylation.
- Patients < 50 years of age at the time of diagnosis
- Patients with a personal history of more than one Lynch syndrome-related tumour*
- Patients with a first-degree relative < 50 years of age with a history of Lynch syndrome-related cancer*
- Patients with 2 or more relatives with a history of colorectal or other Lynch syndrome-related cancer*
- Patients with pathogenic or likely pathogenic variants found on tumour sequencing.
5.2. Summary of Evidence
6. Question 5
6.1. Recommendations
- In a non-total neoadjuvant therapy (TNT) approach, long-course chemoradiation is recommended for T4 lesions, threatened mesorectal fascia (MRF), or those where the sphincter is threatened. In non-chemotherapy candidates, short-course radiotherapy (SCRT) followed by delayed surgery is also an option.
- For patients considered for a TNT approach, SCRT or long-course chemoradiation with neoadjuvant combination chemotherapy are reasonable options.
- For patients who cannot proceed or refuse radical-intent surgery, a non-operative approach can be considered [14].
6.2. Summary of Evidence
7. Question 6
7.1. Recommendations
- Transanal endoscopic microsurgery (TEM) is a standard of care for low-risk T1 patients when the risk of nodal involvement is <10%.
- The current standard approach for all other patients, including those who achieve complete clinical response to neoadjuvant therapy, is definitive surgical resection.
- In patients who proceed with an organ preservation approach, patients and surgeons must be committed to an intensive surveillance strategy in order to detect early recurrence of cancer in a third of cases. These cases should be discussed within a multidisciplinary team [74].
7.2. Summary of Evidence
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bonneville, R.; Krook, M.A.; Kautto, E.A.; Miya, J.; Wing, M.R.; Chen, H.; Reeser, J.W.; Yu, L.; Roychowdhury, S. Landscape of microsatellite instability across 39 cancer types. JCO Precis. Oncol. 2017, 2017, PO.17.00073. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, T.; Handorf, E.A.; Meyer, J.E.; Hall, M.J.; Nestor, F.E. Mismatch repair deficiency testing in patients with colorectal cancer and nonadherence to testing guidelines in young adults. JAMA Oncol. 2018, 4, e173580. [Google Scholar] [CrossRef] [PubMed]
- Cercek, A.; Fernandes, G.D.S.; Roxburgh, C.S.; Ganesh, K.; Ng, S.; Sanchez-Vega, F.; Yaeger, R.; Segal, N.H.; Reidy-Lagunes, D.L.; Varghese, A.M.; et al. Mismatch Repair-Deficient Rectal Cancer and Resistance to Neoadjuvant Chemotherapy. Clin. Cancer Res. 2020, 26, 3271–3279. [Google Scholar] [CrossRef] [PubMed]
- Tougeron, D.; Mouillet, G.; Trouilloud, I.; Lecomte, T.; Coriat, R.; Aparicio, T.; Guetz, G.D.; Lécaille, C.; Artru, P.; Sickersen, G.; et al. Efficacy of adjuvant chemotherapy in colon cancer with microsatellite instability: A large multicenter AGEO study. J. Natl. Cancer Inst. 2016, 108, djv438. [Google Scholar] [CrossRef]
- Ostwal, V.; Pande, N.S.; Engineer, R.; Saklani, A.; Desouza, A.; Ramadwar, M.; Sawant, S.; Mandavkar, S.; Shrirangwar, S.; Kataria, P.; et al. Low prevalence of deficient mismatch repair (dMMR) protein in locally advanced rectal cancers (LARC) and treatment outcomes. J. Gastrointest. Oncol. 2019, 10, 19–29. [Google Scholar] [CrossRef]
- Le, D.T.; Kim, T.W.; Van Cutsem, E.; Geva, R.; Jäger, D.; Hara, H.; Burge, M.; O’neil, B.; Kavan, P.; Yoshino, T.; et al. Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability–high/mismatch repair–deficient metastatic colorectal cancer: KEYNOTE-164. J. Clin. Oncol. 2020, 38, 11–19. [Google Scholar] [CrossRef]
- Overman, M.J.; Lonardi, S.; Wong, K.Y.M.; Lenz, H.; Gelsomino, F.; Aglietta, M.; Morse, M.A.; Van Cutsem, E.; McDermott, R.; Hill, A.; et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J. Clin. Oncol. 2018, 36, 773–779. [Google Scholar] [CrossRef]
- André, T.; Lonardi, S.; Wong, K.; Lenz, H.; Gelsomino, F.; Aglietta, M.; Morse, M.; Van Cutsem, E.; McDermott, R.; Hill, A.; et al. SO-27 Nivolumab plus low-dose ipilimumab in previously treated patients with microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: 4-year follow-up from CheckMate 142. Ann. Oncol. 2021, 32 (Suppl. S3), S213–S214. [Google Scholar] [CrossRef]
