Telomere Biology in Cardiovasular Disease
Abstract
Zusammenfassung
Ageing and atherosclerosis
Telomeres: the mitotic clock
Vascular cell senescence in vascular ageing and atherosclerosis
Telomerase
Telomerase activity in the vasculature
Do ageing mechanisms act in synergy?
Evidence from human genetic mutations
Cellular senescence and organismal ageing
Concluding remarks
Acknowledgments
References
- Lakatta, E.G.; Levy, D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part I: aging arteries: a «set up» for vascular disease. Circulation 2003, 107, 139–46. [Google Scholar] [CrossRef]
- Zeiher, A.M.; Drexler, H.; Saurbier, B.; Just, H. Endothelium-mediated coronary blood flow modulation in humans. Effects of age, atherosclerosis, hypercholesterolemia, and hypertension. J Clin Invest 1993, 92, 652–62. [Google Scholar]
- van der Loo, B.; Labugger, R.; Skepper, J.N.; Bachschmid, M.; Kilo, J.; Powell, J.M. , et al. Enhanced peroxynitrite formation is associated with vascular aging. J Exp Med 2000, 192, 1731–44. [Google Scholar] [CrossRef]
- Rivard A, Fabre JE, Silver M, Chen D, Murohara T, Kearney M, et al. Age-dependent impairment of angiogenesis. Circulation 1999, 99, 111–20.
- Schneiderman, J.; Sawdey, M.S.; Keeton, M.R.; Bordin, G.M.; Bernstein, E.F.; Dilley, R.B.; et al. Increased type 1 plasminogen activator inhibitor gene expression in atherosclerotic human arteries. Proc Natl Acad Sci U S A 1992, 89, 6998–7002. [Google Scholar] [CrossRef]
- Finkel, T.; Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408, 239–47. [Google Scholar] [CrossRef]
- Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 1965, 37, 614–36. [Google Scholar] [CrossRef] [PubMed]
- Hoshi, H.; McKeehan, W.L. Isolation, growth requirements, cloning, prostacyclin production and life-span of human adult endothelial cells in low serum culture medium. In Vitro Cell Dev Biol 1986, 22, 51–6. [Google Scholar] [CrossRef] [PubMed]
- Campisi, J.; Kim, S.H.; Lim, C.S.; Rubio, M. Cellular senescence, cancer and aging: the telomere connection. Exp Gerontol 2001, 36, 1619–37. [Google Scholar] [CrossRef] [PubMed]
- Griffith, J.D.; Comeau, L.; Rosenfield, S.; Stansel, R.M.; Bianchi, A.; Moss, H.; et al. Mammalian telomeres end in a large duplex loop. Cell 1999, 97, 503–14. [Google Scholar] [CrossRef]
- de Lange, T. Protection of mammalian telomeres. Oncogene 2002, 21, 532–40. [Google Scholar] [CrossRef]
- Blackburn, E.H. Switching and signaling at the telomere. Cell 2001, 106, 661–73. [Google Scholar] [CrossRef]
- Levy, M.Z.; Allsopp, R.C.; Futcher, A.B.; Greider, C.W.; Harley, C.B. Telomere end-replication problem and cell aging. J Mol Biol 1992, 225, 951–60. [Google Scholar] [CrossRef]
- Schwartz, S.M.; Gajdusek, C.M.; Reidy, M.A.; Selden SC3rd Haudenschild, C.C. Maintenance of integrity in aortic endothelium. Fed Proc 1980, 39, 2618–25. [Google Scholar]
- Wright, H.P. Endothelial mitosis around aortic branches in normal guinea pigs. Nature 1968, 220, 78–9. [Google Scholar] [CrossRef] [PubMed]
- Zarins, C.K.; Glagov, S.; Giddens, D.P. What do we find in human atherosclerosis that provides insight into the hemodynamic factors in atherogenesis? In: Glagov S, Newman WP, Schafer SA, editors. Pathobiology of the Human Atherosclerotic Plaque. New York: Springer-Verlag;
