Plaque Characterization Using Intracoronary Imaging: Effects of Lipid-Lowering Therapies
Abstract
Introduction
From “Obstructive Lesion” to “Plaque Characterization”
In Vivo Assessment of Atherosclerotic Plaques: The Crucial Role of ICI
IVUS
NIRS
OCT
Effects of Lipid-Lowering Therapies on Atherosclerotic Coronary Plaques
Interrelation between On-treatment LDL-C Levels, Plaque Changes, and Impact on Clinical Outcomes
Future Perspectives
Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; et al. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation. 2019, 139, e56–e528. [Google Scholar] [CrossRef]
- Maron, D.J.; Hochman, J.S.; Reynolds, H.R.; Bangalore, S.; et al. Initial invasive or conservative strategy for stable coronary disease. N Engl J Med. 2020, 382, 1395–407. [Google Scholar] [CrossRef]
- Reynolds, H.R.; Shaw, L.J.; Min, J.K.; Page, C.B.; et al. Outcomes in the ISCHEMIA trial based on coronary artery disease and ischemia severity. Circulation. 2021, 144, 1024–38. [Google Scholar] [CrossRef]
- Mock, M.B.; Ringqvist, I.; Fisher, L.D.; Davis, K.B.; et al. Survival of medically treated patients in the coronary artery surgery study (CASS) registry. Circulation. 1982, 66, 562–8. [Google Scholar] [CrossRef] [PubMed]
- Räber, L.; Ueki, Y.; Otsuka, T.; Losdat, S.; et al. Effect of alirocumab added to high-intensity statin therapy on coronary atherosclerosis in patients with acute myocardial infarction: the PACMAN-AMIrandomized clinical trial, J. A.M.A. 2022, 327, 1771–81. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, S.J.; Kataoka, Y.; Nissen, S.E.; Prati, F.; et al. Effect of evolocumab on coronary plaque phenotype and burden in statin-treated patients following myocardial infarction. JACC Cardiovasc Imaging. 2022, 15, 1308–21. [Google Scholar] [CrossRef]
- Neumann, F.J.; Sousa-Uva, M.; Ahlsson, A.; Alfonso, F.; et al. 2018 ESC/EACTSguidelines on myocardial revascularization. Eur Heart, J. 2019, 40, 87–165. [Google Scholar] [CrossRef]
- Puymirat, E.; Cayla, G.; Simon, T.; Steg, P.G.; et al. Multivessel PCI guided by FFR or angiography for myocardial infarction. N Engl J Med. 2021, 385, 297–308. [Google Scholar] [CrossRef]
- Georgiopoulos, G.; Kraler, S.; Mueller-Hennessen, M.; Delialis, D.; et al. Modification of the GRACE risk score for risk prediction in patients with acute coronary syndromes. JAMA Cardiol. 2023, 8, 946–56. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, U.; Ferencik, M.; Udelson, J.E.; Picard, M.H.; et al. Prognostic value of noninvasive cardiovascular testing in patients with stable chest pain: insights from the PROMISE trial (prospective multicenter imaging study for evaluation of chest pain). Circulation. 2017, 135, 2320–32. [Google Scholar] [CrossRef]
- Little, W.C.; Constantinescu, M.; Applegate, R.J.; Kutcher, M.A.; et al. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation. 1988, 78 (Pt 1), 1157–66. [Google Scholar] [CrossRef] [PubMed]
- Virmani, R.; Burke, A.P.; Farb, A.; Kolodgie, F.D. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006, 47 (Suppl 8), C13–8. [Google Scholar] [CrossRef]
- Glagov, S.; Weisenberg, E.; Zarins, C.K.; Stankunavicius, R.; Kolettis, G.J. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987, 316, 1371–5. [Google Scholar] [CrossRef] [PubMed]
- Yonetsu, T.; Hoshino, M.; Lee, T.; Kanaji, Y.; et al. Plaque morphology assessed by optical coherence tomography in the culprit lesions of the first episode of acute myocardial infarction in patients with low low-density lipoprotein cholesterol level. J Cardiol. 2020, 75, 485–93. [Google Scholar] [CrossRef]
