Extramammary Paget’s Disease: Diagnosis, Pathogenesis, and Treatment with Focus on Recent Developments
Abstract
:1. Introduction
2. Review
2.1. Epidemiology
2.2. Clinical Presentation
2.3. Classification
2.4. Histopathology
2.5. Pathogenesis
2.6. Patient Evaluation
2.7. Staging
2.8. Evidence of Treatment
2.9. Treatment for Primary Local Lesions
2.9.1. Surgical Treatment
2.9.2. Nonsurgical Treatment
2.9.3. Radiation Therapy
2.9.4. Topical Imiquimod (IMQ) Cream
2.9.5. Photodynamic Therapy
2.10. Treatment for Regional LN Metastases
2.11. Treatment for Distant Metastases
2.11.1. Chemotherapies
2.11.2. Anti-HER2 Antibody Therapy
2.11.3. Hormonal Therapy
2.11.4. Immune Checkpoint Therapy
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siesling, S.; Elferink, M.A.; van Dijck, J.A.; Pierie, J.P.; Blokx, W.A. Epidemiology and treatment of extramammary Paget disease in the Netherlands. Eur. J. Surg. Oncol. 2007, 33, 951–955. [Google Scholar] [CrossRef] [PubMed]
- Herrel, L.A.; Weiss, A.D.; Goodman, M.; Johnson, T.V.; Osunkoya, A.O.; Delman, K.A.; Master, V.A. Extramammary Paget’s disease in males: Survival outcomes in 495 patients. Ann. Surg. Oncol. 2015, 22, 1625–1630. [Google Scholar] [CrossRef]
- Ghazawi, F.M.; Iga, N.; Tanaka, R.; Fujisawa, Y.; Yoshino, K.; Yamashita, C.; Yamamoto, Y.; Fujimura, T.; Yanagi, T.; Hata, H.; et al. Demographic and clinical characteristics of extramammary Paget’s disease patients in Japan from 2000 to 2019. J. Eur. Acad. Dermatol. Venereol. 2021, 35, e133–e135. [Google Scholar] [CrossRef] [PubMed]
- Karam, A.; Dorigo, O. Treatment outcomes in a large cohort of patients with invasive Extramammary Paget’s disease. Gynecol. Oncol. 2012, 125, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Scarbrough, C.A.; Vrable, A.; Carr, D.R. Definition, Association with Malignancy, Biologic Behavior, and Treatment of Ectopic Extramammary Paget’s Disease: A Review of the Literature. J. Clin. Aesthet. Dermatol. 2019, 12, 40–44. [Google Scholar]
- Sawada, Y.; Bito, T.; Kabashima, R.; Yoshiki, R.; Hino, R.; Nakamura, M.; Shiraishi, M.; Tokura, Y. Ectopic extramammary Paget’s disease: Case report and literature review. Acta Derm. Venereol. 2010, 90, 502–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujisawa, Y.; Yoshino, K.; Kiyohara, Y.; Kadono, T.; Murata, Y.; Uhara, H.; Hatta, N.; Uchi, H.; Matsushita, S.; Takenouchi, T.; et al. The role of sentinel lymph node biopsy in the management of invasive extramammary Paget’s disease: Multi-center, retrospective study of 151 patients. J. Dermatol. Sci. 2015, 79, 38–42. [Google Scholar] [CrossRef]
- Yin, S.; Xu, L.; Wang, S.; Feng, J.; Liu, L.; Liu, G.; Wang, J.; Zhan, S.; Zhao, Z.; Gao, P. Prevalence of extramammary Paget’s disease in urban China: A population-based study. Orphanet. J. Rare. Dis. 2021, 16, 134. [Google Scholar] [CrossRef] [PubMed]
- van der Zwan, J.M.; Siesling, S.; Blokx, W.A.; Pierie, J.P.; Capocaccia, R. Invasive extramammary Paget’s disease and the risk for secondary tumours in Europe. Eur. J. Surg. Oncol. 2012, 38, 214–221. [Google Scholar] [CrossRef]
- Zollo, J.D.; Zeitouni, N.C. The Roswell Park Cancer Institute experience with extramammary Paget’s disease. Br. J. Dermatol. 2000, 142, 59–65. [Google Scholar] [CrossRef]
- Pierie, J.P.; Choudry, U.; Muzikansky, A.; Finkelstein, D.M.; Ott, M.J. Prognosis and management of extramammary Paget’s disease and the association with secondary malignancies. J. Am. Coll. Surg. 2003, 196, 45–50. [Google Scholar] [CrossRef]
- Funaro, D.; Krasny, M.; Lam, C.; Desy, D.; Sauthier, P.; Bouffard, D. Extramammary Paget disease: Epidemiology and association to cancer in a Quebec-based population. J. Low. Genit. Tract Dis. 2013, 17, 167–174. [Google Scholar] [CrossRef]
- Cheng, P.S.; Lu, C.L.; Cheng, C.L.; Lai, F.J. Significant male predisposition in extramammary Paget disease: A nationwide population-based study in Taiwan. Br. J. Dermatol. 2014, 171, 191–193. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, X.; Deng, D.; Zhang, J.; Li, H.; Yu, X.; Kong, Y.; Yu, H.; Yao, Z. Cutaneous metastases from triple primary extramammary Paget’s disease. J. Dtsch. Dermatol. Ges. 2020, 18, 1169–1172. [Google Scholar] [PubMed]
- Kitajima, S.; Yamamoto, K.; Tsuji, T.; Schwartz, R.A. Triple extramammary Paget’s disease. Dermatol. Surg. 1997, 23, 1035–1038. [Google Scholar] [CrossRef]
- Iwamoto, K.; Nakamura, Y.; Fujisawa, Y.; Okiyama, N.; Watanabe, R.; Ishitsuka, Y.; Maruyama, H.; Ishii, Y.; Fujimoto, M. Depigmented extramammary Paget’s disease without histological dermal invasion identified by multiple inguinal and pelvic lymph node metastases. Eur. J. Dermatol. 2018, 28, 387–388. [Google Scholar] [CrossRef]
- Shepherd, V.; Davidson, E.J.; Davies-Humphreys, J. Extramammary Paget’s disease. BJOG Int. J. Obstet. Gynaecol. 2005, 112, 273–279. [Google Scholar] [CrossRef] [PubMed]
- St Claire, K.; Hoover, A.; Ashack, K.; Khachemoune, A. Extramammary Paget disease. Dermatol. Online J. 2019, 25, 4. [Google Scholar] [CrossRef]