- Rosen, E.M.; Mueller, S.N.; Noveral, J.P.; Levine, E.M. Proliferative characteristics of clonal endothelial cell strains. J Cell Physiol 1981, 107, 123–37. [Google Scholar] [CrossRef] [PubMed]
- Ross, R.; Wight, T.N.; Strandness, E.; Thiele, B. Human atherosclerosis. I. Cell constitution and characteristics of advanced lesions of the superficial femoral artery. Am J Pathol 1984, 114, 79–93. [Google Scholar]
- Maier, J.A.; Voulalas, P.; Roeder, D.; Maciag, T. Extension of the life-span of human endothelial cells by an interleukin-1 alpha antisense oligomer. Science 1990, 249, 1570–4. 20 Moyer CF, Sajuthi D, Tulli H, Williams JK. Synthesis of IL-1 alpha and IL-1 beta by arterial cells in atherosclerosis. Am J Pathol 1991, 138, 951–60. [Google Scholar]
- Comi, P.; Chiaramonte, R.; Maier, J.A. Senescence-dependent regulation of type 1 plasminogen activator inhibitor in human vascular endothelial cells. Exp Cell Res 1995, 219, 304–8. [Google Scholar] [CrossRef]
- Maier, J.A.; Statuto, M.; Ragnotti, G. Senescence stimulates U937–endothelial cell interactions. Exp Cell Res 1993, 208, 270–4. [Google Scholar]
- van der Wal, A.C.; Das, P.K.; Tigges, A.J.; Becker, AE. Adhesion molecules on the endothelium and mononuclear cells in human atherosclerotic lesions. Am J Pathol 1992, 141, 1427–33. [Google Scholar]
- Dimri, G.P.; Lee, X.; Basile, G.; Acosta, M.; Scott, G.; Roskelley, C.; et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 1995, 92, 9363–7. [Google Scholar]
- Kurz, D.J.; Decary, S.; Hong, Y.; Erusalimsky, J.D. Senescenceassociated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci 2000, 113 Pt 20, 3613–22. [Google Scholar] [CrossRef]
- van der Loo, B.; Fenton, M.J.; Erusalimsky, JD. Cytochemical detection of a senescence-associated beta-galactosidase in endothelial and smooth muscle cells from human and rabbit blood vessels. Exp Cell Res 1998, 241, 309–15. [Google Scholar] [CrossRef]
- Fenton, M.; Barker, S.; Kurz, D.J.; Erusalimsky, J.D. Cellular senescence after single and repeated balloon catheter denudations of rabbit carotid arteries. Arterioscler Thromb Vasc Biol 2001, 21, 220–6. [Google Scholar] [CrossRef] [PubMed]
- Vasile, E.; Tomita, Y.; Brown, L.F.; Kocher, O.; Dvorak, H.F. Differential expression of thymosin beta-10 by early passage and senescent vascular endothelium is modulated by VPF/ VEGF: evidence for senescent endothelial cells in vivo at sites of atherosclerosis. Faseb J 2001, 15, 458–66. [Google Scholar] [CrossRef] [PubMed]
- Minamino, T.; Miyauchi, H.; Yoshida, T.; Ishida, Y.; Yoshida, H.; Komuro, I. Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation 2002, 105, 1541–4. [Google Scholar] [CrossRef] [PubMed]
- Ross, R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993, 362, 801–9. [Google Scholar] [CrossRef]
- Chang, E.; Harley, C.B. Telomere length and replicative aging in human vascular tissues. Proc Natl Acad Sci U S A 1995, 92, 11190–4. [Google Scholar] [CrossRef]
- Okuda, K.; Khan, M.Y.; Skurnick, J.; Kimura, M.; Aviv, H.; Aviv, A. Telomere attrition of the human abdominal aorta: relationships with age and atherosclerosis. Atherosclerosis 2000, 152, 391–8. [Google Scholar] [CrossRef]
- Aviv, H.; Khan, M.Y.; Skurnick, J.; Okuda, K.; Kimura, M.; Gardner, J.; et al. Age dependent aneuploidy and telomere length of the human vascular endothelium. Atherosclerosis 2001, 159, 281–7. [Google Scholar] [CrossRef]