- Diaz, L.A.; Shiu, K.K.; Kim, T.W.; Vittrup Jensen, B.; Jensen, L.H.; Punt, C.; Smith, D.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; et al. Pembrolizumab versus chemotherapy for microsatellite instability-high/mismatch repair deficient metastatic colorectal cancer: The phase 3 KEYNOTE-177 study. Lancet Oncol. 2022, 23, 659–670. [Google Scholar] [CrossRef]
- Chalabi, M.; Fanchi, L.F.; Dijkstra, K.K.; Van Den Berg, J.G.; Aalbers, A.G.; Sikorska, K.; Lopez-Yurda, M.; Grootscholten, C.; Beets, G.L.; Snaebjornsson, P.; et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers. Nat. Med. 2020, 26, 566–576. [Google Scholar] [CrossRef]
- Hu, H.; Kang, L.; Zhang, J.; Wu, Z.; Wang, H.; Huang, M.; Lan, P.; Wu, X.; Wang, C.; Cao, W.; et al. Neoadjuvant PD-1 blockade with toripalimab, with or without celecoxib, in mismatch repair-deficient or microsatellite instability-high, locally advanced, colorectal cancer (PICC): A single-centre, parallel-group, non-comparative, randomised, phase 2 trial. Lancet Gastroenterol. Hepatol. 2022, 7, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Cercek, A.; Lumish, M.; Sinopoli, J.; Weiss, J.; Shia, J.; Lamendola-Essel, M.; El Dika, I.H.; Segal, N.; Shcherba, M.; Sugarman, R.; et al. PD-1 blockade in mismatch repair–deficient, locally advanced rectal cancer. N. Engl. J. Med. 2022, 386, 2363–2376. [Google Scholar] [CrossRef] [PubMed]
- Chalabi, M.; Verschoor, Y.; Berg, J.v.D.; Sikorska, K.; Beets, G.; Lent, A.; Grootscholten, M.; Aalbers, A.; Buller, N.; Marsman, H.; et al. LBA7 Neoadjuvant immune checkpoint inhibition in locally advanced MMR-deficient colon cancer: The NICHE-2 study. Ann. Oncol. 2022, 33 (Suppl. S7), S1389. [Google Scholar] [CrossRef]
- Garcia-Aguilar, J.; Patil, S.; Gollub, M.J.; Kim, J.K.; Yuval, J.B.; Thompson, H.M.; Verheij, F.S.; Omer, D.M.; Lee, M.; Dunne, R.F.; et al. Organ preservation in patients with rectal adenocarcinoma treated with total neoadjuvant therapy. J. Clin. Oncol. 2022, 40, 2546–2556. [Google Scholar] [CrossRef] [PubMed]
- Pantel, K.; Alix-Panabières, C. Circulating tumour cells in cancer patients: Challenges and perspectives. Trends Mol. Med. 2010, 16, 398–406. [Google Scholar] [CrossRef]
- Siravegna, G.; Marsoni, S.; Siena, S.; Bardelli, A. Integrating liquid biopsies into the management of cancer. Nat. Rev. Clin. Oncol. 2017, 14, 531–548. [Google Scholar] [CrossRef]
- Merker, J.D.; Oxnard, G.R.; Compton, C.; Diehn, M.; Hurley, P.; Lazar, A.J.; Lindeman, N.; Lockwood, C.M.; Rai, A.J.; Schilsky, R.L.; et al. Circulating tumor DNA analysis in patients with cancer: American Society of Clinical Oncology and College of American Pathologists joint review. J. Clin. Oncol. 2018, 36, 1631–1641. [Google Scholar] [CrossRef]
- Haber, D.A.; Velculescu, V.E. Blood-based analyses of cancer: Circulating tumor cells and circulating tumor DNA. Cancer Discov. 2014, 4, 650–661. [Google Scholar] [CrossRef]
- Diehl, F.; Schmidt, K.; Choti, M.A.; Romans, K.; Goodman, S.; Li, M.; Thornton, K.; Agrawal, N.; Sokoll, L.; Szabo, S.A.; et al. Circulating mutant DNA to assess tumor dynamics. Nat. Med. 2008, 14, 985–990. [Google Scholar] [CrossRef]
- Jiang, P.; Chan, C.W.M.; Chan, K.C.A.; Cheng, S.H.; Wong, J.; Wong, V.W.-S.; Wong, G.L.H.; Chan, S.L.; Mok, T.S.K.; Chan, H.L.Y.; et al. Lengthening and shortening of plasma DNA in hepatocellular carcinoma patients. Proc. Natl. Acad. Sci. USA 2015, 112, E1317–E1325. [Google Scholar] [CrossRef]
- Corcoran, R.B.; Chabner, B.A. Application of cell-free DNA analysis to cancer treatment. N. Engl. J. Med. 2018, 379, 1754–1765. [Google Scholar] [CrossRef] [PubMed]