- Kedhi, E.; Berta, B.; Roleder, T.; Hermanides, R.S.; et al. Thin-cap fibroatheroma predicts clinical events in diabetic patients with normal fractional flow reserve: the COMBINEOCT-FFRtrial. Eur Heart, J. 2021, 42, 4671-9. [Google Scholar] [CrossRef] [PubMed]
- Erlinge, D.; Maehara, A.; Ben-Yehuda, O.; Bøtker, H.E.; et al. Identification of vulnerable plaques and patients by intracoronary near-infrared spectroscopy and ultrasound (PROSPECT II): a prospective natural history study. Lancet. 2021, 397, 985–95. [Google Scholar] [CrossRef]
- Waksman, R.; Di Mario, C.; Torguson, R.; Ali, Z.A.; et al. Identification of patients and plaques vulnerable to future coronary events with near-infrared spectroscopy intravascular ultrasound imaging: a prospective, cohort study. Lancet. 2019, 394, 1629–37. [Google Scholar] [CrossRef]
- Prati, F.; Romagnoli, E.; Gatto, L.; La Manna, A.; et al. Relationship between coronary plaque morphology of the left anterior descending artery 12 months clinical outcome: the CLIMAstudy. Eur Heart, J. 2020, 41, 383–391. [Google Scholar] [CrossRef]
- Roelandt, J.R.; Bom, N.; Serruys, P.W.; Gussenhoven, E.J.; Lancee, C.T.; Sutherland, G.R. Intravascular high-resolution real-time cross-sectional echocardiography. echocardiography. 1989, 6, 9–16. [Google Scholar] [CrossRef]
- Räber, L.; Mintz, G.S.; Koskinas, K.C.; Johnson, T.W.; et al. Clinical use of intracoronary imaging Part 1: guidance optimization of coronary interventions An expert consensus document of the European Association of Percutaneous Cardiovascular Interventions. Eur Heart J. 2018, 39, 3281–3300. [Google Scholar] [CrossRef]
- Nicholls, S.J.; Ballantyne, C.M.; Barter, P.J.; Chapman, M.J.; et al. Effect of two intensive statin regimens on progression of coronary disease. N Engl J Med. 2011, 365, 2078–87. [Google Scholar] [CrossRef] [PubMed]
- Nissen, S.E.; Nicholls, S.J.; Sipahi, I.; Libby, P.; et al. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROIDtrial, J. A.M.A. 2006, 295, 1556–65. [Google Scholar] [CrossRef] [PubMed]
- Nissen, S.E.; Tuzcu, E.M.; Schoenhagen, P.; Brown, B.G.; et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial, J. A.M.A. 2004, 291, 1071–80. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, S.J.; Hsu, A.; Wolski, K.; Hu, B.; et al. Intravascular ultrasound-derived measures of coronary atherosclerotic plaque burden and clinical outcome. J Am Coll Cardiol. 2010, 55, 2399–407. [Google Scholar] [CrossRef]
- Madder, R.D.; Goldstein, J.A.; Madden, S.P.; Puri, R.; et al. Detection by near-infrared spectroscopy of large lipid core plaques at culprit sites in patients with acute ST-segment elevation myocardial infarction. JACC Cardiovasc Interv. 2013, 6, 838–46. [Google Scholar] [CrossRef]
- Oemrawsingh, R.M.; Cheng, J.M.; García-García, H.M.; van Geuns, R.J.; et al. Near-infrared spectroscopy predicts cardiovascular outcome in patients with coronary artery disease. J Am Coll Cardiol. 2014, 64, 2510–8. [Google Scholar] [CrossRef]
- Madder, R.D.; Husaini, M.; Davis, A.T.; VanOosterhout, S.; et al. Large lipid-rich coronary plaques detected by near-infrared spectroscopy at non-stented sites in the target artery identify patients likely to experience future major adverse cardiovascular events. Eur Heart J Cardiovasc Imaging. 2016, 17, 393–9. [Google Scholar] [CrossRef]
- Prati, F.; Regar, E.; Mintz, G.S.; Arbustini, E.; et al. Expert review document on methodology terminology clinical applications of optical coherence tomography: physical principles methodology of image acquisition clinical application for assessment of coronary arteries atherosclerosis. Eur Heart J. 2010, 31, 401–415. [Google Scholar] [CrossRef]