- Ogami, M.; Ikura, Y.; Ohsawa, M.; Matsuo, T.; Kayo, S.; Yoshimi, N.; et al. Telomere shortening in human coronary artery diseases. Arterioscler Thromb Vasc Biol 2004, 24, 546–50. [Google Scholar] [CrossRef]
- Blasco, MA. Telomerase beyond telomeres. Nat Rev Cancer 2002, 2, 627–33. [Google Scholar] [CrossRef]
- Wright, W.E.; Piatyszek, M.A.; Rainey, W.E.; Byrd, W.; Shay, J.W. Telomerase activity in human germline and embryonic tissues and cells. Dev Genet 1996, 18, 173–9. [Google Scholar] [CrossRef]
- Forsyth, N.R.; Wright, W.E.; Shay, J.W. Telomerase and differentiation in multicellular organisms: turn it off, turn it on, and turn it off again. Differentiation 2002, 69, 188–97. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.W.; Piatyszek, M.A.; Prowse, K.R.; Harley, C.B.; West, M.D.; Ho, P.L.; et al. Specific association of human telomerase activity with immortal cells and cancer. Science 1994, 266, 2011–5. [Google Scholar] [CrossRef] [PubMed]
- Henson, J.D.; Neumann, A.A.; Yeager, T.R.; Reddel, R.R. Alternative lengthening of telomeres in mammalian cells. Oncogene 2002, 21, 598–610. [Google Scholar] [CrossRef] [PubMed]
- Minamino, T.; Mitsialis, S.A.; Kourembanas, S. Hypoxia extends the life span of vascular smooth muscle cells through telomerase activation. Mol Cell Biol 2001, 21, 3336–42. [Google Scholar] [CrossRef]
- Hsiao, R.; Sharma, H.W.; Ramakrishnan, S.; Keith, E.; Narayanan, R. Telomerase activity in normal human endothelial cells. Anticancer Res 1997, 17, 827–32. [Google Scholar]
- Vasa, M.; Breitschopf, K.; Zeiher, A.M.; Dimmeler, S. Nitric oxide activates telomerase and delays endothelial cell senescence. Circ Res 2000, 87, 540–2. [Google Scholar] [CrossRef]
- Kurz, D.J.; Hong, Y.; Trivier, E.; Huang, H.L.; Decary, S.; Zang, G.H.; et al. Fibroblast growth factor-2, but not vascular endothelial growth factor, upregulates telomerase activity in human endothelial cells. Arterioscler Thromb Vasc Biol 2003, 23, 748–54. [Google Scholar] [CrossRef]
- Minamino, T.; Kourembanas, S. Mechanisms of telomerase induction during vascular smooth muscle cell proliferation. Circ Res 2001, 89, 237–43. [Google Scholar] [CrossRef]
- Breitschopf, K.; Zeiher, A.M.; Dimmeler, S. Pro-atherogenic factors induce telomerase inactivation in endothelial cells through an Akt-dependent mechanism. FEBS Lett 2001, 493, 21–5. [Google Scholar] [CrossRef]
- Haendeler, J.; Hoffmann, J.; Brandes, R.P.; Zeiher, A.M.; Dimmeler, S. Hydrogen peroxide triggers nuclear export of telomerase reverse transcriptase via Src kinase family-dependent phosphorylation of tyrosine 707. Mol Cell Biol 2003, 23, 4598–610. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.M.; Kusdra, L.; Collins, K. Subnuclear shuttling of human telomerase induced by transformation and DNA damage. Nat Cell Biol 2002, 4, 731–6. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chang, E.; Cherry, A.M.; Bangs, C.D.; Oei, Y.; Bodnar, A.; et al. Human endothelial cell life extension by telomerase expression. J Biol Chem 1999, 274, 26141–8. [Google Scholar] [CrossRef] [PubMed]
- Vaziri, H.; Benchimol, S. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr Biol 1998, 8, 279–82. [Google Scholar] [CrossRef]