- Dasari, A.; Morris, V.K.; Allegra, C.J.; Atreya, C.; Benson, A.B., III; Boland, P.; Chung, K.; Copur, M.S.; Corcoran, R.B.; Deming, D.A.; et al. ctDNA applications and integration in colorectal cancer: An NCI Colon and Rectal-Anal Task Forces whitepaper. Nat. Rev. Clin. Oncol. 2020, 17, 757–770. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, T.V.; Tarazona, N.; Frydendahl, A.; Reinert, T.; Gimeno-Valiente, F.; Carbonell-Asins, J.A.; Sharma, S.; Renner, D.; Hafez, D.; Roda, D.; et al. Circulating tumor DNA in stage III colorectal cancer, beyond minimal residual disease detection, toward assessment of adjuvant therapy efficacy and clinical behavior of recurrences. Clin. Cancer Res. 2022, 28, 507–517. [Google Scholar] [CrossRef]
- Parikh, A.R.; Van Seventer, E.E.; Siravegna, G.; Hartwig, A.V.; Jaimovich, A.; He, Y.; Kanter, K.; Fish, M.G.; Fosbenner, K.D.; Miao, B.; et al. Minimal residual disease detection using a plasma-only circulating tumor DNA assay in patients with colorectal cancer. Clin. Cancer Res. 2021, 27, 5586–5594. [Google Scholar] [CrossRef]
- Jaiswal, S.; Fontanillas, P.; Flannick, J.; Manning, A.; Grauman, P.V.; Mar, B.G.; Lindsley, R.C.; Mermel, C.H.; Burtt, N.; Chavez, A.; et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 2014, 371, 2488–2498. [Google Scholar] [CrossRef]
- Steensma, D.P.; Bolton, K.L. What to tell your patient with clonal hematopoiesis and why: Insights from 2 specialized clinics. Blood 2020, 136, 1623–1631. [Google Scholar] [CrossRef]
- Malla, M.; Loree, J.M.; Kasi, P.M.; Parikh, A.R. Using circulating tumor DNA in colorectal cancer: Current and evolving practices. J. Clin. Oncol. 2022, 40, 2846–2857. [Google Scholar] [CrossRef]
- Tie, J.; Wang, Y.; Tomasetti, C.; Li, L.; Springer, S.; Kinde, I.; Silliman, N.; Tacey, M.; Wong, H.-L.; Christie, M.; et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci. Transl. Med. 2016, 8, 346ra92. [Google Scholar] [CrossRef]
- Tie, J.; Cohen, J.D.; Wang, Y.; Christie, M.; Simons, K.; Lee, M.; Wong, R.; Kosmider, S.; Ananda, S.; McKendrick, J.; et al. Circulating tumor DNA analyses as markers of recurrence risk and benefit of adjuvant therapy for stage III colon cancer. JAMA Oncol. 2019, 5, 1710–1717. [Google Scholar] [CrossRef]
- Taieb, J.; Taly, V.; Henriques, J.; Bourreau, C.; Mineur, L.; Bennouna, J.; Desrame, J.; Louvet, C.; Lepere, C.; Mabro, M.; et al. Prognostic value and relation with adjuvant treatment duration of ctDNA in stage III colon cancer: A post hoc analysis of the PRODIGE-GERCOR IDEA-France trial. Clin. Cancer Res. 2021, 27, 5638–5646. [Google Scholar] [CrossRef]
- Reinert, T.; Henriksen, T.V.; Christensen, E.; Sharma, S.; Salari, R.; Sethi, H.; Knudsen, M.; Nordentoft, I.K.; Wu, H.-T.; Tin, A.S.; et al. Analysis of plasma cell-free DNA by ultradeep sequencing in patients with stages I to III colorectal cancer. JAMA Oncol. 2019, 5, 1124–1131. [Google Scholar] [CrossRef]
- Wang, Y.; Li, L.; Cohen, J.D.; Kinde, I.; Ptak, J.; Popoli, M.; Schaefer, J.; Silliman, N.; Dobbyn, L.; Tie, J.; et al. Prognostic potential of circulating tumor DNA measurement in postoperative surveillance of nonmetastatic colorectal cancer. JAMA Oncol. 2019, 5, 1118–1123. [Google Scholar] [CrossRef]
- Henriksen, T.V.; Tarazona, N.; Reinert, T.; Carbonell-Asins, J.A.; Renner, D.; Sharma, S.; Roda, D.; Huerta, M.; Roselló, S.; Iversen, L.H.; et al. Circulating tumor DNA analysis for assessment of recurrence risk, benefit of adjuvant therapy, and early relapse detection after treatment in colorectal cancer patients. J. Clin. Oncol. 2021, 39 (Suppl. S3), 11. [Google Scholar] [CrossRef]
- Anandappa, G.; Starling, N.; Begum, R.; Bryant, A.; Sharma, S.; Renner, D.; Aresu, M.; Peckitt, C.; Sethi, H.; Feber, A.; et al. Minimal residual disease (MRD) detection with circulating tumor DNA (ctDNA) from personalized assays in stage II-III colorectal cancer patients in a U.K. multicenter prospective study (TRACC). J. Clin. Oncol. 2021, 39 (Suppl. S3), 102. [Google Scholar] [CrossRef]
- Kotaka, M.; Shirasu, H.; Watanabe, J.; Yamazaki, K.; Hirata, K.; Akazawa, N.; Matsuhashi, N.; Yokota, M.; Ikeda, M.; Kato, K.; et al. Association of circulating tumor DNA dynamics with clinical outcomes in the adjuvant setting for patients with colorectal cancer from an observational GALAXY study in CIRCULATE-Japan. J. Clin. Oncol. 2022, 40 (Suppl. S4), 9. [Google Scholar] [CrossRef]