- Simonds, R.M.; Segal, R.J.; Sharma, A. Extramammary Paget’s disease: A review of the literature. Int. J. Dermatol. 2019, 58, 871–879. [Google Scholar] [CrossRef]
- Kato, J.; Horimoto, K.; Sato, S.; Minowa, T.; Uhara, H. Dermoscopy of Melanoma and Non-melanoma Skin Cancers. Front. Med. 2019, 6, 180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, Y.; Fujisawa, Y. Diagnosis and Management of Acral Lentiginous Melanoma. Curr. Treat. Options Oncol. 2018, 19, 42. [Google Scholar] [CrossRef]
- Mun, J.H.; Park, S.M.; Kim, G.W.; Song, M.; Kim, H.S.; Ko, H.C.; Kim, B.S.; Kim, M.B. Clinical and dermoscopic characteristics of extramammary Paget disease: A study of 35 cases. Br. J. Dermatol. 2016, 174, 1104–1107. [Google Scholar] [CrossRef]
- Payapvipapong, K.; Nakakes, A.; Tanaka, M. Lava lake structure and cloud-like structureless area: New clues for diagnosing extramammary Paget disease. J. Eur. Acad. Dermatol. Venereol. 2017, 31, e459–e461. [Google Scholar] [CrossRef]
- Tsutsui, K.; Namikawa, K.; Mori, T.; Jinnai, S.; Nakama, K.; Ogata, D.; Takahashi, A.; Yamazaki, N. Case of multiple ectopic extramammary Paget’s disease of the trunk. J. Dermatol. 2020, 47, e329–e331. [Google Scholar] [CrossRef]
- Lloyd, J.; Flanagan, A.M. Mammary and extramammary Paget’s disease. J. Clin. Pathol. 2000, 53, 742–749. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, E.J.; Brown, H.M. Vulvar Paget disease of urothelial origin: A report of three cases and a proposed classification of vulvar Paget disease. Hum. Pathol. 2002, 33, 549–554. [Google Scholar] [CrossRef]
- Sharma, P.; Waldman, A.; Xu, J.; Vleugels, F.R. An atypical case of ectopic extramammary Paget disease presenting on the lateral neck. JAAD Case Rep. 2019, 5, 868–870. [Google Scholar] [CrossRef]
- Chiba, H.; Kazama, T.; Takenouchi, T.; Nomoto, S.; Yamada, S.; Tago, O.; Ito, M. Two cases of vulval pigmented extramammary Paget’s disease: Histochemical and immunohistochemical studies. Br. J. Dermatol. 2000, 142, 1190–1194. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.; Taube, J.M. Pigmented extramammary Paget disease of the abdomen: A potential mimicker of melanoma. Dermatol. Online J. 2011, 17, 13. [Google Scholar] [CrossRef] [PubMed]
- McDaniel, B.; Brown, F.; Crane, J.S. Extramammary Paget Disease; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Ohnishi, T.; Watanabe, S. The use of cytokeratins 7 and 20 in the diagnosis of primary and secondary extramammary Paget’s disease. Br. J. Dermatol. 2000, 142, 243–247. [Google Scholar] [CrossRef]
- Zhao, Y.; Gong, X.; Li, N.; Zhu, Q.; Yu, D.; Jin, X. Primary extramammary Paget’s disease: A clinicopathological study of 28 cases. Int. J. Clin. Exp. Pathol. 2019, 12, 3426–3432. [Google Scholar] [PubMed]
- Kang, Z.; Zhang, Q.; Zhang, Q.; Li, X.; Hu, T.; Xu, X.; Wu, Z.; Zhang, X.; Wang, H.; Xu, J.; et al. Clinical and pathological characteristics of extramammary Paget’s disease: Report of 246 Chinese male patients. Int. J. Clin. Exp. Pathol. 2015, 8, 13233–13240. [Google Scholar]
- Terada, T. Urinary bladder urothelial carcinoma with expression of KIT and PDGFRA and showing diverse differentiations into plasmacytoid, clear cell, acantholytic, nested, and spindle variants, and into adenocarcinoma, signet-ring cell carcinoma, small cell carcinoma, large cell carcinoma, and pleomorphic carcinoma. Int. J. Clin. Exp. Pathol. 2013, 6, 1150–1156. [Google Scholar] [PubMed]
- Terada, T. An immunohistochemical study of primary signet-ring cell carcinoma of the stomach and colorectum: III. Expressions of EMA, CEA, CA19-9, CDX-2, p53, Ki-67 antigen, TTF-1, vimentin, and p63 in normal mucosa and in 42 cases. Int. J. Clin. Exp. Pathol. 2013, 6, 630–638. [Google Scholar]
- McKee, P.H.; Hertogs, K.T. Endocervical adenocarcinoma and vulval Paget’s disease: A significant association. Br. J. Dermatol. 1980, 103, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.C.; Li, A.F.; Yang, S.H.; Ma, H.H.; Liang, W.Y. Perianal Paget’s Disease: The 17-Year-Experience of a Single Institution in Taiwan. Gastroenterol. Res. Pract. 2019, 2019, 2603279. [Google Scholar] [CrossRef] [Green Version]
- Goldblum, J.R.; Hart, W.R. Perianal Paget’s disease: A histologic and immunohistochemical study of 11 cases with and without associated rectal adenocarcinoma. Am. J. Surg. Pathol. 1998, 22, 170–179. [Google Scholar] [CrossRef]
- Goldblum, J.R.; Hart, W.R. Vulvar Paget’s disease: A clinicopathologic and immunohistochemical study of 19 cases. Am. J. Surg. Pathol. 1997, 21, 1178–1187. [Google Scholar] [CrossRef]
- Liao, X.; Liu, X.; Fan, X.; Lai, J.; Zhang, D. Perianal Paget’s disease: A clinicopathological and immunohistochemical study of 13 cases. Diagn. Pathol. 2020, 15, 29. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Beltran, A.; Luque, R.J.; Moreno, A.; Bollito, E.; Carmona, E.; Montironi, R. The pagetoid variant of bladder urothelial carcinoma in situ A clinicopathological study of 11 cases. Virchows Arch. 2002, 441, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Padhy, R.R.; Nasseri-Nik, N.; Abbas, F. Poorly differentiated high-grade urothelial carcinoma presenting as Paget’s disease of the vulva with no overt urinary tract neoplasm detected. Gynecol. Oncol. Rep. 2017, 20, 70–72. [Google Scholar] [CrossRef]