- Bodnar, A.G.; Ouellette, M.; Frolkis, M.; Holt, S.E.; Chiu, C.P.; Morin, G.B.; et al. Extension of life-span by introduction of telomerase into normal human cells. Science 1998, 279, 349–52. [Google Scholar] [CrossRef]
- Yang, J.; Nagavarapu, U.; Relloma, K.; Sjaastad, M.D.; Moss, W.C.; Passaniti, A.; et al. Telomerized human microvasculature is functional in vivo. Nat Biotechnol 2001, 19, 219–24. [Google Scholar] [CrossRef]
- Trivier, E.; Kurz, D.J.; Hong, Y.; Huang, H.L.; Erusalimsky, J.D. Differential regulation of telomerase in endothelial cells by fibroblast growth factor-2 and vascular endothelial growth factor-a: association with replicative life span. Ann N Y Acad Sci 2004, 1019, 111–5. [Google Scholar] [PubMed]
- Masutomi, K.; Yu, E.Y.; Khurts, S.; Ben-Porath, I.; Currier, J.L.; Metz, G.B.; et al. Telomerase maintains telomere structure in normal human cells. Cell 2003, 114, 241–53. [Google Scholar] [CrossRef]
- Kurz, D.J.; Erusalimsky, J.D. Role of telomerase in human endothelial cell proliferation. Arterioscler Thromb Vasc Biol 2003, 23, e54. [Google Scholar] [CrossRef] [PubMed]
- Serrano, M.; Blasco, M.A. Putting the stress on senescence. Curr Opin Cell Biol 2001, 13, 748–53. [Google Scholar] [CrossRef]
- Toussaint, O.; Medrano, E.E.; von Zglinicki, T. Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp Gerontol 2000, 35, 927–45. [Google Scholar] [CrossRef]
- von Zglinick, T. Oxidative stress shortens telomeres. Trends Biochem Sci 2002, 27, 339–44. [Google Scholar]
- Xu, D.; Neville, R.; Finkel, T. Homocysteine accelerates endothelial cell senescence. FEBS Lett 2000, 470, 20–4. [Google Scholar] [CrossRef] [PubMed]
- Kurz, D.J.; Decary, S.; Hong, Y.; Trivier, E.; Akhmedov, A.; Erusalimsky, J.D. Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells. J Cell Sci 2004, 117, 2417–26. [Google Scholar] [CrossRef]
- Deshpande, S.S.; Qi, B.; Park, Y.C.; Irani, K. Constitutive activation of rac1 results in mitochondrial oxidative stress and induces premature endothelial cell senescence. Arterioscler Thromb Vasc Biol 2003, 23, e1–6. [Google Scholar] [CrossRef]
- Unterluggauer, H.; Hampel, B.; Zwerschke, W.; Jansen-Durr, P. Senescence-associated cell death of human endothelial cells: the role of oxidative stress. Exp Gerontol 2003, 38, 1149–60. [Google Scholar] [CrossRef]
- Martens, U.M.; Zijlmans, J.M.; Poon, S.S.; Dragowska, W.; Yui, J.; Chavez, E.A.; et al. Short telomeres on human chromosome 17p. Nat Genet 1998, 18, 76–80. [Google Scholar] [CrossRef]
- Slagboom, P.E.; Droog, S.; Boomsma, D.I. Genetic determination of telomere size in humans: a twin study of three age groups. Am J Hum Genet, 1994; 55, 876–82. [Google Scholar]
- Nawrot, T.S.; Staessen, J.A.; Gardner, J.P.; Aviv, A. Telomere length and possible link to X chromosome. Lancet 2004, 363, 507–10. [Google Scholar] [CrossRef]
- Jeanclos, E.; Schork, N.J.; Kyvik, K.O.; Kimura, M.; Skurnick, J.H.; Aviv, A. Telomere length inversely correlates with pulse pressure and is highly familial. Hypertension 2000, 36, 195–200. [Google Scholar] [CrossRef]
- Allsopp, R.C.; Vaziri, H.; Patterson, C.; Goldstein, S.; Younglai, E.V.; Futcher, A.B.; et al. Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci U S A 1992, 89, 10114–8. [Google Scholar] [CrossRef] [PubMed]
- Samani, N.J.; Boultby, R.; Butler, R.; Thompson, J.R.; Goodall, A.H. Telomere shortening in atherosclerosis. Lancet 2001, 358, 472–3. [Google Scholar] [CrossRef] [PubMed]