- Tsukada, Y.; Matsuhashi, N.; Murano, T.; Shiozawa, M.; Kato, T.; Oki, E.; Goto, M.; Kagawa, Y.; Kanazawa, A.; Ohta, T.; et al. Impact of postoperative integrated genomic and epigenomic signatures of circulating tumor DNA (ctDNA) on recurrence in resected colorectal cancer: Initial report of a prospective ctDNA monitoring study COSMOS-CRC-01. J. Clin. Oncol. 2022, 40 (Suppl. S4), 168. [Google Scholar] [CrossRef]
- Tie, J.; Cohen, J.D.; Lahouel, K.; Lo, S.N.; Wang, Y.; Kosmider, S.; Wong, R.; Shapiro, J.; Lee, M.; Harris, S.; et al. Circulating tumor DNA analysis guiding adjuvant therapy in stage II colon cancer. N. Engl. J. Med. 2022, 386, 2261–2272. [Google Scholar] [CrossRef]
- Gunderson, L.L.; Jessup, J.M.; Sargent, D.J.; Greene, F.L.; Stewart, A.K. Revised TN categorization for colon cancer based on national survival outcomes data. J. Clin. Oncol. 2010, 28, 264–271. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network® (NCCN®). NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®)—NCCN Evidence Blocks™—Colon Cancer—Version 2. 2022. Available online: www.nccn.org/professionals/physician_gls/pdf/colon_blocks.pdf (accessed on 5 February 2023).
- Argilés, G.; Tabernero, J.; Labianca, R.; Hochhauser, D.; Salazar, R.; Iveson, T.; Laurent-Puig, P.; Quirke, P.; Yoshino, T.; Taieb, J.; et al. Localised colon cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2020, 31, 1291–1305. [Google Scholar] [CrossRef]
- Costas-Chavarri, A.; Nandakumar, G.; Temin, S.; Lopes, G.; Cervantes, A.; Correa, M.C.; Engineer, R.; Hamashima, C.; Ho, G.F.; Huitzil, F.D.; et al. Treatment of patients with early-stage colorectal cancer: ASCO resource-stratified guideline. J. Glob. Oncol. 2019, 5, 1–19. [Google Scholar] [CrossRef]
- Sargent, D.; Sobrero, A.; Grothey, A.; O’Connell, M.J.; Buyse, M.; Andre, T.; Zheng, Y.; Green, E.; Labianca, R.; O’Callaghan, C.; et al. Evidence for cure by adjuvant therapy in colon cancer: Observations based on individual patient data from 20,898 patients on 18 randomized trials. J. Clin. Oncol. 2009, 27, 872–877. [Google Scholar] [CrossRef] [PubMed]
- Tie, J.; Cohen, J.; Lahouel, K.; Lo, S.N.; Wang, Y.; Wong, R.; Shapiro, J.; Harris, S.; Khattak, A.; Burge, M.; et al. Circulating tumour DNA (ctDNA) dynamics, CEA and sites of recurrence for the randomised DYNAMIC study: Adjuvant chemotherapy (ACT) guided by ctDNA analysis in stage II colon cancer (CC). Ann. Oncol. 2022, 33 (Suppl. S7), S136–S196. Available online: https://oncologypro.esmo.org/meeting-resources/esmo-congress/circulating-tumour-dna-ctdna-dynamics-cea-and-sites-of-recurrence-for-the-randomised-dynamic-study-adjuvant-chemotherapy-act-guided-by-ctdna (accessed on 5 February 2023). [CrossRef]
- Venook, A.P.; Ou, F.-S.; Lenz, H.-J.; Kabbarah, O.; Qu, X.; Niedzwiecki, D.; Zemla, T.; Goldberg, R.M.; Hochster, H.S.; O’Neil, B.H.; et al. Primary (1°) tumor location as an independent prognostic marker from molecular features for overall survival (OS) in patients (pts) with metastatic colorectal cancer (mCRC): Analysis of CALGB/SWOG 80405 (Alliance). J. Clin. Oncol. 2017, 35, 3503. [Google Scholar] [CrossRef]
- Abrahao, A.B.K.; Karim, S.; Colwell, B.; Berry, S.; Biagi, J. The predictive effect of primary tumour location in the treatment of metastatic colorectal cancer: A Canadian consensus statement. Curr. Oncol. 2017, 24, 390–400. [Google Scholar] [CrossRef] [PubMed]
- Holch, J.W.; Ricard, I.; Stintzing, S.; Modest, D.P.; Heinemann, V. The relevance of primary tumour location in patients with metastatic colorectal cancer: A meta-analysis of first-line clinical trials. Eur. J. Cancer 2017, 70, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, T.; Watanabe, J.; Shitara, K.; Yasui, H.; Ohori, H.; Shiozawa, M.; Yamazaki, K.; Oki, E.; Sato, T.; Naitoh, T.; et al. Panitumumab (PAN) plus mFOLFOX6 versus bevacizumab (BEV) plus mFOLFOX6 as first-line treatment in patients with RAS wild-type (WT) metastatic colorectal cancer (mCRC): Results from the phase 3 PARADIGM trial. J. Clin. Oncol. 2022, 40, LBA1. [Google Scholar] [CrossRef]