- Saad, R.S.; Ghorab, Z.; Khalifa, M.A.; Xu, M. CDX2 as a marker for intestinal differentiation: Its utility and limitations. World J. Gastrointest. Surg. 2011, 3, 159–166. [Google Scholar] [CrossRef]
- Perrotto, J.; Abbott, J.J.; Ceilley, R.I.; Ahmed, I. The role of immunohistochemistry in discriminating primary from secondary extramammary Paget disease. Am. J. Dermatopathol. 2010, 32, 137–143. [Google Scholar] [CrossRef]
- Koyanagi, Y.; Kubo, C.; Nagata, S.; Ryu, A.; Hatano, K.; Kano, R.; Tanada, S.; Ashimura, J.I.; Idota, A.; Kamiura, S.; et al. Detection of pagetoid urothelial intraepithelial neoplasia extending to the vagina by cervical screening cytology: A case report with renewed immunochemical summary. Diagn. Pathol. 2019, 14, 9. [Google Scholar] [CrossRef]
- Kiavash, K.; Kim, S.; Thompson, A.D. “Pigmented Extramammary Paget Disease”—A Potential Mimicker of Malignant Melanoma and a Pitfall in Diagnosis: A Case Report and Review of the Literature. Am. J. Dermatopathol. 2019, 41, 45–49. [Google Scholar] [CrossRef]
- Chiang, B.; Kamiya, K.; Maekawa, T.; Komine, M.; Murata, S.; Ohtsuki, M. Diagnostic Clues for Pagetoid Bowen’s Disease. Indian J. Dermatol. 2020, 65, 167–169. [Google Scholar] [CrossRef] [PubMed]
- Goyal, T.; Varshney, A.; Solanki, R. Co-existence of extramammary Paget’s disease and Bowen’s disease of vulva. Indian J. Dermatol. Venereol. Leprol. 2014, 80, 530–533. [Google Scholar] [CrossRef]
- Memezawa, A.; Okuyama, R.; Tagami, H.; Aiba, S. p63 constitutes a useful histochemical marker for differentiation of pagetoid Bowen’s disease from extramammary Paget’s disease. Acta Derm. Venereol. 2008, 88, 619–620. [Google Scholar] [PubMed]
- Kiniwa, Y.; Yasuda, J.; Saito, S.; Saito, R.; Motoike, I.N.; Danjoh, I.; Kinoshita, K.; Fuse, N.; Yamamoto, M.; Okuyama, R. Identification of genetic alterations in extramammary Paget disease using whole exome analysis. J. Dermatol. Sci. 2019, 94, 229–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, Z.; Xu, F.; Zhang, Q.A.; Wu, Z.; Zhang, X.; Xu, J.; Luo, Y.; Guan, M. Oncogenic mutations in extramammary Paget’s disease and their clinical relevance. Int. J. Cancer 2013, 132, 824–831. [Google Scholar] [CrossRef] [PubMed]
- Ishida, Y.; Kakiuchi, N.; Yoshida, K.; Inoue, Y.; Irie, H.; Kataoka, T.R.; Hirata, M.; Funakoshi, T.; Matsushita, S.; Hata, H.; et al. Unbiased Detection of Driver Mutations in Extramammary Paget Disease. Clin. Cancer Res. 2021, 27, 1756–1765. [Google Scholar] [CrossRef] [PubMed]
- Takeichi, T.; Okuno, Y.; Matsumoto, T.; Tsunoda, N.; Suzuki, K.; Tanahashi, K.; Kono, M.; Kikumori, T.; Muro, Y.; Akiyama, M. Frequent FOXA1-Activating Mutations in Extramammary Paget’s Disease. Cancers 2020, 12, 820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Zhang, D.; Li, Q.; Liang, J.; Sun, L.; Yi, X.; Chen, Z.; Yan, R.; Xie, G.; Li, W.; et al. Nucleation of DNA repair factors by FOXA1 links DNA demethylation to transcriptional pioneering. Nat. Genet. 2016, 48, 1003–1013. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, R.; Sasajima, Y.; Tsuda, H.; Namikawa, K.; Tsutsumida, A.; Otsuka, F.; Yamazaki, N. Human epidermal growth factor receptor 2 protein overexpression and gene amplification in extramammary Paget disease. Br. J. Dermatol. 2013, 168, 1259–1266. [Google Scholar] [CrossRef]
- Richter, C.E.; Hui, P.; Buza, N.; Silasi, D.A.; Azodi, M.; Santin, A.D.; Schwartz, P.E.; Rutherford, T.J. HER-2/NEU overexpression in vulvar Paget disease: The Yale experience. J. Clin. Pathol. 2010, 63, 544–547. [Google Scholar] [CrossRef]
- Bartoletti, M.; Mazzeo, R.; De Scordilli, M.; Del Fabro, A.; Vitale, M.G.; Bortot, L.; Nicoloso, M.S.; Corsetti, S.; Bonotto, M.; Scalone, S.; et al. Human epidermal growth factor receptor-2 (HER2) is a potential therapeutic target in extramammary Paget’s disease of the vulva. Int. J. Gynecol. Cancer 2020, 30, 1672–1677. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, R.; Sasajima, Y.; Tsuda, H.; Namikawa, K.; Takahashi, A.; Tsutsumida, A.; Fujisawa, Y.; Fujimoto, M. Yamazaki, N. Concordance of the HER2 protein and gene status between primary and corresponding lymph node metastatic sites of extramammary Paget disease. Clin. Exp. Metastasis 2016, 33, 687–697. [Google Scholar] [CrossRef]
- Lin, J.R.; Liang, J.; Zhang, Q.A.; Huang, Q.; Wang, S.S.; Qin, H.H.; Chen, L.J.; Xu, J.H. Microarray-based identification of differentially expressed genes in extramammary Paget’s disease. Int. J. Clin. Exp. Med. 2015, 8, 7251–7260. [Google Scholar] [PubMed]