- Brouilette, S.; Singh, R.K.; Thompson, J.R.; Goodall, A.H.; Samani, N.J. White cell telomere length and risk of premature myocardial infarction. Arterioscler Thromb Vasc Biol 2003, 23, 842–6. [Google Scholar] [CrossRef] [PubMed]
- Benetos, A.; Gardner, J.P.; Zureik, M.; Labat, C.; Xiaobin, L.; Adamopoulos, C.; et al. Short telomeres are associated with increased carotid atherosclerosis in hypertensive subjects. Hypertension 2004, 43, 182–5. [Google Scholar] [CrossRef]
- Kurz, D.J.; Akhmedov, A.; Kloeckener, B.; Buehler, I.; Berger, W.; Bertel, O.; et al. Calcific aortic valve stenosis is associated with shorter telomere length. (abstract). Eur Heart J 2004, 25, s590. [Google Scholar]
- von Zglinicki, T.; Serra, V.; Lorenz, M.; Saretzki, G.; LenzenGrossimlighaus, R.; Gessner, R.; et al. Short telomeres in patients with vascular dementia: an indicator of low antioxidative capacity and a possible risk factor? Lab Invest 2000, 80, 1739–47. [Google Scholar] [CrossRef]
- Cawthon, R.M.; Smith, K.R.; O’Brien, E.; Sivatchenko, A.; Kerber, R.A. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 2003, 361, 393–5. [Google Scholar] [CrossRef]
- Nowak, R.; Siwicki, J.K.; Chechlinska, M.; Markowicz, S. Telomere shortening and atherosclerosis. Lancet 2002, 359, 976. [Google Scholar] [CrossRef]
- Davis, T.; Faragher, R.G.; Jones, C.J.; Kipling, D. Investigation of the signaling pathways involved in the proliferative life span barriers in werner syndrome fibroblasts. Ann N Y Acad Sci 2004, 1019, 274–7. [Google Scholar] [CrossRef]
- Wallis, C.V.; Sheerin, A.N.; Green, M.H.; Jones, C.J.; Kipling, D.; Faragher, R.G. Fibroblast clones from patients with Hutchinson-Gilford progeria can senesce despite the presence of telomerase. Exp Gerontol 2004, 39, 461–7. [Google Scholar] [CrossRef]
- Marciniak, R.A.; Johnson, F.B.; Guarente, L. Dyskeratosis congenita, telomeres and human ageing. Trends Genet 2000, 16, 193–5. [Google Scholar] [CrossRef]
- Tchirkov, A.; Lansdorp, P.M. Role of oxidative stress in telomere shortening in cultured fibroblasts from normal individuals and patients with ataxia-telangiectasia. Hum Mol Genet 2003, 12, 227–32. [Google Scholar] [CrossRef] [PubMed]
- Campisi, J. Cancer and ageing: rival demons? Nat Rev Cancer 2003, 3, 339–49. [Google Scholar] [CrossRef] [PubMed]
- Tyner, S.D.; Venkatachalam, S.; Choi, J.; Jones, S.; Ghebranious, N.; Igelmann, H.; et al. p53 mutant mice that display early ageing-associated phenotypes. Nature 2002, 415, 45–53. [Google Scholar] [CrossRef]
- Shay, J.W. At the end of the millennium, a view of the end. Nat Genet 1999, 23, 382–3. [Google Scholar] [CrossRef] [PubMed]
© 2004 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurz, D.J. Telomere Biology in Cardiovasular Disease. Cardiovasc. Med. 2004, 7, 433. https://doi.org/10.4414/cvm.2004.01065
Kurz DJ. Telomere Biology in Cardiovasular Disease. Cardiovascular Medicine. 2004; 7(12):433. https://doi.org/10.4414/cvm.2004.01065
Chicago/Turabian StyleKurz, David J. 2004. "Telomere Biology in Cardiovasular Disease" Cardiovascular Medicine 7, no. 12: 433. https://doi.org/10.4414/cvm.2004.01065
APA StyleKurz, D. J. (2004). Telomere Biology in Cardiovasular Disease. Cardiovascular Medicine, 7(12), 433. https://doi.org/10.4414/cvm.2004.01065