- Heald, B.; Hampel, H.; Church, J.; Dudley, B.; Hall, M.J.; Mork, M.E.; Singh, A.; Stoffel, E.; Stoll, J.; You, Y.N.; et al. Collaborative Group of the Americas on Inherited Gastrointestinal Cancer Position statement on multigene panel testing for patients with colorectal cancer and/or polyposis. Fam. Cancer 2020, 19, 223–239. [Google Scholar] [CrossRef]
- Eikenboom, E.L.; van der Werf-’t Lam, A.S.; Rodríguez-Girondo, M.; Van Asperen, C.J.; Dinjens, W.N.M.; Hofstra, R.M.W.; Van Leerdam, M.E.; Morreau, H.; Spaander, M.C.W.; Wagner, A.; et al. Universal immunohistochemistry for Lynch syndrome: A systematic review and meta-analysis of 58,580 colorectal carcinomas. Clin. Gastroenterol. Hepatol. 2022, 20, e496–e507. [Google Scholar] [CrossRef]
- Holter, S.; Hall, M.J.; Hampel, H.; Jasperson, K.; Kupfer, S.S.; Haidle, J.L.; Mork, M.E.; Palaniapppan, S.; Senter, L.; Stoffel, E.M.; et al. Risk assessment and genetic counseling for Lynch syndrome—Practice resource of the National Society of Genetic Counselors and the Collaborative Group of the Americas on Inherited Gastrointestinal Cancer. J. Genet. Couns. 2022, 31, 568–583. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network® (NCCN®). NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®)—Genetic/Familial High-Risk Assessment: Colorectal—Version 2. 2022—7 December 2022. Available online: www.nccn.org/professionals/physician_gls/pdf/genetics_colon.pdf (accessed on 5 February 2023).
- Pearlman, R.; Frankel, W.L.; Swanson, B.; Zhao, W.; Yilmaz, A.; Miller, K.; Bacher, J.; Bigley, C.; Nelsen, L.; Goodfellow, P.J.; et al. Prevalence and spectrum of germline cancer susceptibility gene mutations among patients with early-onset colorectal cancer. JAMA Oncol. 2017, 3, 464–471. [Google Scholar] [CrossRef]
- Stoffel, E.M.; Koeppe, E.; Everett, J.; Ulintz, P.; Kiel, M.; Osborne, J.; Williams, L.; Hanson, K.; Gruber, S.B.; Rozek, L.S. Germline genetic features of young individuals with colorectal cancer. Gastroenterology 2018, 154, 897–905.e1. [Google Scholar] [CrossRef] [PubMed]
- Hampel, H.; Yurgelun, M.B. Point/counterpoint: Is it time for universal germline genetic testing for all GI cancers? J. Clin. Oncol. 2022, 40, 2681–2692. [Google Scholar] [CrossRef] [PubMed]
- Umar, A.; Boland, C.R.; Terdiman, J.P.; Syngal, S.; Chapelle, A.D.L.; Rüschoff, J.; Fishel, R.; Lindor, N.M.; Burgart, L.J.; Hamelin, R.; et al. Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J. Natl. Cancer Inst. 2004, 96, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Dekker, E.; Bleijenberg, A.; Balaguer, F. Update on the World Health Organization criteria for diagnosis of serrated polyposis syndrome. Gastroenterology 2020, 158, 1520–1523. [Google Scholar] [CrossRef]
- Gastrointestinal Tumor Study Group. Prolongation of the disease-free interval in surgically treated rectal carcinoma. N. Engl. J. Med. 1985, 312, 1465–1472. [Google Scholar] [CrossRef]
- Thomas, P.R.; Lindblad, A.S. Adjuvant postoperative radiotherapy and chemotherapy in rectal carcinoma: A review of the Gastrointestinal Tumor Study Group experience. Radiother. Oncol. 1988, 13, 245–252. [Google Scholar] [CrossRef]
- Sauer, R.; Becker, H.; Hohenberger, W.; Rodel, C.; Wittekind, C.; Fietkau, R.; Martus, P.; Tschmelitsch, J.; Hager, E.; Hess, C.F.; et al. Preoperative versus postoperative chemoradiotherapy for rectal cancer. N. Engl. J. Med. 2004, 351, 1731–1740. [Google Scholar] [CrossRef]
- Sauer, R.; Liersch, T.; Merkel, S.; Fietkau, R.; Hohenberger, W.; Hess, C.; Becker, H.; Raab, H.-R.; Villanueva, M.-T.; Witzigmann, H.; et al. Preoperative versus postoperative chemoradiotherapy for locally advanced rectal cancer: Results of the German CAO/ARO/AIO-94 randomized phase III trial after a median follow-up of 11 years. J. Clin. Oncol. 2012, 30, 1926–1933. [Google Scholar] [CrossRef]
- Kapiteijn, E.; Marijnen, C.A.; Nagtegaal, I.D.; Putter, H.; Steup, W.H.; Wiggers, T.; Rutten, H.J.; Pahlman, L.; Glimelius, B.; Van Krieken, J.H.; et al. Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer. N. Engl. J. Med. 2001, 345, 638–646. [Google Scholar] [CrossRef]