- Clevenger, C.V.; Gadd, S.L.; Zheng, J. New mechanisms for PRLr action in breast cancer. Trends Endocrinol. Metab. 2009, 20, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Liegl, B.; Horn, L.C.; Moinfar, F. Androgen receptors are frequently expressed in mammary and extramammary Paget’s disease. Mod. Pathol. 2005, 18, 1283–1288. [Google Scholar] [CrossRef] [Green Version]
- Diaz de Leon, E.; Carcangiu, M.L.; Prieto, V.G.; McCue, P.A.; Burchette, J.L.; To, G.; Norris, B.A.; Kovatich, A.J.; Sanchez, R.L.; Krigman, H.R.; et al. Extramammary Paget disease is characterized by the consistent lack of estrogen and progesterone receptors but frequently expresses androgen receptor. Am. J. Clin. Pathol. 2000, 113, 572–575. [Google Scholar] [CrossRef]
- Azmahani, A.; Nakamura, Y.; Ozawa, Y.; McNamara, K.M.; Fujimura, T.; Haga, T.; Hashimoto, A.; Aiba, S.; Sasano, H. Androgen receptor, androgen-producing enzymes and their transcription factors in extramammary Paget disease. Hum. Pathol. 2015, 46, 1662–1669. [Google Scholar] [CrossRef]
- Chang, K.; Li, G.X.; Kong, Y.Y.; Shen, X.X.; Qu, Y.Y.; Jia, Z.W.; Wang, Y.; Dai, B.; Ye, D.W. Chemokine Receptors CXCR4 and CXCR7 are Associated with Tumor Aggressiveness and Prognosis in Extramammary Paget Disease. J. Cancer 2017, 8, 2471–2477. [Google Scholar] [CrossRef]
- van der Linden, M.; van Esch, E.; Bulten, J.; Dreef, E.; Massuger, L.; van der Steen, S.; Bosse, T.; de Hullu, J.; van Poelgeest, M. The immune cell infiltrate in the microenvironment of vulvar Paget disease. Gynecol. Oncol. 2018, 151, 453–459. [Google Scholar] [CrossRef]
- Press, J.Z.; Allison, K.H.; Garcia, R.; Everett, E.N.; Pizer, E.; Swensen, R.E.; Tamimi, H.K.; Gray, H.J.; Peters, W.A., 3rd; Goff, B.A. FOXP3+ regulatory T-cells are abundant in vulvar Paget’s disease and are associated with recurrence. Gynecol. Oncol. 2011, 120, 296–299. [Google Scholar] [CrossRef] [PubMed]
- Fujimura, T.; Kambayashi, Y.; Hidaka, T.; Hashimoto, A.; Haga, T.; Aiba, S. Comparison of Foxp3+ regulatory T cells and CD163+ macrophages in invasive and non-invasive extramammary Paget’s disease. Acta Derm. Venereol. 2012, 92, 625–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melani, C.; Sangaletti, S.; Barazzetta, F.M.; Werb, Z.; Colombo, M.P. Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Res. 2007, 67, 11438–11446. [Google Scholar] [CrossRef] [Green Version]
- Fujimura, T.; Furudate, S.; Kambayashi, Y.; Aiba, S. Potential use of bisphosphonates in invasive extramammary Paget’s disease: An immunohistochemical Investigation. Clin. Dev. Immunol. 2013, 2013, 164982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Suárez, E.; Sanz-Moreno, A. RANK as a therapeutic target in cancer. FEBS J. 2016, 283, 2018–2033. [Google Scholar] [CrossRef]
- Loser, K.; Mehling, A.; Loeser, S.; Apelt, J.; Kuhn, A.; Grabbe, S.; Schwarz, T.; Penninger, J.M.; Beissert, S. Epidermal RANKL controls regulatory T-cell numbers via activation of dendritic cells. Nat. Med. 2006, 12, 1372–1379. [Google Scholar] [CrossRef]
- Kambayashi, Y.; Fujimura, T.; Furudate, S.; Asano, M.; Kakizaki, A.; Aiba, S. The Possible Interaction between Receptor Activator of Nuclear Factor Kappa-B Ligand Expressed by Extramammary Paget Cells and its Ligand on Dermal Macrophages. J. Investig. Dermatol. 2015, 135, 2547–2550. [Google Scholar] [CrossRef] [Green Version]
- Fujimura, T.; Kambayashi, Y.; Furudate, S.; Asano, M.; Kakizaki, A.; Aiba, S. Receptor Activator of NF-κB Ligand Promotes the Production of CCL17 from RANK+ M2 Macrophages. J. Invest. Dermatol. 2015, 135, 2884–2887. [Google Scholar] [CrossRef] [Green Version]
- Ueda, R. Clinical Application of Anti-CCR4 Monoclonal Antibody. Oncology 2015, 89 (Suppl. 1), 16–21. [Google Scholar] [CrossRef]
- Schachter, J.; Ribas, A.; Long, G.V.; Arance, A.; Grob, J.J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.; Lotem, M.; et al. Pembrolizumab versus ipilimumab for advanced melanoma: Final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006). Lancet 2017, 390, 1853–1862. [Google Scholar] [CrossRef]
- Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 2010, 363, 711–723. [Google Scholar] [CrossRef]
- Mazza, C.; Escudier, B.; Albiges, L. Nivolumab in renal cell carcinoma: Latest evidence and clinical potential. Ther. Adv. Med. Oncol. 2017, 9, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Tunger, A.; Sommer, U.; Wehner, R.; Kubasch, A.S.; Grimm, M.O.; Bachmann, M.P.; Platzbecker, U.; Bornhäuser, M.; Baretton, G.; Schmitz, M. The Evolving Landscape of Biomarkers for Anti-PD-1 or Anti-PD-L1 Therapy. J. Clin. Med. 2019, 8, 1534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, X.; Lin, K.; Lin, C.; Wang, J.; Tang, Y. Prognostic and clinicopathological utility of PD-L2 expression in patients with digestive system cancers: A meta-analysis. Int. Immunopharmacol. 2020, 88, 106946. [Google Scholar] [CrossRef]
- Yasuoka, H.; Asai, A.; Ohama, H.; Tsuchimoto, Y.; Fukunishi, S.; Higuchi, K. Increased both PD-L1 and PD-L2 expressions on monocytes of patients with hepatocellular carcinoma was associated with a poor prognosis. Sci. Rep. 2020, 10, 10377. [Google Scholar] [CrossRef] [PubMed]