- Baigent, C.; Blackwell, L.; Emberson, J.; et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010, 376, 1670–81. [Google Scholar]
- Cannon, C.P.; Blazing, M.A.; Giugliano, R.P.; McCagg, A.; et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015, 372, 2387–97. [Google Scholar] [CrossRef]
- Schwartz, G.G.; Steg, P.G.; Szarek, M.; Bhatt, D.L.; et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med. 2018, 379, 2097–107. [Google Scholar] [CrossRef] [PubMed]
- Sabatine, M.S.; Giugliano, R.P.; Wiviott, S.D.; Raal, F.J.; et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015, 372, 1500–9. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; et al. 2019 ESC/EASguidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart, J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed]
- Bayturan, O.; Kapadia, S.; Nicholls, S.J.; Tuzcu, E.M.; et al. Clinical predictors of plaque progression despite very low levels of low-density lipoprotein cholesterol. J Am Coll Cardiol. 2010, 55, 2736–42. [Google Scholar] [CrossRef]
- Nissen, S.E.; Tardif, J.C.; Nicholls, S.J.; Revkin, J.H.; et al. Effect of torcetrapib on the progression of coronary atherosclerosis. N Engl J Med. 2007 Mar;356, 1304-16. Erratum in: N Engl J Med. 2007, 357, 835. [Google Scholar] [CrossRef]
- Tsujita, K.; Sugiyama, S.; Sumida, H.; Shimomura, H.; et al. Impact of dual lipid-lowering strategy with ezetimibe and atorvastatin on coronary plaque regression in patients with percutaneous coronary intervention: the multicenter randomized controlled PRECISE-IVUS trial. J Am Coll Cardiol. 2015, 66, 495–507. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, S.J.; Puri, R.; Anderson, T.; Ballantyne, C.M.; et al. Effect of evolocumab on progression of coronary disease in statin-treated patients: the GLAGOVrandomized clinical trial, J. A.M.A. 2016, 316, 2373–84. [Google Scholar] [CrossRef]
- Nicholls, S.J.; Puri, R.; Anderson, T.; Ballantyne, C.M.; et al. Effect of evolocumab on coronary plaque composition. J Am Coll Cardiol. 2018, 72, 2012–21. [Google Scholar] [CrossRef]
- Puri, R.; Nicholls, S.J.; Shao, M.; Kataoka, Y.; et al. Impact of statins on serial coronary calcification during atheroma progression and regression. J Am Coll Cardiol. 2015, 65, 1273–82. [Google Scholar] [CrossRef]
- Puri, R.; Libby, P.; Nissen, S.E.; Wolski, K.; et al. Long-term effects of maximally intensive statin therapy on changes in coronary atheroma composition: insights from, S. A.T.U.R.N. Eur Heart J Cardiovasc Imaging. 2014, 15, 380–8. [Google Scholar] [CrossRef]
- Insull WJr Koren, M.; Davignon, J.; Sprecher, D.; et al. Efficacy and short-term safety of a new ACAT inhibitor, avasimibe, on lipids, lipoproteins, and apolipoproteins, in patients with combined hyperlipidemia. Atherosclerosis. 2001, 157, 137–44. [Google Scholar] [CrossRef]
- Nissen, S.E.; Tuzcu, E.M.; Brewer, H.B.; Sipahi, I.; et al. Effect of ACAT inhibition on the progression of coronary atherosclerosis. N Engl J Med. 2006, 354, 1253–63. [Google Scholar] [CrossRef]
- Kini, A.S.; Baber, U.; Kovacic, J.C.; Limaye, A.; et al. Changes in plaque lipid content after short-term intensive versus standard statin therapy: the YELLOW trial (reduction in yellow plaque by aggressive lipid-lowering therapy). J Am Coll Cardiol. 2013, 62, 21–9. [Google Scholar] [CrossRef]
- Komukai, K.; Kubo, T.; Kitabata, H.; Matsuo, Y.; et al. Effect of atorvastatin therapy on fibrous cap thickness in coronary atherosclerotic plaque as assessed by optical coherence tomography: the EASY-FIT study. J Am Coll Cardiol. 2014, 64, 2207–17. [Google Scholar] [CrossRef] [PubMed]