- Peeters, K.C.; Marijnen, C.A.; Nagtegaal, I.D.; Kranenbarg, E.K.; Putter, H.; Wiggers, T.; Rutten, H.; Pahlman, L.; Glimelius, B.; Leer, J.W.; et al. The TME trial after a median follow-up of 6 years: Increased local control but no survival benefit in irradiated patients with resectable rectal carcinoma. Ann. Surg. 2007, 246, 693–701. [Google Scholar] [CrossRef]
- Van Gijn, W.; Marijnen, C.A.M.; Nagtegaal, I.D.; Kranenbarg, E.M.K.; Putter, H.; Wiggers, T.; Rutten, H.J.T.; Pahlman, L.; Glimelius, B.; van de Velde, C.J.; et al. Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer: 12-year follow-up of the multicentre, randomised controlled TME trial. Lancet Oncol. 2011, 12, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Ngan, S.Y.; Burmeister, B.; Fisher, R.J.; Solomon, M.; Goldstein, D.; Joseph, D.; Ackland, S.P.; Schache, D.; McClure, B.; McLachlan, S.-A.; et al. Randomized trial of short-course radiotherapy versus long-course chemoradiation comparing rates of local recurrence in patients with T3 rectal cancer: Trans-Tasman Radiation Oncology Group trial 01.04. J. Clin. Oncol. 2012, 30, 3827–3833. [Google Scholar] [CrossRef] [PubMed]
- Bujko, K.; Nowacki, M.P.; Nasierowska-Guttmejer, A.; Michalski, W.; Bebenek, M.; Kryj, M. Long-term results of a randomized trial comparing preoperative short-course radiotherapy with preoperative conventionally fractionated chemoradiation for rectal cancer. Br. J. Surg. 2006, 93, 1215–1223. [Google Scholar] [CrossRef]
- Erlandsson, J.; Holm, T.; Pettersson, D.; Berglund, A.; Cedermark, B.; Radu, C.; Johansson, H.; Machado, M.; Hjern, F.; Hallböök, O.; et al. Optimal fractionation of preoperative radiotherapy and timing to surgery for rectal cancer (Stockholm III): A multicentre, randomised, non-blinded, phase 3, non-inferiority trial. Lancet Oncol. 2017, 18, 336–346. [Google Scholar] [CrossRef] [PubMed]
- Pach, R.; Kulig, J.; Richter, P.; Gach, T.; Szura, M.; Kowalska, T. Randomized clinical trial on preoperative radiotherapy 25 Gy in rectal cancer—Treatment results at 5-year follow-up. Langenbecks Arch. Surg. 2012, 397, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Bahadoer, R.R.; A Dijkstra, E.; van Etten, B.; Marijnen, C.A.M.; Putter, H.; Kranenbarg, E.M.-K.; Roodvoets, A.G.H.; Nagtegaal, I.D.; Beets-Tan, R.G.H.; Blomqvist, L.K.; et al. Short-course radiotherapy followed by chemotherapy before total mesorectal excision (TME) versus preoperative chemoradiotherapy, TME, and optional adjuvant chemotherapy in locally advanced rectal cancer (RAPIDO): A randomised, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 29–42. [Google Scholar] [CrossRef]
- Jin, J.; Tang, Y.; Hu, C.; Jiang, L.-M.; Jiang, J.; Li, N.; Liu, W.-Y.; Chen, S.-L.; Li, S.; Lu, N.-N.; et al. Multicenter, randomized, phase III trial of short-term radiotherapy plus chemotherapy versus long-term chemoradiotherapy in locally advanced rectal cancer (STELLAR). J. Clin. Oncol. 2022, 40, 1681–1692. [Google Scholar] [CrossRef]
- Conroy, T.; Bosset, J.-F.; Etienne, P.-L.; Rio, E.; François, E.; Mesgouez-Nebout, N.; Vendrely, V.; Artignan, X.; Bouché, O.; Gargot, D.; et al. Neoadjuvant chemotherapy with FOLFIRINOX and preoperative chemoradiotherapy for patients with locally advanced rectal cancer (UNICANCER-PRODIGE 23): A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 702–715. [Google Scholar] [CrossRef]
- Benson, R.; Wong, C.S.; Cummings, B.J.; Brierley, J.; Catton, P.; Ringash, J.; Abdolell, M. Local excision and postoperative radiotherapy for distal rectal cancer. Int. J. Radiat. Oncol. Biol. Phys. 2001, 50, 1309–1316. [Google Scholar] [CrossRef]
- Chakravarti, A.; Compton, C.C.; Shellito, P.C.; Wood, W.C.; Landry, J.; Machuta, S.R.; Kaufman, D.; Ancukiewicz, M.; Willett, C.G. Long-term follow-up of patients with rectal cancer managed by local excision with and without adjuvant irradiation. Ann. Surg. 1999, 230, 49–54. [Google Scholar] [CrossRef]