- Karpathiou, G.; Chauleur, C.; Hathroubi, S.; Habougit, C.; Peoc’h, M. Expression of CD3, PD-L1 and CTLA-4 in mammary and extra-mammary Paget disease. Cancer Immunol. Immunother. 2018, 67, 1297–1303. [Google Scholar] [CrossRef]
- Pourmaleki, M.; Young, J.H.; Socci, N.D.; Chiang, S.; Edelweiss, M.; Li, Y.; Zhang, M.; Roshal, L.; Chi, D.S.; Busam, K.J.; et al. Extramammary Paget disease shows differential expression of B7 family members B7-H3, B7-H4, PD-L1, PD-L2 and cancer/testis antigens NY-ESO-1 and MAGE-A. Oncotarget 2019, 10, 6152–6167. [Google Scholar] [CrossRef] [Green Version]
- Mauzo, S.H.; Tetzlaff, M.T.; Milton, D.R.; Siroy, A.E.; Nagarajan, P.; Torres-Cabala, C.A.; Ivan, D.; Curry, J.L.; Hudgens, C.W.; Wargo, J.A.; et al. Expression of PD-1 and PD-L1 in Extramammary Paget Disease: Implications for Immune-Targeted Therapy. Cancers 2019, 11, 754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawaguchi, A.; Akiba, J.; Kondo, R.; Sadashima, E.; Ogasawara, S.; Naito, Y.; Kusano, H.; Sanada, S.; Muto, I.; Nakama, T.; et al. Programmed Death-Ligand 1 and Programmed Death-Ligand 2 Expression Can Affect Prognosis in Extramammary Paget’s Disease. Anticancer Res. 2021, 41, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Li, L.; Jiang, X.; Li, Q. Mismatch repair deficiency/microsatellite instability-high as a predictor for anti-PD-1/PD-L1 immunotherapy efficacy. J. Hematol. Oncol. 2019, 12, 54. [Google Scholar] [CrossRef] [PubMed]
- Stasenko, M.; Jayakumaran, G.; Cowan, R.; Broach, V.; Chi, D.S.; Rossi, A.; Hollman, T.J.; Zehir, A.; Abu-Rustum, N.R.; Leitao, M.M., Jr. Genomic Alterations as Potential Therapeutic Targets in Extramammary Paget’s Disease of the Vulva. JCO Precis. Oncol. 2020, 4, 1054–1060. [Google Scholar] [CrossRef]
- Kang, Z.; Xu, F.; Zhu, Y.; Fu, P.; Zhang, Q.A.; Hu, T.; Li, X.; Zhang, Q.; Wu, Z.; Zhang, X.; et al. Genetic Analysis of Mismatch Repair Genes Alterations in Extramammary Paget Disease. Am. J. Surg. Pathol. 2016, 40, 1517–1525. [Google Scholar] [CrossRef] [PubMed]
- Borella, F.; Preti, M.; Bertero, L.; Collemi, G.; Castellano, I.; Cassoni, P.; Cosma, S.; Carosso, A.R.; Bevilacqua, F.; Gallio, N.; et al. Is There a Place for Immune Checkpoint Inhibitors in Vulvar Neoplasms? A State of the Art Review. Int. J. Mol. Sci. 2020, 22, 190. [Google Scholar] [CrossRef]
- van der Linden, M.; Schuurman, M.S.; Bulten, J.; Massuger, L.; IntHout, J.; van der Aa, M.A.; de Hullu, J.A. Stop routine screening for associated malignancies in cutaneous noninvasive vulvar Paget disease? Br. J. Dermatol. 2018, 179, 1315–1321. [Google Scholar] [CrossRef] [Green Version]
- Cooper, S.M.; Matin, R. Screening for associated malignancies in vulval Paget disease clarified. Br. J. Dermatol. 2018, 179, 1242. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Igawa, S.; Ohishi, Y.; Uehara, J.; Yamamoto, A.I.; Iizuka, H. Prognostic indicators in 35 patients with extramammary Paget’s disease. Dermatol. Surg. 2012, 38, 1938–1944. [Google Scholar] [CrossRef]
- Preti, M.; Micheletti, L.; Borella, F.; Cosma, S.; Marrazzu, A.; Gallio, N.; Privitera, S.; Tancredi, A.; Bevilacqua, F.; Benedetto, C. Vulvar Paget’s disease and stromal invasion: Clinico-pathological features and survival outcomes. Surg. Oncol. 2021, 38, 101581. [Google Scholar] [CrossRef]
- van der Linden, M.; Oonk, M.H.M.; van Doorn, H.C.; Bulten, J.; van Dorst, E.B.L.; Fons, G.; Lok, C.A.R.; van Poelgeest, M.I.E.; Slangen, B.M.F.; Massuger, L.; et al. Vulvar Paget disease: A national retrospective cohort study. J. Am. Acad. Dermatol. 2019, 81, 956–962. [Google Scholar] [CrossRef]
- Ogata, D.; Kiyohara, Y.; Yoshikawa, S.; Tsuchida, T. Usefulness of sentinel lymph node biopsy for prognostic prediction in extramammary Paget’s disease. Eur. J. Dermatol. 2016, 26, 254–259. [Google Scholar] [CrossRef]
- Nakamura, Y.; Fujisawa, Y.; Ishikawa, M.; Nakamura, Y.; Ishitsuka, Y.; Maruyama, H.; Furuta, J.; Kawachi, Y.; Otsuka, F. Usefulness of sentinel lymph node biopsy for extramammary Paget disease. Br. J. Dermatol. 2012, 167, 954–956. [Google Scholar] [CrossRef]
- Ewing, T.; Sawicki, J.; Ciaravino, G.; Rumore, G.J. Microinvasive Paget’s disease. Gynecol. Oncol. 2004, 95, 755–758. [Google Scholar] [CrossRef] [PubMed]
- van der Linden, M.; Meeuwis, K.A.; Bulten, J.; Bosse, T.; van Poelgeest, M.I.; de Hullu, J.A. Paget disease of the vulva. Crit. Rev. Oncol. Hematol. 2016, 101, 60–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fine, B.A.; Fowler, L.J.; Valente, P.T.; Gaudet, T. Minimally invasive Paget’s disease of the vulva with extensive lymph node metastases. Gynecol. Oncol. 1995, 57, 262–265. [Google Scholar] [CrossRef] [PubMed]
- Ohara, K.; Fujisawa, Y.; Yoshino, K.; Kiyohara, Y.; Kadono, T.; Murata, Y.; Uhara, H.; Hatta, N.; Uchi, H.; Matsushita, S.; et al. A proposal for a TNM staging system for extramammary Paget disease: Retrospective analysis of 301 patients with invasive primary tumors. J. Dermatol. Sci. 2016, 83, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Edey, K.A.; Allan, E.; Murdoch, J.B.; Cooper, S.; Bryant, A. Interventions for the treatment of Paget’s disease of the vulva. Cochrane Database Syst. Rev. 2019, 6, Cd009245. [Google Scholar] [CrossRef]