- Räber, L.; Koskinas, K.C.; Yamaji, K.; Taniwaki, M.; et al. Changes in coronary plaque composition in patients with acute myocardial infarction treated with high-intensity statin therapy (IBIS-4): a serial optical coherence tomography study. JACC Cardiovasc Imaging. 2019, 12 (Pt 1), 1518–28. [Google Scholar] [CrossRef]
- Hougaard, M.; Hansen, H.S.; Thayssen, P.; Maehara, A.; et al. Influence of ezetimibe on plaque morphology in patients with ST elevation myocardial infarction assessed by optical coherence tomography: an OCTIVUS sub-study. Cardiovasc Revasc Med. 2020, 21, 1417–24. [Google Scholar] [CrossRef] [PubMed]
- Iatan, I.; Guan, M.; Humphries, K.H.; Yeoh, E.; Mancini, G.B. Atherosclerotic coronary plaque regression and risk of adverse cardiovascular events: a systematic review and updated meta-regression analysis. JAMA Cardiol. 2023, 8, 937–45. [Google Scholar] [CrossRef] [PubMed]
- Biccirè, F.G.; Häner, J.; Losdat, S.; Ueki, Y.; et al. Concomitant coronary atheroma regression and stabilization in response to lipid-lowering therapy. J Am Coll Cardiol. 2023, 82, 1737–47. [Google Scholar] [CrossRef]
- Koenig, W.; Khuseyinova, N. Biomarkers of atherosclerotic plaque instability and rupture. Arterioscler Thromb Vasc Biol. 2007, 27, 15–26. [Google Scholar] [CrossRef]
- Joshi, F.R.; Lindsay, A.C.; Obaid, D.R.; Falk, E.; Rudd, J.H. Non-invasive imaging of atherosclerosis. Eur Heart J Cardiovasc Imaging. 2012, 13, 205–18. [Google Scholar] [CrossRef]
- Kraler, S.; Wenzl, F.A.; Georgiopoulos, G.; Obeid, S.; et al. Soluble lectin-like oxidized low-density lipoprotein receptor-1 predicts premature death in acute coronary syndromes. Eur Heart, J. 2022, 43, 1849–1860. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, C.; Abdulla, J. Characteristics of high-risk coronary plaques identified by computed tomographic angiography and associated prognosis: a systematic review and meta-analysis. Eur Heart J Cardiovasc Imaging. 2016, 17, 120–9. [Google Scholar] [CrossRef] [PubMed]
- Nakazato, R.; Otake, H.; Konishi, A.; Iwasaki, M.; et al. Atherosclerotic plaque characterization by CT angiography for identification of high-risk coronary artery lesions: a comparison to optical coherence tomography. Eur Heart J Cardiovasc Imaging. 2015, 16, 373–9. [Google Scholar] [CrossRef] [PubMed]
- Sandfort, V.; Lima, J.A.; Bluemke, D.A. Noninvasive imaging of atherosclerotic plaque progression: status of coronary computed tomography angiography. Circ Cardiovasc Imaging. 2015, 8, e003316. [Google Scholar] [CrossRef]
- Libby, P. The changing landscape of atherosclerosis. Nature. 2021, 592, 524–33. [Google Scholar] [CrossRef]



![]() |
![]() |
![]() |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biccirè, F.G.; Räber, L. Plaque Characterization Using Intracoronary Imaging: Effects of Lipid-Lowering Therapies. Cardiovasc. Med. 2024, 27, 99. https://doi.org/10.4414/cvm.2024.1379478206
Biccirè FG, Räber L. Plaque Characterization Using Intracoronary Imaging: Effects of Lipid-Lowering Therapies. Cardiovascular Medicine. 2024; 27(4):99. https://doi.org/10.4414/cvm.2024.1379478206
Chicago/Turabian StyleBiccirè, Flavio Giuseppe, and Lorenz Räber. 2024. "Plaque Characterization Using Intracoronary Imaging: Effects of Lipid-Lowering Therapies" Cardiovascular Medicine 27, no. 4: 99. https://doi.org/10.4414/cvm.2024.1379478206
APA StyleBiccirè, F. G., & Räber, L. (2024). Plaque Characterization Using Intracoronary Imaging: Effects of Lipid-Lowering Therapies. Cardiovascular Medicine, 27(4), 99. https://doi.org/10.4414/cvm.2024.1379478206