- Wagman, R.; Minsky, B.D.; Cohen, A.M.; Saltz, L.; Paty, P.B.; Guillem, J.G. Conservative management of rectal cancer with local excision and postoperative adjuvant therapy. Int. J. Radiat. Oncol. Biol. Phys. 1999, 44, 841–846. Available online: https://pubmed.ncbi.nlm.nih.gov/10386641/ (accessed on 5 February 2023). [CrossRef] [PubMed]
- Rizzo, G.; Pafundi, D.P.; Sionne, F.; Pietricola, G.; D’Agostino, L.; Gambacorta, M.A.; Valentini, V.; Coco, C. Transanal endoscopic microsurgery versus total mesorectal excision in ypT0-1 rectal cancer after preoperative radiochemotherapy: Postoperative morbidity, functional results, and long-term oncologic outcome. Dis. Colon Rectum 2022, 65, 1306–1315. [Google Scholar] [CrossRef] [PubMed]
- Mellgren, A.; Sirivongs, P.; Rothenberger, D.A.; Madoff, R.; Garcia-Aguilar, J. Is local excision adequate therapy for early rectal cancer? Dis. Colon Rectum 2000, 43, 1064–1071. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, S.; Tjandra, J.J. Local excision of rectal cancer: What is the evidence? Dis. Colon Rectum 2001, 44, 1345–1361. [Google Scholar] [CrossRef]
- Wexner, S.D.; Rotholtz, N.A. Surgeon influenced variables in resectional rectal cancer surgery. Dis. Colon Rectum 2000, 43, 1606–1627. Available online: https://pubmed.ncbi.nlm.nih.gov/11089603/ (accessed on 5 February 2023). [CrossRef]
- Buess, G.; Theiss, R.; Günther, M.; Hutterer, F.; Pichlmaier, H. Endoscopic surgery in the rectum. Endoscopy 1985, 17, 31–35. [Google Scholar] [CrossRef]
- Heald, R.J.; Husband, E.M.; Ryall, R.D. The mesorectum in rectal cancer surgery—The clue to pelvic recurrence? Br. J. Surg. 1982, 69, 613–616. [Google Scholar] [CrossRef]
- Winde, G.; Nottberg, H.; Keller, R.; Schmid, K.; Bunte, H. Surgical cure for early rectal carcinomas (T1). Transanal endoscopic microsurgery vs. anterior resection. Dis. Colon Rectum 1996, 39, 969–976. [Google Scholar] [CrossRef]
- Lezoche, G.; Baldarelli, M.; Guerrieri, M.; De Sanctis, A.; Bartolacci, S.; Lezoche, E. A prospective randomized study with a 5-year minimum follow-up evaluation of transanal endoscopic microsurgery versus laparoscopic total mesorectal excision after neoadjuvant therapy. Surg. Endosc. 2008, 22, 352–358. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Z.; Zhu, K.; Shi, P.D.; Yin, L. Transanal endoscopic microsurgery versus laparoscopic lower anterior resection for the treatment of T1-2 rectal cancers. Hepatogastroenterology 2013, 60, 727–732. Available online: https://pubmed.ncbi.nlm.nih.gov/23159393/ (accessed on 5 February 2023).
- Bach, S.P.; Gilbert, A.; Brock, K.; Korsgen, S.; Geh, I.; Hill, J.; Gill, T.; Hainsworth, P.; Tutton, M.G.; Khan, J.; et al. Radical surgery versus organ preservation via short-course radiotherapy followed by transanal endoscopic microsurgery for early-stage rectal cancer (TREC): A randomised, open-label feasibility study. Lancet Gastroenterol. Hepatol. 2021, 6, 92–105. [Google Scholar] [CrossRef] [PubMed]
- Althumairi, A.A.; Gearhart, S.L. Local excision for early rectal cancer: Transanal endoscopic microsurgery and beyond. J. Gastrointest. Oncol. 2015, 6, 296–306. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, R.; Takano, M.; Takagi, K.; Fujimoto, N.; Nozaki, R.; Fujiyoshi, T.; Uchida, Y. Management of early invasive colorectal cancer. Risk of recurrence and clinical guidelines. Dis. Colon Rectum 1995, 38, 1286–1295. [Google Scholar] [CrossRef] [PubMed]
- Zenni, G.C.; Abraham, K.; Harford, F.J.; Potocki, D.M.; Herman, C.; Dobrin, P.B. Characteristics of rectal carcinomas that predict the presence of lymph node metastases: Implications for patient selection for local therapy. J. Surg. Oncol. 1998, 67, 99–103. [Google Scholar] [CrossRef]
- Brodsky, J.T.; Richard, G.K.; Cohen, A.M.; Minsky, B.D. Variables correlated with the risk of lymph node metastasis in early rectal cancer. Cancer 1992, 69, 322–326. [Google Scholar] [CrossRef]
- Phang, P.T.; Wong, W.D.W. The use of endoluminal ultrasound for malignant and benign anorectal diseases. Curr. Opin. Gastroenterol. 1997, 13, 47–53. Available online: https://journals.lww.com/co-gastroenterology/Abstract/1997/01000/The_use_of_endoluminal_ultrasound_for_malignant.9.aspx (accessed on 5 February 2023). [CrossRef]