- Lai, C.S.; Lin, S.D.; Yang, C.C.; Chou, C.K. Surgical treatment of the penoscrotal Paget’s disease. Ann. Plast. Surg. 1989, 23, 141–146. [Google Scholar] [CrossRef]
- Chung, P.H.; Leong, J.Y.; Voelzke, B.B. Surgical Experience With Genital and Perineal Extramammary Paget’s Disease. Urology 2019, 128, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Hendi, A.; Brodland, D.G.; Zitelli, J.A. Extramammary Paget’s disease: Surgical treatment with Mohs micrographic surgery. J. Am. Acad. Dermatol. 2004, 51, 767–773. [Google Scholar] [CrossRef] [PubMed]
- Murata, Y.; Kumano, K. Extramammary Paget’s disease of the genitalia with clinically clear margins can be adequately resected with 1 cm margin. Eur. J. Dermatol. 2005, 15, 168–170. [Google Scholar]
- Hatta, N.; Yamada, M.; Hirano, T.; Fujimoto, A.; Morita, R. Extramammary Paget’s disease: Treatment, prognostic factors and outcome in 76 patients. Br. J. Dermatol. 2008, 158, 313–318. [Google Scholar] [CrossRef]
- O’Connor, E.A.; Hettinger, P.C.; Neuburg, M.D.; Zwierzynski, W.W. Extramammary Paget’s disease: A novel approach to treatment using a modification of peripheral Mohs micrographic surgery. Ann. Plast. Surg. 2012, 68, 616–620. [Google Scholar] [CrossRef]
- Chang, M.S.; Mulvaney, P.M.; Danesh, M.J.; Feltmate, C.M.; Schmults, C.D. Modified peripheral and central Mohs micrographic surgery for improved margin control in extramammary Paget disease. JAAD Case Rep. 2021, 7, 71–73. [Google Scholar] [CrossRef]
- Kim, B.J.; Park, S.K.; Chang, H. The Effectiveness of Mapping Biopsy in Patients with Extramammary Paget’s Disease. Arch. Plast. Surg. 2014, 41, 753–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaku-Ito, Y.; Ito, T.; Tsuji, G.; Nakahara, T.; Hagihara, A.; Furue, M.; Uchi, H. Evaluation of mapping biopsies for extramammary Paget disease: A retrospective study. J. Am. Acad. Dermatol. 2018, 78, 1171–1177.e4. [Google Scholar] [CrossRef]
- Nasioudis, D.; Bhadra, M.; Ko, E.M. Extramammary Paget disease of the vulva: Management and prognosis. Gynecol. Oncol. 2020, 157, 146–150. [Google Scholar] [CrossRef] [PubMed]
- Bergen, S.; DiSaia, P.J.; Liao, S.Y.; Berman, M.L. Conservative management of extramammary Paget’s disease of the vulva. Gynecol. Oncol. 1989, 33, 151–156. [Google Scholar] [CrossRef]
- Tebes, S.; Cardosi, R.; Hoffman, M. Paget’s disease of the vulva. Am. J. Obstet. Gynecol. 2002, 187, 281–283. [Google Scholar] [CrossRef]
- Black, D.; Tornos, C.; Soslow, R.A.; Awtrey, C.S.; Barakat, R.R.; Chi, D.S. The outcomes of patients with positive margins after excision for intraepithelial Paget’s disease of the vulva. Gynecol. Oncol. 2007, 104, 547–550. [Google Scholar] [CrossRef] [PubMed]
- Burrows, N.P.; Jones, D.H.; Hudson, P.M.; Pye, R.J. Treatment of extramammary Paget’s disease by radiotherapy. Br. J. Dermatol. 1995, 132, 970–972. [Google Scholar] [CrossRef] [PubMed]
- Brierley, J.D.; Stockdale, A.D. Radiotherapy: An effective treatment for extramammary Paget’s disease. Clin. Oncol. 1991, 3, 3–5. [Google Scholar] [CrossRef]
- Hata, M.; Koike, I.; Wada, H.; Miyagi, E.; Kasuya, T.; Kaizu, H.; Matsui, T.; Mukai, Y.; Ito, E.; Inoue, T. Radiation therapy for extramammary Paget’s disease: Treatment outcomes and prognostic factors. Ann. Oncol. 2014, 25, 291–297. [Google Scholar] [CrossRef]
- Hata, M.; Koike, I.; Wada, H.; Miyagi, E.; Kasuya, T.; Kaizu, H.; Mukai, Y.; Inoue, T. Postoperative radiation therapy for extramammary Paget’s disease. Br. J. Dermatol. 2015, 172, 1014–1020. [Google Scholar] [CrossRef]
- Hanna, E.; Abadi, R.; Abbas, O. Imiquimod in dermatology: An overview. Int. J. Dermatol. 2016, 55, 831–844. [Google Scholar] [CrossRef]
- Sawada, M.; Kato, J.; Yamashita, T.; Yoneta, A.; Hida, T.; Horimoto, K.; Sato, S.; Uhara, H. Imiquimod 5% cream as a therapeutic option for extramammary Paget’s disease. J. Dermatol. 2018, 45, 216–219. [Google Scholar] [CrossRef] [PubMed]
- Machida, H.; Moeini, A.; Roman, L.D.; Matsuo, K. Effects of imiquimod on vulvar Paget’s disease: A systematic review of literature. Gynecol. Oncol. 2015, 139, 165–171. [Google Scholar] [CrossRef]
- Green, J.S.; Burkemper, N.M.; Fosko, S.W. Failure of extensive extramammary Paget disease of the inguinal area to clear with imiquimod cream, 5%: Possible progression to invasive disease during therapy. Arch. Dermatol. 2011, 147, 704–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toledo, F.; Silvestre, J.F.; Cuesta, L.; Ballester, I.; Latorre, N.; Monteagudo, A. Sequential use with imiquimod and surgery in extramammary Paget’s disease. Dermatol. Ther. 2012, 25, 82–85. [Google Scholar] [CrossRef]
- Choi, S.; Oh, Y.; Roh, M.R.; Chung, K.Y.; Oh, B.H. Initial topical monotherapy may increase the risk of recurrence in patients with extramammary Paget’s disease. J. Dermatol. 2021, 48, 585–591. [Google Scholar] [CrossRef]
- Córdoba, A.; Iglesias, M.E.; Rodríguez, I.; Yanguas, J.I. Extramammary paget disease with frontotemporal involvement: A case report and review of the literature. Actas Dermosifiliogr. 2013, 104, 355–357. [Google Scholar] [CrossRef]
- Fontanelli, R.; Papadia, A.; Martinelli, F.; Lorusso, D.; Grijuela, B.; Merola, M.; Solima, E.; Ditto, A.; Raspagliesi, F. Photodynamic therapy with M-ALA as non surgical treatment option in patients with primary extramammary Paget’s disease. Gynecol. Oncol. 2013, 130, 90–94. [Google Scholar] [CrossRef]
- Raspagliesi, F.; Fontanelli, R.; Rossi, G.; Ditto, A.; Solima, E.; Hanozet, F.; Kusamura, S. Photodynamic therapy using a methyl ester of 5-aminolevulinic acid in recurrent Paget’s disease of the vulva: A pilot study. Gynecol. Oncol. 2006, 103, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, K.; Takahashi, A.; Muto, Y.; Mizuta, H.; Jinnai, S.; Nakama, K.; Ogata, D.; Namikawa, K.; Yamazaki, N. Outcomes of lymph node dissection in the treatment of extramammary Paget’s disease: A single-institution study. J. Dermatol. 2020, 47, 512–517. [Google Scholar] [CrossRef] [PubMed]
- Hata, M.; Koike, I.; Wada, H.; Minagawa, Y.; Kasuya, T.; Matsui, T.; Suzuki, R.; Takano, S.; Inoue, T. Radiation therapy for lymph node metastasis from extramammary Paget’s disease. J. Eur. Acad. Dermatol. Venereol. 2014, 28, 873–877. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, H.; Kaku-Ito, Y.; Furue, M.; Ito, T. The Outcome of Chemotherapy for Metastatic Extramammary Paget’s Disease. J. Clin. Med. 2021, 10, 739. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, K.; Funakoshi, T. Metastatic Extramammary Paget’s Disease: Pathogenesis and Novel Therapeutic Approach. Front. Oncol. 2018, 8, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshino, K.; Fujisawa, Y.; Kiyohara, Y.; Kadono, T.; Murata, Y.; Uhara, H.; Hatta, N.; Uchi, H.; Matsushita, S.; Takenouchi, T.; et al. Usefulness of docetaxel as first-line chemotherapy for metastatic extramammary Paget’s disease. J. Dermatol. 2016, 43, 633–637. [Google Scholar] [CrossRef] [PubMed]
- Tokuda, Y.; Arakura, F.; Uhara, H. Combination chemotherapy of low-dose 5-fluorouracil and cisplatin for advanced extramammary Paget’s disease. Int. J. Clin. Oncol. 2015, 20, 194–197. [Google Scholar] [CrossRef] [PubMed]
- Kato, H.; Watanabe, S.; Kariya, K.; Nakamura, M.; Morita, A. Efficacy of low-dose 5-fluorouracil/cisplatin therapy for invasive extramammary Paget’s disease. J. Dermatol. 2018, 45, 560–563. [Google Scholar] [CrossRef]
- Saito, A.; Nakamura, Y.; Tanaka, R.; Inoue, S.; Okiyama, N.; Ishitsuka, Y.; Maruyama, H.; Watanabe, R.; Yoshida, K.; Ishiko, A.; et al. Unusual Bone Lesions with Osteonecrosis Mimicking Bone Metastasis of Squamous Cell Carcinoma in Recessive Dystrophic Epidermolysis Bullosa. Acta Derm. Venereol. 2019, 99, 1166–1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikoshiba, Y.; Uhara, H.; Kubo, H.; Okuyama, R. S-1 induced a durable response in metastatic extramammary Paget’s disease. J. Dermatol. 2013, 40, 664–665. [Google Scholar] [CrossRef]
- Kato, J.; Hida, T.; Yamashita, T.; Kamiya, S.; Horimoto, K.; Sato, S.; Takahashi, H.; Sawada, M.; Yamada, M.; Uhara, H. Successful TS-1 monotherapy as the second-line treatment for advanced extramammary Paget’s disease: A report of two cases. J. Dermatol. 2018, 45, 80–82. [Google Scholar] [CrossRef] [PubMed]
- Wada, Y.; Yoshida, K.; Suzuki, T.; Mizuiri, H.; Konishi, K.; Ukon, K.; Tanabe, K.; Sakata, Y.; Fukushima, M. Synergistic effects of docetaxel and S-1 by modulating the expression of metabolic enzymes of 5-fluorouracil in human gastric cancer cell lines. Int. J. Cancer 2006, 119, 783–791. [Google Scholar] [CrossRef]
- Matsushita, S.; Yonekura, K.; Mera, K.; Kawai, K.; Kanekura, T. Successful treatment of metastatic extramammary Paget’s disease with S-1 and docetaxel combination chemotherapy. J. Dermatol. 2011, 38, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Egashira, S.; Kajihara, I.; Kanemaru, H.; Uemura-Kiyohara, M.; Yamada-Kanazawa, S.; Nakahara, S.; Nagamoto, E.; Fukushima, S.; Jinnin, M.; Inoue, Y.; et al. Achieved good response of S-1 and docetaxel combination chemotherapy in two patients with metastatic extramammary Paget’s disease. J. Dermatol. 2017, 44, e103–e104. [Google Scholar] [CrossRef] [Green Version]
- Matsushita, S.; Fujii, K.; Kajihara, I.; Aoki, M.; Yamamura, K.; Tada, K.; Kanekura, T.; Aoi, J.; Fukushima, S. Efficacy of S-1 plus docetaxel in the treatment of metastatic extramammary Paget’s disease: A multicentre retrospective study. Br. J. Dermatol. 2021, 8. [Google Scholar]
- Oashi, K.; Tsutsumida, A.; Namikawa, K.; Tanaka, R.; Omata, W.; Yamamoto, Y.; Yamazaki, N. Combination chemotherapy for metastatic extramammary Paget disease. Br. J. Dermatol. 2014, 170, 1354–1357. [Google Scholar] [CrossRef]