- Phang, P.T. Rectal cancer DFP dedicated issue: Abdominal radiology: The role of ERUS in staging of primary rectal cancer: A surgeon’s perspective. Abdom. Radiol. 2019, 44, 3740–3742. [Google Scholar] [CrossRef]
Name | Position | Organization |
---|---|---|
Gill, Sharlene | Medical Oncologist | British Columbia Cancer Agency—Vancouver |
Ahmed, Shahid | Medical Oncologist | Saskatchewan Cancer Agency |
Anderson, Brady | Medical Oncologist | Western Manitoba Cancer Center |
Berry, Scott | Medical Oncologist | Queen’s University |
Gill, Karamjit | Medical Oncologist | British Columbia Cancer Agency—Vancouver |
Iqbal, Mussawar | Medical Oncologist | Allan Blair Cancer Centre |
Lim, Howard | Medical Oncologist | British Columbia Cancer Agency—Vancouver |
Phang, Terry | Professor of Surgery | University of British Columbia |
Sharma, Ankur | Radiation Oncologist/ Clinical Assistant Professor | Central Alberta Cancer Centre/University of Calgary Cumming School of Medicine |
Solar Vasconcelos, Joao Paulo | GI Medical Oncology Fellow | British Columbia Cancer Agency—Vancouver |
Tankel, Keith | Radiation Oncologist | Cross Cancer Institute |
Chan, Theresa | Medical Oncologist | British Columbia Cancer Agency—Surrey |
Recsky, Magdalena | Surgeon | Kelowna General Hospital |
Nuk, Jennifer | Practice Leader— Genetic Counselling | BC Cancer Hereditary Cancer Program |
Paul, James | Medical Oncologist | CancerCare Manitoba/University of Manitoba |
Number | Question |
---|---|
1 | What is the role of immunotherapy in deficient mismatch repair (dMMR) early-stage rectal cancer? Can a non-operative approach be considered in patients who experience a complete response? |
2 | Can circulating tumour DNA (ctDNA) be used to tailor adjuvant chemotherapy in stage II colon cancer? |
3 | What is the role of chemotherapy in combination with monoclonal antibodies (mAbs) for the first-line treatment of patients with metastatic colorectal cancer? |
4 | Which patients with newly diagnosed colorectal cancer should be referred for genetic screening? |
5 | Which patients with clinical stage II/III rectal cancer should preferably receive long-course chemoradiation over short-course radiation? |
6 | Which patients are best suited for an organ preservation approach with clinical stage I-III rectal cancer? |
|
|
|
|
|
|
|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gill, S.; Ahmed, S.; Anderson, B.; Berry, S.; Lim, H.; Phang, T.; Sharma, A.; Solar Vasconcelos, J.P.; Gill, K.; Iqbal, M.; et al. Report from the 24th Annual Western Canadian Gastrointestinal Cancer Consensus Conference on Colorectal Cancer, Richmond, British Columbia, 28–29, October 2022. Curr. Oncol. 2023, 30, 7964-7983. https://doi.org/10.3390/curroncol30090579
Gill S, Ahmed S, Anderson B, Berry S, Lim H, Phang T, Sharma A, Solar Vasconcelos JP, Gill K, Iqbal M, et al. Report from the 24th Annual Western Canadian Gastrointestinal Cancer Consensus Conference on Colorectal Cancer, Richmond, British Columbia, 28–29, October 2022. Current Oncology. 2023; 30(9):7964-7983. https://doi.org/10.3390/curroncol30090579
Chicago/Turabian StyleGill, Sharlene, Shahid Ahmed, Brady Anderson, Scott Berry, Howard Lim, Terry Phang, Ankur Sharma, Joao Paulo Solar Vasconcelos, Karamjit Gill, Mussawar Iqbal, and et al. 2023. "Report from the 24th Annual Western Canadian Gastrointestinal Cancer Consensus Conference on Colorectal Cancer, Richmond, British Columbia, 28–29, October 2022" Current Oncology 30, no. 9: 7964-7983. https://doi.org/10.3390/curroncol30090579
APA StyleGill, S., Ahmed, S., Anderson, B., Berry, S., Lim, H., Phang, T., Sharma, A., Solar Vasconcelos, J. P., Gill, K., Iqbal, M., Tankel, K., Chan, T., Recsky, M., Nuk, J., Paul, J., Mahmood, S., & Mulder, K. (2023). Report from the 24th Annual Western Canadian Gastrointestinal Cancer Consensus Conference on Colorectal Cancer, Richmond, British Columbia, 28–29, October 2022. Current Oncology, 30(9), 7964-7983. https://doi.org/10.3390/curroncol30090579