- Hirai, I.; Tanese, K.; Nakamura, Y.; Ishii, M.; Kawakami, Y.; Funakoshi, T. Combination Cisplatin-Epirubicin-Paclitaxel Therapy for Metastatic Extramammary Paget’s Disease. Oncologist 2019, 24, e394–e396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordmann, T.M.; Messerli-Odermatt, O.; Meier, L.; Micaletto, S.; Coppetti, T.; Nägeli, M.; Kamarachev, J.; Kudura, K.; Freiberger, S.N.; Rordorf, T.; et al. Sequential somatic mutations upon secondary anti-HER2 treatment resistance in metastatic ERBB2(S310F) mutated extramammary Paget’s disease. Oncotarget 2019, 10, 6647–6650. [Google Scholar] [CrossRef]
- Karam, A.; Berek, J.S.; Stenson, A.; Rao, J.; Dorigo, O. HER-2/neu targeting for recurrent vulvar Paget’s disease A case report and literature review. Gynecol. Oncol. 2008, 111, 568–571. [Google Scholar] [CrossRef] [PubMed]
- Takahagi, S.; Noda, H.; Kamegashira, A.; Madokoro, N.; Hori, I.; Shindo, H.; Mihara, S.; Hide, M. Metastatic extramammary Paget’s disease treated with paclitaxel and trastuzumab combination chemotherapy. J. Dermatol. 2009, 36, 457–461. [Google Scholar] [CrossRef]
- Hanawa, F.; Inozume, T.; Harada, K.; Kawamura, T.; Shibagaki, N.; Shimada, S. A Case of Metastatic Extramammary Paget’s Disease Responding to Trastuzumab plus Paclitaxel Combination Therapy. Case Rep. Dermatol. 2011, 3, 223–227. [Google Scholar] [CrossRef]
- Barth, P.; Dulaimi Al-Saleem, E.; Edwards, K.W.; Millis, S.Z.; Wong, Y.N.; Geynisman, D.M. Metastatic Extramammary Paget’s Disease of Scrotum Responds Completely to Single Agent Trastuzumab in a Hemodialysis Patient: Case Report, Molecular Profiling and Brief Review of the Literature. Case Rep. Oncol. Med. 2015, 2015, 895151. [Google Scholar] [CrossRef]
- Ichiyama, T.; Gomi, D.; Fukushima, T.; Kobayashi, T.; Sekiguchi, N.; Sakamoto, A.; Sasaki, S.; Mamiya, K.; Koizumi, T.; Hama, Y. Successful and long-term response to trastuzumab plus paclitaxel combination therapy in human epidermal growth factor receptor 2-positive extramammary Paget’s disease: A case report and review of the literature. Mol. Clin. Oncol. 2017, 7, 763–766. [Google Scholar] [CrossRef] [PubMed]
- Yoneyama, K.; Kamada, N.; Kinoshita, K.; Kawashima, T.; Otani, M.; Endo, H.; Shinkai, H.; Utani, A. Androgen-deprivation regimen for multiple bone metastases of extramammary Paget disease. Br. J. Dermatol. 2005, 153, 853–855. [Google Scholar] [CrossRef] [PubMed]
- Iijima, M.; Uhara, H.; Ide, Y.; Sakai, S.; Onuma, H.; Muto, M.; Hayashi, K.; Mitsura, F.; Kobayashi, S.; Yoshizawa, A.; et al. Estrogen-receptor-alpha-positive extramammary Paget’s disease treated with hormonal therapy. Dermatology 2006, 213, 144–146. [Google Scholar] [CrossRef] [PubMed]
- Guercio, B.J.; Iyer, G.; Kidwai, W.Z.; Lacouture, M.E.; Ghafoor, S.; Rossi, A.M.; Assis, D.N.; Chen, Y.B.; Busam, K.J.; Janjigian, Y.Y.; et al. Treatment of Metastatic Extramammary Paget Disease with Combination Ipilimumab and Nivolumab: A Case Report. Case Rep. Oncol. 2021, 14, 430–438. [Google Scholar] [CrossRef]
Primary Vulvar Paget Disease, a Primary Cutaneous Neoplasm | Secondary Vulvar Paget Disease |
---|---|
Paget disease as a primary intraepithelial neoplasm (carcinoma in situ) | Paget disease secondary to anal or rectal adenocarcinoma |
Paget disease as an intraepithelial neoplasm with invasion | Paget disease secondary to urothelial neoplasm |
Paget disease as a manifestation of an underlying primary adenocarcinoma of a skin appendage or a subcutaneous vulvar gland | Paget disease secondary to adenocarcinoma or related tumors of other sites |
TNM | |||
---|---|---|---|
0 | 1 | 2 | |
T | Tumor in situ | Tumor thickness ≤ 4 mm AND no lymphovascular invasion | Tumor thickness > 4 mm OR lymphovascular invasion |
n | No LN metastasis | 1 LN metastasis | 2 or more LN metastases |
M | No distant or LN metastasis beyond regional LN basin | Distant organ metastasis or LN metastasis beyond regional LN basin | (−) |
Staging | |||
T | n | M | |
I | 1 | 0 | 0 |
II | 2 | 0 | 0 |
IIIa | Any | 1 | 0 |
IIIb | Any | 2 | 0 |
IV | Any | Any | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishizuki, S.; Nakamura, Y. Extramammary Paget’s Disease: Diagnosis, Pathogenesis, and Treatment with Focus on Recent Developments. Curr. Oncol. 2021, 28, 2969-2986. https://doi.org/10.3390/curroncol28040260
Ishizuki S, Nakamura Y. Extramammary Paget’s Disease: Diagnosis, Pathogenesis, and Treatment with Focus on Recent Developments. Current Oncology. 2021; 28(4):2969-2986. https://doi.org/10.3390/curroncol28040260
Chicago/Turabian StyleIshizuki, Shoichiro, and Yoshiyuki Nakamura. 2021. "Extramammary Paget’s Disease: Diagnosis, Pathogenesis, and Treatment with Focus on Recent Developments" Current Oncology 28, no. 4: 2969-2986. https://doi.org/10.3390/curroncol28040260
APA StyleIshizuki, S., & Nakamura, Y. (2021). Extramammary Paget’s Disease: Diagnosis, Pathogenesis, and Treatment with Focus on Recent Developments. Current Oncology, 28(4), 2969-2986. https://doi.org/10.3390/curroncol28040260